Pyrrolidine N-Oxides by Stereoselective Addition of Grignard and Lithium Compounds to 4,5-Dideoxy-2,3-O-isopropylidene-D-erythro-4-pentenose N-Benzyl Nitrone and Subsequent Cope-House Cyclization^[‡]

Andreas M. Palmer^[a] and Volker Jäger^{*[a]}

Dedicated to Professor Günter Helmchen on the occasion of his 60th birthday

Keywords: Grignard addition / Cope-House cyclization / Dihydroxypyrrolidine N-oxides / Dihydroxypyrrolidines / Glycosidase inhibitors

The addition of Grignard reagents to D-erythro-4-pentenose *N*-benzyl nitrone **5**, which is easily accessible from D-ribose, furnishes ω -unsaturated hydroxylamines that readily undergo Cope-House cyclization to afford pyrrolidine N-oxides. The stereoselectivity of the addition step is altered by either employing organolithium compounds or Lewis acids as complexing agents. The pyrrolidine *N*-oxides obtained by this sequence serve as key intermediates in the synthesis of 2,5-disubstituted pyrrolidine-3,4-diols (to be discussed in detail separately), both constituting new potential inhibitors of glycosidases.

Introduction

Glycosidase inhibitors hinder the enzymatic hydrolysis of oligo- and polysaccharides. Such inhibitors are therefore of considerable interest for the treatment of certain metabolic disorders, e.g. diabetes or inflammatory processes,^[3-6] and many efforts have been undertaken to rationalize the characteristics that an effective inhibitor should possess. Two features seem to be of special relevance: [6-8] (i) The inhibitor should resemble the natural substrate (carbohydrate), i.e. it should possess several hydroxy groups in a distinct configuration; (ii) the inhibitor should mimic intermediate species such as the exo-protonated glycoside A (cf. the purported pyranosyl cation **B**),^[4] or transition states like **C**, relevant in the course of the hydrolysis (Figure 1).^[9] Thus, it should contain a basic function to accommodate the positive charge introduced by protonation.^[5-7]

This concept is derived from many observations, notably that many potent inhibitors represent polyhydroxypiperidines (1,5-imino derivatives of the natural substrates) or polyhydroxypyrrolidines (1,4-iminoglycitols, ring-contracted analogues of the natural substrates).^[10-14] Two examples are depicted in Figure 1: Nojirimycin (D), a potent inhibitor of several α-glucosidases,^[15,16] and 1,4-dideoxy-1,4-imino-D-mannitol (E), which effectively inhibits some α mannosidases.[17-21]

[a] Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany Fax:(internat) + 49-711/685-4321E-mail: jager.ioc@po.uni-stuttgart.de

protonated glycoside A

Figure 1. Intermediates and transition states proposed for enzymatic cleavage of glycosides. Iminoglycitols as examples of glycosidase inhibitors

The objective of the present work is the synthesis of 2,5disubstituted pyrrolidinediols and pyrrolidinediol N-oxides, classes of compounds that meet the prerequisites outlined above and that, in our view, might give rise to new structures with high activities for inhibition, especially of α -Lfucosidases: The pyrrolidine N-oxides bring along a nega-

^[‡] Synthesis of Glycosidase-Inhibiting Iminopolyols by Cope-House Cyclization of Unsaturated Hydroxylamines, III. -Part II: Ref.[1]

^{[1][1]} Ref.[2]

tively charged oxygen atom, presumably with the capability of forming additional hydrogen bonds within the active site while retaining the positively charged *N*-atom (or with *N*-hydroxypyrrolidines^[22,23] allowing *N*-protonation to effect this).

The Cope-House cyclization of unsaturated hydroxylamines was expected to offer a convenient approach to these classes of heterocycles. This transformation was discovered in 1976 by House and co-workers and was originally thought to proceed by a radical pathway.^[24,25] In the early nineties, Ciganek and Oppolzer proved this to be a concerted process (Scheme 1) with a planar five-membered transition state involving six electrons.^[26-29] It is, of course, the reverse of the well-known thermal Cope elimination of tertiary amine N-oxides, mostly leading to separate ene and hydroxylamine products.^[30,31] Thus, the mechanism of the Cope-House cyclization,^[32,33] which has also been termed "Cope cyclization",[34] "retro- or reverse-Cope elimination",^[27] "House reaction", or "1,3-azaprotio transfer",^[32] resembles that of Alder's ene reaction.^[35] As a consequence, the cyclization proceeds highly stereoselectively with respect to the mutual cis-orientation of the N-oxide function and the newly formed alkyl (methyl) group.

Scheme 1. Cope-House cyclization of unsaturated hydroxylamines

The use of unsaturated hydroxylamines derived from enantiomerically pure starting materials such as D-ribose or 1,2-epoxy-4-pentenols,^[34,36,37] combined with the high diastereoselectivity of the Cope-House cyclization, therefore seemed a promising approach for the stereoselective synthesis of potential glycosidase inhibitors such as iminoglycitol N-oxides and, hence, of the parent polyhydroxypyrrolidines. We have developed four complementary approaches to obtain such N-oxy-pyrrolidines: (i) The "epoxypentenol route", involving the nucleophilic addition of hydroxylamines with subsequent Cope-House cyclization:^[34,36,38,39] (ii) Bromocyclization of oximes followed by nucleophilic addition of C-nucleophiles to the intermediate cyclic nitrone (pyrroline N-oxide);^[22,34] and (iii), (iv) Nucleophilic additions to unsaturated oximes and nitrones, respectively, generating alkenylhydroxylamines, which undergo cyclization.^[34,38-40] In the following, details of our work concerning route (iv), the preparation of hydroxylamines from D-ribose (1) by the addition of a variety of Grignard or organolithium compounds to respective 4pentenose nitrones, are described, along with the ensuing Cope-House cyclization. Transformation of selected products to the parent 2- or 2,5-(di)substituted dihydroxypyrrolidines along with results of the biological evaluation, mainly concerning fucosidase inhibition, are reported in the next paper of this series.^[40]

Results and Discussion

Synthesis of D-*erythro*-4-Pentenose *N*-Benzyl Nitrone 5 – A Key Intermediate in the Synthesis of 2- and 2,5-Substituted Pyrrolidinediols

D-Ribose (1) was converted into 4,5-dideoxy-2,3-O-isopropylidene-D-erythro-4-pentenose (4) using a slight modification of a procedure that had been applied by the groups of Gallos^[41,42] and Paquette^[43] (Scheme 2). After protection of D-ribose (1) using 2,2-dimethoxypropane and methanolic hydrochloric acid,^[44] the hydroxy group in 2 was transformed into the iodo compound 3 by means of triphenylphosphane/iodine.^[45,46] Ring-opening of 3 to the unsaturated aldehyde 4 by reductive elimination (Boord elimination) was achieved with *n*-butyllithium.^[22,34,47-49] The pentenose 4, obtained in 58% overall yield from 1, was dissolved in dichloromethane and condensed with one equivalent of N-benzylhydroxylamine, in the presence of magnesium sulfate as a dehydrating agent,^[50] to afford the analytically pure N-benzyl nitrone 5 in 69% yield.^[51] With this stoichiometric ratio of reactants, three minor by-products were formed and could be isolated by chromatography. Details of this unexpected formation of 5-azapyranoses are reported separately.[34,38,39]

