Active Catalysts in Oxidative Coupling of Methane

Kiyoshi Otsuka* and Takayuki Komatsu

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

The NaCl/Mn-oxide catalyst shows higher catalytic activity than any previously reported in converting methane into ethylene and higher alkenes with yields of 15.7—30.6% at 750 °C.

Oxidative dehydrogenation and coupling of CH_4 producing C_2 hydrocarbons ($C_2H_6 + C_2H_4$) has attracted much attention since the pioneering work of Keller and Bhasin.¹ Many groups²⁻⁷ are working in this area and there is increasing industrial activity.⁸ However, the reactivities of the catalysts reported recently for synthesizing C_2 hydrocarbons are still not satisfactory.

We have already reported that the oxides of the first-row transition elements, such as the oxides of Ni, Ti, and Zn, containing lithium chloride had high catalytic activities in the selective synthesis of C_2H_4 from CH_4 .^{4c} The highest space time yields (S.T.Y.) observed for the synthesis of C_2 hydrocarbons were 27 and 11 mmol (g-cat)⁻¹ h⁻¹ for the LiCl-added manganese oxide (denoted as LiCl/Mn-oxide) and LiCl/Nioxide, respectively.

Tentative experiments showed that the addition of NaCl instead of LiCl to manganese oxides gave better C_2 -S.T.Y. (S.T.Y. for the synthesis of C_2 hydrocarbons) compared to that for LiCl/Mn-oxide. However, NaCl/Ni-oxide did not show better catalytic activity in the synthesis of C_2 compounds than that observed for LiCl/Ni-oxide. We now report results for NaCl/Mn-oxides which show better catalytic activities than literature values.¹⁻⁷

Powdered NaCl/Mn-oxides catalysts, containing 20 mol% sodium metal, were prepared from NaCl and MnO₂ as the initial manganese oxide. The catalysts were pretreated in air at 750 °C for 2 h before use. The catalysts were studied using a fixed-bed reactor with a conventional gas-flow system at atmospheric pressure using helium as carrier gas. The products after 25 min on stream were measured by gas chromatography. The conversion of CH₄, the selectivities, and the yields of the products were calculated on the basis of carbon number of CH₄ reacted.

for hydrocarbon formation ($\geq C_2$), and the yields of hydrocarbons observed for NaCl/Mn-oxide and LiCl/Ni-oxide catalysts. The former catalyst was mechanically mixed with quartz sand (5 g) as a diluent before being packed in the reactor because the dispersion of the catalyst increased the total yields of hydrocarbons. The experimental conditions are given in Table 1. Oxygen-containing organic compounds such as MeOH and HCHO were not produced. As can be seen in Table 1, the main products are C_2H_4 under any conditions tested. It is to be noted that C_3H_6 , C_4H_8 , benzene, and toluene are also produced. The selectivity for the formation of total hydrocarbons ($\geq C_2$) observed for NaCl/Mn-oxide at a pressure of reactant 0.09 atm reached 30.6%. S.T.Y.s of C2 compounds ($C_2H_4 + C_2H_6$) and of total hydrocarbons ($\geq C_2$) increased linearly with increasing pressure of reactants. The highest S.T.Y.s of total hydrocarbons observed are 72.3 mmol $(g-cat)^{-1} h^{-1}$ (48.2 mmol m⁻² h⁻¹) for NaCl/Mn-oxide and 18.5 mmol (g-cat)⁻¹ h⁻¹ (43.0 mmol m⁻² h⁻¹) for LiCl/Nioxide. The highest C₂-S.T.Y. in Table 1 is $64.0 \text{ mmol} (g\text{-cat})^{-1}$ h^{-1} (42.7 mmol m⁻² h⁻¹) for NaCl/Mn-oxide. These values are higher than any previously reported.¹⁻⁷ For example, the highest C₂-S.T.Y. previously observed for LiCl/Mn-oxide was 27 mmol (g-cat)⁻¹ h⁻¹ under the conditions $T = 750 \,^{\circ}\text{C}$, $P(CH_4) + \overline{P}(O_2) = 0.84 \text{ atm}, P(CH_4) : P(O_2) = 2 : 1, \text{ total gas}$ flow rate = 100 ml min⁻¹, weight of catalyst = 1.00 g.^{4c} The C₂-S.T.Y. observed for NaCl/Mn-oxide in Table 1 under similar conditions is 50.4 mmol (g-cat)⁻¹ h⁻¹, 1.9 times greater than the value for the LiCl/Mn-oxide. Since the oxygen in the reactants was almost completely consumed (O₂ conversion >93%) during passage through the catalyst bed, we can expect higher S.T.Y.s than those in Table 1 when the flow rate of the reactants and the partial pressure of oxygen are increased further than the conditions described in Table 1.