Scheme 2. Synthesis of the *N*-benzyl nitrone **5** from D-ribose (1): (a) 1. Me₂C(OMe)₂, MeOH, HCl, acetone, room temp., 21 h; 2. pyridine; 67%. – (b) PPh₃, imidazole, I₂, toluene, 70 °C, 2 h; 87%. – (c) *n*BuLi, THF, -80 °C, 2 h; quant. – (d) BnNHOH, MgSO₄, CH₂Cl₂, room temp., 19 h; 69%

Nucleophilic Addition of Hydride and Grignard Reagents to Nitrone 5; Cope-House Cyclization

Nitrones are rather sluggish electrophiles, but additions of hydride (from sodium borohydride and related agents) and particularly of Grignard reagents are well precedented.^[52-55] Also, the reduction of oximes to provide *N*-alkenylhydroxylamines suitable for Cope-House cyclization is rather common.^[25,28,56-58] However, only in few cases, nitrones were used as starting materials.^[26,27,51,57] Here, in order to obtain the parent unsaturated hydroxylamine **6**, the *N*-benzyl nitrone **5** was reduced with

sodium borohydride in ethanol at 0 °C (Scheme 3). The ¹H NMR spectrum of the crude product, taken immediately after workup and extraction with chloroform, showed that the hydroxylamine **6** had been formed, as expected. However, some conversion of this into the cyclized *N*-oxides **7** and **8** was already evident, and this was brought to completion by allowing the solution to stand at room temperature for another 16 h. The pyrrolidine *N*-oxide products were obtained as a 92:8 mixture (93%), from which the major diastereomer **7** crystallized in 66% yield.

Scheme 3. Synthesis of the parent pyrrolidine *N*-oxides 7 and 8 by reduction of the nitrone 5: (a) NaBH₄, EtOH, 0 °C, 4 h; (b) CHCl₃, room temp., 16 h, 93%, 7/8 = 92.8; (c) crystallization; 7: 66%

The fact that only two isomers were formed is in agreement with the accepted concerted mechanism.^[26–29] The configuration of these pyrrolidine *N*-oxides **7** and **8** was elucidated from NMR spectroscopic data (vide infra). The diastereomeric ratio of 92:8 observed clearly indicates that the acetonide function present at the α - and β -positions to the double bond causes effective asymmetric induction in the cyclization step.

For access to 2-substituted 5-methylpyrrolidine-3,4-diols, the addition of Grignard reagents proved feasible. A variety of reagents was used in order to explore structure–activity relationships with regard to the intended tests of fucosidase inhibition.^[40] As indicated in Table 1, most additions occurred readily at low temperatures, typically requiring 2 to 8 h for completion. The cyclization of the intermediate hydroxylamines 9 and 10 was then carried out in chloroform as above; this had been described as the optimum solvent for the Cope–House cyclization.^[26,27] In all cases, the conversion of the unsaturated, acyclic hydroxylamines 9a-h,k and 10a-k to the pyrrolidine *N*-oxides 11a-h,k, 12a-k and 13a,b,d,g proceeded smoothly and completely within 16 h (Scheme 4).

The addition of *C*-nucleophiles to nitrone **5** and the subsequent Cope-House cyclization of the intermediate hydroxylamines **9a-h,k** and **10a-k** generate two stereocenters independently, so that product mixtures with up to four stereoisomers can be expected. In fact, upon reaction of the nitrone **5** with methylmagnesium bromide in diethyl ether three diastereomers, the 2,5-dimethylpyrrolidine *N*-oxides **11a, 12a,** and **13a** were found (Table 1, entry 1; dr =38:48:14), which could be separated by MPLC. The config-

Eur. J. Org. Chem. 2001, 1293-1308

urations of these heterocycles were derived from NMR spectroscopic data as depicted in Scheme 4 (vide infra).

As seen from Table 1 (entries 2-14), the addition of a representative set of other Grignard reagents to the nitrone 5 was studied likewise and in all cases, after Cope-House cyclization, led to the respective pyrrolidine N-oxides 11b-h,k 12b-k, and 13b,d,g. With ethylmagnesium bromide and isopropylmagnesium chloride, the 2,3-cis-pyrrolidine N-oxides 12b and 12c were formed preferentially (Table 1, entries 2, 3). When using isobutylmagnesium bromide, the diastereomeric ratio of the products 11d-13d depended more strongly on the reaction conditions (Table 1, entries 4 to 6). The question as to whether isomerization by Cope elimination/recyclization may occur was examined by stirring solutions of the pure isomers 11d and 12d in deuterated chloroform for 6 d at room temperature. The NMR spectra of 11d and 12d remained unchanged. Thus, it seems that the diastereoselectivity observed depends on the reaction conditions of the nucleophilic addition (temperature, time). Similarly, with the other alkyl cases, a general correlation between the steric demand of the nucleophile and the diastereoselectivity of the Grignard addition step does not seem to hold.

The reactions of **5** with *tert*-butyl- or neopentylmagnesium bromide furnished mixtures with two of the expected pyrrolidine *N*-oxides, **11e/12e** and **11f/12f**, respectively, in rather low yields (Table 1, entries 7 to 9). In the former case, the 2-unsubstituted pyrrolidine *N*-oxide **7**, resulting from Grignard reduction, was observed in an approximately equal amount; in the latter case the reaction did not go to completion. Again, the diastereomeric ratio observed strongly depended on the reaction conditions.

A tentative statement at this point may be that the addition of alkyl Grignard reagents to nitrone **5** proceeds with moderate diastereodifferentation, whereas the Cope-House cyclization proceeds highly stereoselectively. The Cope-House cyclization approach to pyrrolidine *N*oxides using the "nitrone route" seems to be of preparative value mostly with primary and secondary alkyl nucleophiles for the preceding addition step.

Good yields again were found for the phenyl and vinyl compounds, from which several of the individual stereoisomers were isolated. Upon addition of phenylmagnesium bromide to the nitrone 5, the 2-epimers **11g/12g** were obtained in a diastereomeric ratio of 40:60 (Table 1, entry 10). With vinylmagnesium bromide, the similar pair of stereoisomers **11h/12h** was found, with a slight preference for the formation of **11h**, which has the 2-substituent oriented *trans* to the acetonide (Table 1, entry 11).

The delicate balance of the equilibrium between *N*-alkenylhydroxylamines and pyrrolidine *N*-oxides, comparable to ring-chain tautomerism, became evident in the case of the allyl and benzyl compounds: First, Grignard addition at low temperature and chloroform treatment at room temperature for 13 to 16 h led to single stereoisomers of the pyrrolidine *N*-oxides **12i** and **12j** in good yields (47 and 59%; entries 12, 13 in Table 1). These products, arising from the thermal Cope-House cyclization ("retro-Cope elimina-

FULL PAPER

Entrv	Reagent	Conditions		Products	$dr^{[a]}$	Yield [%] ^[b]
		[°C]	[h]		11/12/13	
1	MeMgBr	-40	2	11a/12a/13a	38:48:14	78 (11a : 27; 12a : 37)
2	EtMgBr	-20 to -30	3.5	11b/12b/13b	22:67:11	74 (11b, 12b: 64; 13b: 8)
3	iPrMgCl	-30	4.75	11c/12c	15:85:<5	48
4	iBuMgBr	0 to room temp.	19	11d/12d/13d	27:65:8	74 (11d: 20; 12d: 49)
5	iBuMgBr	-30 to room temp.	8.5	11d/12d/13d	46:48:6	87
6	iBuMgBr	-30 to -10^{-1}	10	11d/12d/13d	26:67:7	not purified ^[c]
7	<i>tert</i> -BuMgBr	-30	7.5	7/11e/12e	24:76:<5	7: 24; 11e/12e : 18
8	neo-PeMgBr	room temp.	48	11f/12f	50:50:<5	12f : 12
9	neo-PeMgBr	-10 to -30	11	11f/12f	20:80:<5	not purified ^[c]
10	PhMgBr	-20	1	11g/12g/13g	40:60:<5	70 (11g : 25; 12g : 41; 13g : 4)
11	VinylMgBr	-40	2	Ĭ1h/Ĭ2h	67:33:<5	91 (11h : 56; 12h : ^[d] "35")
12	AllylMgBr	-40	0.75	12i	<5:>95:<5	47 ^[e]
13	BnMgBr	-30	2	12j	<5:>95:<5	59 ^[e]
14	ButenylMgBr	-20	3.5	11k/12k/15	22:37:41	59 (11k: 13; 12k: 23; 15: 23)
15	MeMgBr/ZnCl ₂ ·Et ₂ O	-30 to -10	6	11a/12a/13a	13:66:21	66 (12a : 49) ^[f]
16	MeMgBr/Et ₂ AlCl	-30	3.25	11a/12a/13a	18:64:18	59
17	BnMgBr/Et ₂ AlCl	-30 to -10	2.75	12j	<5:>95:<5	57 ^[e]
18	PhMgBr/Et ₂ AlCl	-30	3.75	11g/12g/13g	58:42:<5	76 (11g : 46)
19	VinylMgBr/ZnCl ₂ ·Et ₂ O	-30 to -10	4.25	11h/12h	84:16:<5	75 (11h : 60)
20	VinylMgBr/Et ₂ AlCl	-30	3.5	11h/12h	84:16:<5	72
21	MeLi	-80	4.75	11a/12a	91:9:<5	58 (11a : 53)
22	PhLi	-80	3	11g/12g/13g	19:81:<5	51 (12g : 38)
23	VinylLi	-80	5.25	11h/12h	71:29:<5	62

Table 1. Addition of Grignard/organolithium reagents to N-benzyl nitrone 5 with ensuing Cope-House cyclization

^[a] Diastereomeric ratios are calculated from the ¹H and ¹³C NMR spectra of the crude product. Values <5 indicate that, although formation of these isomers is likely (cf. Experimental Section, case 10), characteristic signals of these minor products were not visible in the corresponding NMR spectra. - ^[b] Mixtures of diastereomers; yields given in brackets indicate the amount of pure stereoisomer isolated after MPLC separation. In entries 15 to 23 only the yield of the major isomer is given. - ^[c] Reaction did not go to completion. - ^[d] Viscous oil, still containing traces of solvent even after thorough drying. - ^[e] Only one pyrrolidine *N*-oxide was formed. - ^[f] Sample contained approximately 10% of the minor diastereomer 13a.

Scheme 4. Cope-House cyclization of the unsaturated hydroxylamines 9a-h,k and 10a-k generated by Grignard addition to the nitrone 5: (a) RMgBr or RLi; (b) CHCl₃; cf. Table 1

tion") as above, were not stable and, upon prolonged storage at -25 °C, slowly underwent ring-opening to form the acyclic isomeric hydroxylamines 14i and 14j (Scheme 5). This was demonstrated by ¹H NMR spectroscopy, when [D₆]DMSO solutions of the N-oxides 12i or 12j were heated to 80 °C for 15 to 30 min. The spectra showed that quantitative elimination had occurred, which was confirmed by a preparative run from which the phenyl compound 14j was isolated in 76% yield. Since the trans orientation of the Noxygen atom and the C-2 substituent present in these pyrrolidine N-oxides strongly disfavours formation of a planar transition state as required for the concerted Cope elimination,^[59-61] this reaction might proceed in an intermolecular rather than in an intramolecular fashion, in a way related to the Hofmann degradation of quaternary ammonium salts.[31,62]

Scheme 5. Cope elimination of pyrrolidine N-oxides 12i and 12j: (a) Me₂SO, 80 $^{\circ}$ C, 15–30 min

Competition of Alkenyl Groups and the Influence of the Acetonide Group on the Rate of Cyclization

In the case of the vinyl compound, the progress of the Cope–House cyclization was monitored by ¹H NMR spec-

troscopy. It turned out that the reaction rates were different for the two diastereomeric hydroxylamines 9h and 10h, with **9h** reacting faster (15 min after workup: 56% cyclization, dr 11h/12h = 82:18), and that the reaction was virtually complete within 90 min (>85% cyclization). According to literature reports, the cyclization of unsaturated hydroxylamines having alkenyl chains with no alkoxy functional group proceeds to 90% during work-up and goes to completion within 24 h.^[27] Thus, it was of interest to evaluate the effect of the isopropylidenedioxy moiety on the cyclization, i.e. to study the internal competition of this functionalized chain with an unsubstituted 3-butenyl group. This was possible with the addition of 3-butenylmagnesium bromide: Two modes of Cope-House cyclization of the intermediate hydroxylamines 9k/10k could occur, either involving the butenvl part or the dioxy-butenyl chain (Scheme 6). In fact, from the reaction with the 3-butenyl Grignard reagent carried out as above, three isomeric pyrrolidine *N*-oxides **11k**, 12k, and 15 were obtained in a ratio of 22:37:41. The mixture was separated by MPLC, and the structures of the individual pyrrolidine N-oxides were established by NMR (H,H-COSY). Two of the isomers (11k and 12k, 13% and 23% yield, respectively) resulted from cyclization to the dioxybutenyl part, the third isomer 15 (23% yield) constituted a 3,4-unsubstituted pyrrolidine N-oxide with an intact dioxybutenyl moiety. The configuration of the latter product 15, a single stereoisomer, has thus far not been deduced.

Scheme 6. Cope-House cyclization of the unsaturated hydroxylamines 9k/10k derived from nucleophilic addition of 3-butenylmagnesium bromide to the nitrone 5: (a) 3-ButenylMgBr, Et₂O, -20 °C, 3.5 h; (b) CHCl₃, room temp., 5 d, isomer ratio 11k/12k/15 = 22:37:41; (c) MPLC; yields cf. above

Two opposing tendencies need to be considered: The CC double bond bearing an allylic alkoxy function is more electrophilic than that of the unsubstituted butenyl group,^[63–66] and thus should react more readily with the nucleophilic hydroxylamine moiety. Also, the acetonide function serves as a clamp and might entropically facilitate the formation of the planar transition state required for the Cope–House

cyclization. However, steric hindrance from the acetonide part and additional ring strain to form the fused bicycle might oppose this. Based on the experimental results, all these effects seem to balance, and the acetonide group is concluded to exhibit only a modest influence on the rate and regioselectivity of the Cope-House cyclization (Scheme 6).