Table 1 shows the conversions of CH₄ and O₂, the selectivity

The NaCl/Mn-oxide is superior to the LiCl/Mn-oxide for the

1 anie 1. Pressure effects on the vields and 5.1.Y.S of the broducts in darital oxidation of methane over NaU/Min-oxide and LiU/Mi-oxid	Fable 1. Pressure effects on the	vields and S.T.Y.s of the	products in partial oxidation	on of methane over NaCl/Mn	oxide and LiCl/Ni-oxide.
--	---	---------------------------	-------------------------------	----------------------------	--------------------------

Catalyst		LiCl/Ni-oxide					
$P(CH_4) + P(O_2)/atm$	0.09	0.19	0.34	0.64	0.83	1.00	0.83
Catalyst weight/g	0.40	0.40	0.40	0.40	0.40	0.25	1.00
CH₄ conversion/%	46.8	46.1	41.5	38.9	36.1	32.0	31.9
O ₂ conversion/%	99.4	98.8	99.5	92.9	97.4	97.6	93.5
% Selectivity to							
hydrocarbons ($\geq C_2$)	65.2	56.0	51.4	45.5	53.1	48.9	49.0
-							
% Yields							
C_2H_4	25.7	19.8	16.8	14.2	14.9	11.9	11.3
C_2H_6	1.7	2.2	2.6	1.9	2.2	2.0	3.2
C_3H_6	0.5	0.6	0.7	0.9	1.1	0.9	0.5
C_4H_8	1.9	2.8	0.9	0.4	0.7	0.5	0.5
Benzene + toluene	0.8	0.4	0.4	0.2	0.3	0.2	0.1
Total hydrocarbons	30.6	25.8	21.3	17.6	19.2	15.7	15.7
S.T.Y./mmol $(g-cat)^{-1}h$	- 1						
$C_{2}H_{4} + C_{2}H_{6}$	9.2	14.7	23.4	36.7	50.4	64.0	17.2
Total hydrocarbons	10.2	17.3	25.7	40.1	56.6	72.3	18.5

^a Reaction conditions: T = 750 °C; $P(CH_4): P(O_2) = 2:1$, total gas flow rate = 100 ml min⁻¹.

following reasons. (i) As described above, the catalytic activity of the NaCl/Mn-oxide is greater than that of the LiCl/Mn-oxide. (ii) Deactivation of the latter catalyst commenced after 2 h stream, but no deactivation of the former catalyst was observed after 8 h.

In conclusion, the high catalytic activity and good stability of the catalyst observed for NaCl/Mn-oxide suggest that this is a promising catalyst for oxidative coupling of methane.

Received, 29th September 1986; Com. 1384

References

- 1 G. E. Keller and M. M. Bhasin, J. Catal., 1982, 73, 9.
- 2 W. Hinsen, W. Bytyn, and M. Baerns, Proc. 8th Int. Congr. Catal., 1984, vol. 3, 581.

- 3 T. Ito, Ji-Xiang Wang, Chiu-Hsun Lin, and J. H. Lunsford, J. Am. Chem. Soc., 1985, 107, 5062.
- 4 (a) K. Otsuka, K. Jinno, and A. Morikawa, *Chem. Lett.*, 1985, 499;
 (b) K. Otsuka, Qin Liu, M. Hatano, and A. Morikawa, *ibid.*, 1986, 467;
 (c) K. Otsuka, Qin Liu, M. Hatano, and A. Morikawa, *ibid.*, 1986, 903;
 (d) K. Otsuka, Qin Liu, and A. Morikawa, *J. Chem. Soc., Chem. Commun.*, 1986, 586;
 (e) K. Otsuka, K. Jinno, and A. Morikawa, *J. Catal.*, 1986, 100, 353.
- 5 H. Imai and T. Tagawa, J. Chem. Soc., Chem. Commun., 1986, 52.
- T. Moriyama, N. Takasaki, E. Iwamatsu, and K. Aika, Chem. Lett., 1986, 1165; K. Aika, T. Moriyama, N. Takasaki, and E. Iwamatsu, J. Chem. Soc., Chem. Commun., 1986, 1210.
 K. Asami, S. Hashimoto, T. Shikada, K. Fujimoto, and H.
- / N. Asami, S. Hashimoto, T. Shikada, K. Fujimoto, and H. Tominaga, *Chem. Lett.*, 1986, 1233.
- 8 U.S. Pat. 4,499,322(1985), 4,499,323(1985); WO 85/04821, WO 85/04867.