Stereoselective Additions to the Nitrone 5 Using Organolithium and Grignard Reagents with Lewis Acids Added

Since the 2-methyl-, 2-phenyl-, and 2-vinylpyrrolidine *N*-oxides **11a/12a**, **11g**, and **11h** constitute key intermediates for access to iminopolyol inhibitors,^[40,67–71] the stereoselectivity of the addition step was studied further by the use of additional Lewis acids in the Grignard reactions, and also by employing methyl-, phenyl-, and vinyllithium. For both variants, there is ample precedence in the literature concerning nitrone additions^[55,72–76] and, for example, reactions with α -oxyimines.^[77–79]

Complexation of the nitrone **5** with zinc chloride or diethylaluminium chloride prior to the addition of the methyl Grignard reagent led to somewhat enhanced diastereoselectivity, up to 13:66:21, and the 2,5-*trans* isomer **12a** was isolated in 49% yield (Table 1, entries 15 and 16). In the case of the benzyl compound, the addition of diethylaluminium chloride had no effect on the stereoselectivity of the reaction, and the 2,5-*trans*-isomer **12j** remained the sole product observed and isolated (57%; Table 1, entry 17).

Switching to methyllithium proved beneficial since this gave only two products with an increased ratio of 91:9, the meso-derivative 11a (cis-2,5-dimethyl) being the major product (Table 1, entry 21). These observations suggest that organolithium compounds preferentially form the diastereomer 11 (2,5-cis) and, on the other hand, that an increase in the amount of the 2,5-trans isomer 12 formed would result from pre-complexation of the nitrone 5 with Lewis acids. Unfortunately, this simple guideline does not hold in the case of the vinyl and phenyl compounds: In the latter case, the use of the lithium derivative gave a better proportion (81:19) of the 2,5-trans-diastereomer 12g, whereas the formation of 2,5-cis-pyrrolidine N-oxide 11g was favoured in the presence of diethylaluminium chloride (Table 1, entries 18, 22). When adding vinylmagnesium bromide to the nitrone 5, pre-complexed with diethylaluminium or zinc chloride, the major N-oxide product 11h amounted to 84 parts of the two-isomer mixture, and was isolated in 60% yield (Table 1, entries 19 and 20). Switching from vinylmagnesium bromide to vinyllithium did not alter the diastereoselectivity of the addition (Table 1, entry 23).

Several models have been proposed by Dondoni, Merino, and co-workers in order to rationalize the stereochemical outcome of the addition of organometallic *C*-nucleophiles to α -alkoxy nitrones in the presence of Lewis acids.^[55,72–76] However, the diastereoselectivities observed here are not satisfactorily explained by any of these and further detailed studies are necessary.

Determination of the Configuration and Conformation of the Pyrrolidine *N*-Oxides 7, 8 and 11a,b,d-h,k, 12a-k, 13a,b,g

Reduction of the nitrone **5** with sodium borohydride and ensuing Cope–House cyclization resulted in the formation of the 2-epimers **7** and **8** (vide supra). Here, the 2,3-*trans* configuration (methyl *trans* to the acetonide moiety) present in the major isomer **7** was readily assigned by comparison of the ¹³C NMR chemical shifts of the 2-methyl groups, which for compound **7** appeared significantly downfield ($\delta = 11.5$ in **7** vs. 8.2 in **8**).

The ¹H NMR spectroscopic data, chemical shifts, and coupling constants of the pyrrolidine *N*-oxides obtained in this work are collected in Table 2 and Table 3; ¹³C NMR chemical shifts are given in Table 4. In each case, the configuration of the diastereomeric pyrrolidine *N*-oxides was established by comparison of the NMR spectroscopic data with those obtained for the 2,5-dimethylpyrrolidine *N*-oxides **11a**, **12a**, and **13a**, in which unambiguous assignment

was based on the crystal structure obtained for the free *meso*-pyrrolidinediol *N*-oxide **16a**, as shown below.

Upon addition of methylmagnesium bromide to nitrone 5, and cyclization, three pyrrolidine *N*-oxides 11a, 12a, and 13a were formed. The NMR spectroscopic data obtained for these compounds clearly indicated that the two minor isomers 11a and 13a were *meso* derivatives (Figure 2).

Deprotection of one of these *meso* compounds (11a) was accomplished with hydrochloric acid in methanol/water (Scheme 7). Recrystallization of this deprotected pyrrolidine *N*-oxide 16a from methanol/diethyl ether yielded crystals suitable for X-ray structure determination. The crystal structure of 16a, shown in Figure 3, provided proof of the configuration of the *N*-oxide 11a as determined above: The two methyl groups are oriented 2,5-*cis* and *trans* to the acetonide group. The other *meso* compound 13a therefore constitutes the all-*cis* isomer which is also concluded from the distinct upfield signals for all the carbon atoms concerned.

Table 2. ¹H NMR chemical shifts δ of pyrrolidine N-oxides 11a,b,d,g,h,k, 12a-k, and 13a,b,g (δ [ppm], 300.1 MHz or 500.1 MHz, CDCl₃)

	2-H	3 - H	4 - H	5-H	5-CH ₃	$C(CH_3)_2$	CH ₂ Ph	Others (2-R)
11a	3.29	4.63	4.63	3.29	1.69	1.28 (6 H)	$4.16 (CH_2),$	1.69 (CH ₃)
11b	3.06	4.68	4.66	3.25	1.68	1.27, 1.28	$4.12, 4.21 (CH_2), 7.31, 7.43 (Ph)$	1.10 (CH ₃) 1.99–2.16 (CH _a H _b), 2.24–2.34 (CH _b H _b),
11d	3.24	4.65	4.65	3.27	1.68	1.26, 1.27	$4.14, 4.22 (CH_2), 7.34, 7.43 (Ph)$	$0.97 (CH_3), 1.10 (CH_3), 1.74 (CH_H), 1.86 (CH) 2.38 (CH, H)$
11g	4.10	5.11	4.80	3.61	1.74	1.27, 1.38	$3.99, 4.11 (CH_2),$ 7 30, 7 45, 7 99 (2 Pb)	[a]
11h	3.73	4.83	4.69	3.32	1.70	1.28, 1.32	$4.13, 4.20 (CH_2), 7 34, 7 43 (Ph)$	5.58 (CH _E H _Z), 5.68 (CH _E H _Z), 6.69 (CH)
11k	3.17	4.70	4.68	3.26	1.68	1.26, 1.28	$4.14, 4.23 (CH_2), 7 31, 7 43 (Ph)$	2.12, 2.36, 2.45 (CH_2CH_2) , 5.07 (CH_2H_2) , 5.16 (CH_2H_2) , 5.92 (CH)
12a	3.81	4.91	4.63	3.83	1.35	1.37, 1.64	$4.20, 4.48 (CH_2), 7.38, 7.73 (Ph)$	1.52 (CH ₂), 5.10 (CH ₂ H ₂), 5.52 (CH)
12b	3.52	4.89	4.60	3.86	1.27	1.39, 1.68	4.25, 4.55 (CH ₂), 7 37, 7 70 (Ph)	1.12 (CH ₃), 2.03 (CH _a H _b), 2.30 (CH ₄ H ₂)
12c	3.36	4.84	4.50	3.87	1.22	1.36, 1.68	$4.44, 4.65 (CH_2), 7 37, 7 70 (Ph)$	2.50 (CH ₃), 1.55 (CH ₃), 2.56 (CH ₃),
12d	3.65	4.88	4.61	3.84	1.29	1.37, 1.67	$4.26, 4.53 (CH_2), 7.36, 7.71 (Ph)$	$0.96 (CH_3), 1.05 (CH_3), 1.79 (CH), 1.97 (CH_2)$
12e	3.40	4.94	4.47	3.85	1.21	1.35, 1.70	$4.75 (CH_2),$ 7 34, 7 74 (Ph)	$1.48 [C(CH_3)_3]$
12f	3.61	4.84	4.59	3.87	1.24	1.37, 1.68	$4.27, 4.50 (CH_2), 7.35, 7.68 (Ph)$	$1.08[(CH_3)_3], 2.00 (CH_aH_b),$ 2 16 (CH_H_b)
12g	4.81	5.24	4.80	4.04	1.47	1.40, 1.67	3.96, 4.52 (CH ₂), 7.29, 7.41, 7.66, (2 Ph)	
12h	4.26	5.09	4.71	3.80	1.43	1.37, 1.61	$4.20, 4.43 (CH_2),$ 7 34, 7 69 (Ph)	5.46 (CH _E H _Z), 5.61 (CH _E H _Z), 5.99 (CH)
12i	3.61	4.81	4.58	3.87	1.26	1.37, 1.69	4.23, 4.60 (CH ₂), 7.34, 7.70 (Ph)	2.74, 2.99 (CH _a H _b), 5.18 (C H_E H _z), 5.31 (CH _e H ₇), 5.87 (CH)
12j	3.73	4.54	4.47	3.90	1.18	1.33, 1.74	4.35, 4.70 (N-CH ₂), 7.26, 7.36, 7.47,	3.23, 3.55 (2-CH ₂) ^[a]
12k	3.65	4.85	4.60	3.89	1.26	1.38, 1.67	7.75 (2 Ph) 4.28, 4.55 (CH ₂),	2.10, 2.19, 2.34 (CH ₂ CH ₂),
13a	3.18	4.51	4.51	3.18	1.63	1.28, 1.60	7.36, 7.75 (Ph) 4.29 (CH ₂),	5.04 ($CH_E\dot{H}_Z$), 5.13 ($C\dot{H}_E\ddot{H}_Z$), 5.89 (CH) 1.63 (CH ₃)
13b	3.21	4.70	4.59	3.49	1.58	1.29, 1.52	7.34, 7.43 (Ph) 4.52, 4.59 (CH ₂),	1.10 (CH ₃), 1.94 (CH _a H _b),
13g	4.22	4.75	4.72	3.58	1.73	1.27, 1.66	7.43 (Ph) 4.20, 4.76 (CH ₂), 7.42, 7.95 (2 Ph)	2.46 ($\underset{[a]}{\text{CH}}_{a}H_{b}$)

^[a] Signals of 2-Ph in column CH₂Ph.

Glycosidase-Inhibiting Iminopolyols by Cope-House Cyclization

FULL PAPER

Table 3. H,H-coupling constants of pyrrolidine *N*-oxides **11a,b,d,g,h,k**, **12a-k**, and **13a,b,g** (*J* [Hz], CDCl₃)

	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,5-\mathrm{Me}}$	^{2}J (CH ₂ Ph)	Other
11a 11b	5.5	7.3	6.3	6.4 6.3	14.0	$J(2-H,CH_3) = 6.4$ $J(2-H,CH_aH_b) = 11.3,$ $J(2-H,CH_aH_b) = 3.3,$
11d	5.5	n. d.	6.3	6.4	14.0	$J(CH_2CH_3) = 7.6$ $J(2-H,CH_aH_b) = 12.0,$ $J(2-H,CH_aH_b) = 3.4,$ $J(CHCH_3) = 6.5,$
11g 11h	7.1 6.6	7.2 7.1	6.1 6.3	6.3 6.3	13.8 13.8	$J(CHCH_3) = 6.8$ J(2-H,CH) = 8.7, $J(CH=CH_EH_Z) = 17.8,$
11k	5.9	7.4	6.5	6.4	14.0	$J(CH=CH_EH_Z) = 10.5 J(2-H,CH_aH_b) = 11.4, J(2-H,CH_aH_b) = 3.0, J(CH=CH_EH_Z) = 10.2, J(CH=CH_EH_Z) = 17.2, J(CH=CH_EH_Z) = 10.5 J(CH=CH_EH_Z) = 10.2 \\J(CH=CH_EH_Z) = 10.2 \\J(CH=CH_EH$
12a 12b	6.1 5.6	7.4 7.4	2.0 0.0	7.1 7.1	12.2 11.9	$J(CH_EH_Z) = 1.7$ $J(2-H,CH_3) = 7.2$ $J(2-H,CH_aH_b) = 11.8$, $J(2-H,CH_aH_b) = 3.1$, $U(CH_CH_a) = 7.6$
12c	5.4	7.6	0.0	7.5	11.9	$J(2-H_2CH_3) = 1.0$ J(2-H,CH) = 10.3, $J(CHCH_3) = 6.5,$ $J(CHCH_3) = 6.6$
12d	5.7	7.5	1.2	7.5	12.0	$J(CHCH_3) = 6.6, J(CHCH_3) = 6.6$
12e 12f	5.5 5.7	7.6 7.4	$\begin{array}{c} 0.0\\ 0.0\end{array}$	7.5 7.4	12.1	$J(2-H,CH_{a}H_{b}) = 11.0,$ $J(2-H,CH_{a}H_{b}) = 1.5,$ ${}^{2}J(CH_{a}H_{b}) = 11.9$
12g 12h	5.9 6.3	7.4 7.3	3.0 3.3	7.0 6.9	12.3 12.3	J(2-H,CH) = 9.7, $J(CH=CH_EH_Z) = 17.0,$ $J(CH=CH_EH_Z) = 10.3,$
12i	5.4	7.5	0.8	7.4	11.9	2 /(CH _E H _Z) = 1.5 J(2-H,CH _a H _b) = 12.2, J(2-H,CH _a H _b) = 3.4, ² J(CH _a H _b) = 12.2, J(CH _a H _b CH) = 7.5, J(CH _a H _b CH) = 6.5, J(CH=CH _E H _Z) = 10.1, J(CH=CH _E H _Z) = 17.1, ² U(CH H) - 18
12j	5.4	7.4	0.0	7.5	11.9	$J(2-H,CH_{a}H_{b}) = 12.1,$ $J(2-H,CH_{a}H_{b}) = 2.6,$ $^{2}U(CH,H_{c}) = 12.0$
12k	5.7	7.4	0.0	7.4	12.0	$J(CH_aH_b) = 12.0$ $J(2-H,CH_aH_b) = 11.7,$ $J(2-H,CH_aH_b) = 2.5,$ $J(CH=CH_EH_Z) = 10.2,$ $J(CH=CH_EH_Z) = 17.1,$ $^2J(CH_EH_Z) = 17.8,$
13a 13b	5.1			6.8 6.5	13.7	$J(2-H,CH_3) = 6.8$ $J(2-H,CH_3H_b) = 11.0,$ $J(2-H,CH_aH_b) = 3.4,$ $J(CH_3CH_3) = 7.5$
13g	5.0	7.1	5.2	6.5	13.7	<i>v</i> (<i>ci</i> ₂ <i>ci</i> ₁₃ <i>) i</i> .5

Consequently, the isomer **12a** must have the 2,5-dimethyl groups in a *trans* orientation, as shown by the ¹³C NMR signals at $\delta = 9.3$ and 13.2; the individual assignment, however, is not possible from this. On the other hand, this can be done in a reliable way by comparison with the NMR spectroscopic data obtained for the 2-ethyl-5-methylpyrrolidine *N*-oxides **11b**, **12b**, and **13b** (cf. Figure 2), where characteristic shift changes of the 2- and 5-substituent are unequivocal: In **12a**, the 2-methyl group introduced by Grignard addition is oriented *cis* to the isopropylidenedioxy

function and to the *N*-benzyl group, whereas the 5-methyl group formed by Cope-House cyclization is oriented *trans* to the acetonide moiety and *cis* to the *N*-oxido group. In all other cases, the configuration of the diastereomeric pyrrolidine *N*-oxides was established in a similar way by comparison of the NMR spectroscopic data obtained for the prevailing diastereomers with those obtained for the methyl compounds (cf. Table 2 to 4).

Several trends are obvious when comparing the ¹³C NMR spectroscopic data of the diastereomeric pyrrolidine N-oxides (Table 4). When going from the pyrrolidine N-oxides 11 to their 2-epimers 12, the relationship between 5-CH₃/NO (cis) and 5-CH₃/acetonide (trans) is retained, whereas the orientation between 2-R/NO (cis) and 2-R/acetonide (trans) is reversed. As a consequence, when comparing the NMR spectroscopic data of 11a,b,d-h,k and 12a-k, only a slight change in the chemical shifts of 5- CH_3 , C-5, and C-4 (< 3 ppm) is observed, whereas significant changes in the chemical shifts of 2-R, C-2, and C-3 (3-5 ppm) are apparent. In order to pass from the pyrrolidine N-oxides 11 to their diastereomers 13, the orientation of both 5-CH₃ and 2-R with respect to the acetonide and the NO-function has to be inverted. Consequently, all ring carbon atoms and the carbon atoms of the substituents adjacent to the ring in 13a,b,g undergo an upfield shift in the range of 3 to 5 ppm. Interestingly, the chemical shift of the N-CH₂ part of the benzyl group of the pyrrolidine N-oxides 12a-k is not affected by the proximity of 2-R, but the carbon atoms of the acetonide group give rise to signals distinctly upfield from those of **11a,b,d-h,k** (2 to 3 ppm).

In the ¹H NMR spectroscopic data of the pyrrolidine *N*oxides **11a,b,d,g,h,k** and **12a-k** significant differences are also observed: (i) Two of the phenyl protons of **12a-k** are strongly deshielded (δ ca. 7.7). (ii) In the spectra of **12a-k**, the diastereotopic methylene protons of the benzyl group and the methyl groups of the acetonide are clearly differentiated ($\Delta \delta$ ca. 0.3 ppm). (iii) The signals for 2-H and 5-H of **12a-k** experience a net downfield shift relative to those for 2-H and 5-H of **11a,b,d,g,h,k**, whereas 5-CH₃ in **12a-k** is considerably more shielded than in **11a,b,d,g,h,k**. (iv) All coupling constants are of comparable magnitude with the exception of $J_{4,5}$ (**11b,d,g,h,k**: 6.1 to 6.5 Hz; **12a-k**: 0 to 3.3 Hz).

The information derived from these observations was used to establish suitable starting geometries for molecular models of the 2,5-dimethylpyrrolidine *N*-oxides **11a** and **12a** as representatives of the structural types **11** and **12**. The energies of these models were minimized by MM2/MOPAC calculations: Both pyrrolidine *N*-oxides **11a** and **12a** adopt *envelope* conformations (Figure 4). In the case of the 2,5-*cis*-isomer **11a**, the ring nitrogen atom is located out of the plane defined by the ring carbon atoms (1E).^[80] This situation is also seen in the crystal structure of **16a**. The phenyl ring and the acetonide protecting group in **11a** are oriented symmetrically with respect to a plane (σ) perpendicular to the heterocycle and bisecting the nitrogen atom and the C-3/C-4 bond. This conformation relates to the fact that for all pyrrolidine *N*-oxides **11** similar chemical shifts were ob-

FULL PAPER

Table 4. ¹³ C NMR che	emical shifts of pyrrolidine 1	V-oxides 11a,b,d-h,k, 12a	-k, and 13a,b,g (δ [ppm],	125.8 MHz, CDCl ₃)
----------------------------------	--------------------------------	---------------------------	---------------------------	--------------------------------

	C-2	C-3	C-4	C-5	5-CH ₃	C(CH ₃) ₂	CH ₂ Ph	Others (2-R)
11a	72.2	82.9	82.9	72.2	11.6	24.7, 26.7, 114.5	65.7 (CH ₂), 129.4, 129.9, 130.0, 131.0 (Ph)	11.6 (CH ₃)
11b	77.4	82.2	82.9	71.8	11.2	24.7, 26.8, 114.4	$66.0 (CH_2), 129.3, 129.8, 130.2, 131.3 (Ph)$	9.3 (CH ₃), 19.8 (CH ₂)
11d	74.9	82.3	83.0	72.0	11.4	24.9, 26.8, 114.3	65.8 (CH ₂), 129.2, 129.9, 130.2, 131.5 (Ph)	21.9 (CH ₃), 24.4 (CH ₃), 24.7 (CH), 35.4 (CH ₂)
11e 11f	79.1 75.1	81.7 82.0	82.0 83.1	71.6 71.3	10.3 11.3	25.7, 27.5, 112.8 24.8, 26.9, 113.9	70.0 (CH ₂), 128.2–132.0 (Ph) 65.8 (CH ₂), 128.2, 129.1, 131.2, 133.3 (Ph)	29.2 [(CH ₃) ₃], 35.0 (C) 30.4 [(CH ₃) ₃], 30.4, 39.8 (C, CH ₂)
11g	80.0	84.2	83.4	73.5	12.0	24.6, 26.8, 114.6	67.3 (CH ₂), 128.5, 129.1, 129.6, 129.8, 130.2, 131.5, 131.6, 132.2 (2 Ph)	[a]
11h	80.1	82.2	83.6	72.3	11.9	25.0, 27.1, 115.0	$67.2 (CH_2), 129.6, 130.2, 130.4, 131.8 (Ph)$	123.3 (CH ₂), 131.8 (CH)
11k	75.6	82.4	83.0	72.1	11.4	24.8, 26.7, 114.5	66.0 (CH ₂), 129.3, 129.9, 130.1, 131.1 (Ph)	$26.2, 28.8 (2 \text{ CH}_2),$ $115.9 (= \text{CH}_2), 137.2 (\text{CH})$
12a	74.8	77.6	82.4	70.5	13.2	23.5, 25.3, 112.2	65.3 (CH ₂), 128.3, 128.8, 131.1, 132.9 (Ph)	9.3 (CH ₃)
12b	80.5	75.7	81.3	70.0	13.7	23.1, 25.2, 111.3	66.2 (CH ₂), 128.2, 128.7, 131.0, 133.3 (Ph)	11.0 (CH ₃), 16.0 (CH ₂)
12c	83.0	77.2	80.3	70.7	14.2	23.0, 25.3, 110.8	66.0 (CH ₂), 128.1, 128.7, 131.6, 133.6 (Ph)	20.2 (CH ₃), 21.7 (CH ₃), 24.9 (CH)
12d	77.8	76.4	81.7	70.1	13.6	23.2, 25.3, 111.4	66.2 (CH ₂), 128.2, 128.7, 131.4, 133.1 (Ph)	21.7 (CH ₃), 24.0 (CH ₃), 25.6 (CH), 31.2 (CH ₂)
12e	80.3 ^[b]	77.5	84.5 ^[b]	70.8	14.6	22.9, 25.3, 110.8	69.1 (CH ₂), 128.0, 128.7, 131.6, 133.3 (Ph)	30.8 [(CH ₃) ₃], 35.1 (C)
12f	76.7	76.9	81.5	69.0	14.0	23.0, 25.2, 111.0	66.0 (CH ₂), 128.1, 128.8, 131.3, 133.4 (Ph)	30.1 [(CH ₃) ₃], 30.0, 35.2 (C, CH ₂)
12g	83.8	77.8	83.4	71.6	13.7	23.4, 25.4, 112.9	66.7 (CH ₂), 127.8, 128.2, 128.6, 129.4, 130.2, 131.1, 132.6, 132.7 (2 Ph)	[a]
12h	82.4	78.2	83.7	72.2	13.4	24.0, 25.9, 113.5	66.2 (CH ₂), 128.4, 128.6, 129.3, 133.2 (Ph)	127.1 (CH), 127.3 (CH ₂)
12i	77.4	75.9	81.4	70.1	13.6	23.1, 25.2, 111.4	66.4 (CH ₂), 128.2, 128.7, 131.3, 133.3 (Ph)	27.2 (CH ₂), 118.9 (=CH ₂), 133.0 (CH)
12j	80.7	75.5	81.0	70.2	13.6	23.1, 25.2, 111.2	66.7 (<i>N</i> -CH ₂), 126.8, 128.0, 128.2, 128.6, 128.8, 129.7, 131.2, 133.4, 137.1 (2, Ph)	28.8 $(2-CH_2)^{[a]}$
12k	78.5	75.9	81.5	70.0	13.7	23.1, 25.2, 111.5	66.3 (CH ₂), 128.2, 128.9, 131.1, 133.3 (Ph)	22.0 (CH ₂), 30.6 (CH ₂), 115.7 (=CH ₂), 137.3 (CH)
13a	68.0	79.0	79.0	68.0	8.0	25.5, 25.9, 113.0	68.3 (CH ₂), 129.3, 129.8, 131.5, 132.9 (Ph)	8.0 (CH ₃)
13b	74.8	77.3	78.5	69.2	8.1	25.0, 25.9, 112.6	67.0 (CH ₂), 129.4, 129.7, 130.2, 131.9 (Ph)	9.8 (CH ₃), 16.5 (CH ₂)
13g	75.6	78.7	79.2	69.0	8.5	25.0, 25.8, 113.1	67.3 (CH ₂), 128.1, 128.4, 129.3, 129.5, 130.0, 130.3, 132.1, 133.5 (2 Ph)	[a]

^[a] Signals of 2-Ph in column CH₂Ph. - ^[b] Signal assignment may be reversed.

Figure 2. Comparison of 13 C NMR chemical shifts of 2-methyland 2-ethyl-substituted pyrrolidine *N*-oxides 11a-13a and 11b-13b

Scheme 7. *O*-deprotection of the pyrrolidine *N*-oxide **11a**: (a) conc. HCl, MeOH, H_2O (1:8:8), 1 d, room temp.; (b) Dowex 50WX8 (H⁺ form); 84%

served for both diastereotopic methylene protons of the benzyl group, and for the carbon atoms C-3 and C-4 (vide supra). The dihedral angles estimated from this model are in perfect agreement with the coupling constants $J_{2,3}$, $J_{3,4}$, $J_{4,5}$ (Table 5).

Similarly, for the 2,5-*trans* isomers **12**, an envelope conformation 1E is suggested by the results of the calcula-

Figure 3. X-ray structure of the pyrrolidine N-oxide 16a

Table 5. Comparison of the coupling values ${}^{3}J$ observed for pyrrolidine *N*-oxides **11a**,**b**,**d**,**g**,**h**,**k** and **12a**-**k** with the dihedral angles calculated for pyrrolidine *N*-oxides **11a** and **12a** (MOPAC)

Coupling Protons	Isomer	11	Isomer 12		
1 0	³ <i>J</i> [Hz]	δ [°]	³ <i>J</i> [Hz]	δ [°]	
2-H, 3-H	5.5 to 7.1	139	5.4 to 6.3	-33	
3-H, 4-H 4-H, 5-H	7.1 to 7.4 6.1 to 6.5	0 - 139	7.3 to 7.6 0 to 3.3	0 - 104	

tions.^[80] This conformation would result in a perpendicular orientation (close to 90°) of 4-H and 5-H. Indeed, for all isomers **12a**–**k**, coupling values $J_{4,5}$ in the range of 0 to 3.3 Hz were observed (Table 5). The orientation of the 2-substituent with respect to the methylene protons of the benzyl group and to each of the methyl groups of the acetonide part differs considerably, hence the pronounced shift differences in the NMR signals of these groups. For the same reason, the C-3 and C-4 show different ¹³C NMR chemical shifts.

Conclusion

The Cope-House cyclization of unsaturated hydroxylamines derived from D-ribose offers a quick, efficient, and stereoselective access to many (1R,2S,3S,4R,5R)- and (1R,2R,3S,4R,5R)-5-methyl-3,4-dihydroxypyrrolidine N-oxides (allo and L-altro/D-talo configurations with respect to 1,4-iminoglycitols). Since the side-chain at the 2-position of the pyrrolidine ring is introduced by nucleophilic addition of organometallic reagents to nitrone **5**, a large variety of substituents can be attached. Furthermore, by complexation of the nitrone **5** with Lewis acids or the use of organolithium compounds, in many cases both 2-epimers are accessible in good yields. The configuration and conformation of the parent pyrrolidine N-oxides **7**, **8**, **11**, **12**,

Figure 4. (a) and (b): Conformation of the pyrrolidine *N*-oxides **12a** and **11a**. The phenyl ring and the acetonide group are omitted for clarity. (c) The side view of the pyrrolidine *N*-oxide **11a** illustrates the symmetry of this conformer

and **13** was readily elucidated by analysis of the NMR spectroscopic data. Applying simple transformations to these pyrrolidine *N*-oxides, a variety of iminopolyols with glycosidase-inhibiting properties is available (to be described in detail in the following paper of this series).^[40]

Experimental Section

General Remarks: Melting points were determined on a Fisher–Johns 4017 heating block and are uncorrected. - ¹H and ¹³C NMR spectra were recorded with Bruker AC 250, ARX 300, ARX 500 spectrometers using Me₄Si as internal standard. - IR spectra were recorded with a Perkin–Elmer 283 or a Bruker IFS 28 IR spectrometer. - Mass spectra and high-resolution mass spectra (HRMS) were obtained with Finnigan quadrupole-MS 4500 and Finnigan MAT 95 spectrometers, respectively. - Optical rotations were determined with a Perkin–Elmer polarimeter 241MC. - CHEM-3D 4.0 was used for molecular modelling (MM2, MOPAC).^[81–83] – MPLC separations were carried out using a

A. M. Palmer, V. Jäger

Lewa FL 1 pump; the pyrrolidine *N*-oxides were monitored at 250 nm using a Knauer 97.00 diode array detector. The columns (26 cm \times 3.2 cm, *N* = 5000 or 47 cm \times 5 cm, *N* = 11700) were packed with LiChroprep Si 60 silica gel.^[84]

Materials: Solvents were purified and dried by standard methods. For column chromatography, silica gel (40–63 µm, Merck) was used, and acidic resin Dowex 50WX8 (H⁺ form) used for ion exchange purification was supplied from Fluka. Grignard reagents were freshly prepared from magnesium and the corresponding alkyl halide or purchased (Aldrich). MeLi and PhLi were purchased (Fluka, Acros); vinyllithium was prepared by transmetalation from tetravinyl tin (Aldrich) and PhLi.^[85] The Lewis acids employed (ZnCl₂·Et₂O, Et₂AlCl) are commercially available (Fluka, Aldrich). Chloroform (p.a.) used for Cope–House cyclizations was supplied by Merck.

Purity of the Pyrrolidine N-Oxides: Correct elemental analyses were only obtained for the pyrrolidine N-oxides 7, 11a, and 11g. However, in all cases, spectroscopically pure compounds were obtained. The hygroscopic properties of amine N-oxides^[86-88] and their capability to form hydrates^[26,27,86-88] are well described in the literature, and deviations of the analyses can be explained by the presence of varying amounts of water. This assumption is confirmed by the following observations: (a) Several samples gained weight when exposed to air; (b) the presence of water was evident in the ¹H NMR spectra of several pyrrolidine N-oxides, e.g. in the spectrum of 11h $[CDCl_3; \delta(OH_2) = 2.34 \text{ (bs, 2 H)}; \text{ compound analyzed for 11h·1.0}]$ H₂O]; (c) "correct" analyses are obtained when nonstoichiometric amounts of water are taken into account (cf. Experimental Section), which, however, is ambiguous. Deviations in the elemental analyses of 12h (viscous oil) and 12i/12j (thermally labile) are due to the fact that the chromatography solvent (CH2Cl2/MeOH) could not be completely removed. In all such cases, structures were confirmed by HRMS; in many cases, transformations of these hygroscopic pyrrolidine N-oxides were performed to yield products with correct analyses.[40]

Methyl 2,3-*O***-Isopropylidene-β-D-ribofuranoside (2):** The furanoside **2** (45.5 g, 67%; ref.^[44] 70% yield) was prepared from D-ribose (1, 50.0 g, 333 mmol) according to ref.^[44] – $[\alpha]_{2}^{24} = -77$ (c = 1.76, CHCl₃), {ref.:^[44] $[\alpha]_{2}^{25} = -82$ (c = 2, CHCl₃)}. – IR (film): $\tilde{v} = 3460$, 2990, 2940, 1375, 1210, 1095, 1045 cm⁻¹. – ¹H NMR (250.1 MHz, CDCl₃): $\delta = 1.32$, 1.49 [2 s, 6 H, C(CH₃)₂], 3.27 (dd, $J_{5a,OH} = 10.0$, $J_{5b,OH} = 3.2$ Hz, 1 H, OH), 3.44 (s, 3 H, OCH₃), 3.56–3.74 (m, 2 H, 5-H), 4.43 (m_c, 1 H, 4-H), 4.59 (d, $J_{2,3} = 5.9$ Hz, 1 H, 3-H), 4.84 (d, $J_{2,3} = 5.9$ Hz, 1 H, 2-H), 4.98 (s, 1 H, 1-H). – ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 24.7$, 26.4 [C(CH₃)₂], 55.5 (OCH₃), 64.0 (C-5), 81.5, 85.8, 88.3 (C-2, C-3, C-4), 110.0 (C-1), 112.1 [C(CH₃)₂]. – C₉H₁₆O₅ (204.2): calcd. C 52.93, H 7.90; found C 52.93, H 7.88.

Methyl 5-Deoxy-5-iodo-2,3-*O***-isopropylidene-β-D-ribofuranoside (3):** For the synthesis of **3**, a modification of the procedure given in ref.^[46] was employed: The furanoside **2** (20.0 g, 98 mmol) was dissolved in toluene (650 mL). After the addition of imidazole (16.0 g, 235 mmol) and triphenylphosphane (30.9 g, 117 mmol), the solution was heated to 70 °C. At this temperature, iodine (29.8 g, 117 mmol) was added, and stirring continued for 2 h. The brown precipitate formed was decanted and the solution was evaporated to dryness. The remainders were extracted with diethyl ether (3 × 250 mL) and the solvent was evaporated in vacuo to afford a yellowish oil (44.8 g) which was purified by flash chromatography (SiO₂, CH₂Cl₂). The iodo sugar **3** was obtained as a colourless oil (26.8 g, 87% yield; ref.^[46] 92%). – $[α]_{20}^{20} = -72$ (c = 1.95, CH₂Cl₂), {ref.:^[22] [α]_D^D = -69 (c = 2.08, CH₂Cl₂)}. - IR (film): \tilde{v} = 2988, 2936, 1373, 1210, 1194, 1104, 1066, 1018, 956 cm⁻¹. - ¹H NMR (250.1 MHz, CDCl₃): δ = 1.33, 1.49 [2 s, 6 H, C(CH₃)₂], 3.16 (t, $J_{4,5a} = {}^{2}J_{5a,5b} = 10.0$ Hz, 1 H, 5-H_a), 3.29 (dd, $J_{4,5b} = 6.3$, ${}^{2}J_{5a,5b} = 10.0$ Hz, 1 H, 5-H_a), 3.29 (dd, $J_{4,5b} = 6.3$, ${}^{2}J_{5a,5b} = 10.0$ Hz, 1 H, 5-H_b), 3.37 (s, 3 H, OCH₃), 4.45 (dd, $J_{4,5a} = 10.0$, $J_{4,5b} = 6.3$ Hz, 1 H, 4-H), 4.63 (d, $J_{2,3} = 5.9$ Hz, 1 H, 2-H), 4.77 (d, $J_{2,3} = 5.9$ Hz, 1 H, 3-H), 5.06 (s, 1 H, 1-H). - 13 C NMR (62.9 MHz, CDCl₃): δ = 6.7 (C-5), 25.0, 26.4 [C(CH₃)₂], 55.2 (OCH₃), 83.0, 85.3, 87.4 (C-2, C-3, C-4), 109.6 (C-1), 112.6 [C(CH₃)₂]. - C₉H₁₅O₄I (314.1): calcd. C 34.41, H 4.81, I 40.40; found C 34.46, H 4.81, I 40.18.

4,5-Dideoxy-2,3-O-isopropylidene-D-erythro-4-pentenose (4): Following ref.,^[22] compound 3 (6.3 g, 20 mmol) was dissolved in dry THF (90 mL) in a flame-dried flask under nitrogen. The solution was cooled to -80 °C and *n*-butyllithium (1.6 M in hexanes, 18.9 mL, 30 mmol) was added over a period of 15 min. The reaction mixture was stirred for 2 h at -80 °C and then guenched with NH_4Cl (2 g). The mixture was allowed to warm to -40 °C; water (50 mL) was added and the aqueous phase extracted with diethyl ether (3 \times 50 mL). The combined organic solutions were dried with MgSO₄ and concentrated in vacuo (since the aldehyde 4 is somewhat volatile, the pressure should be kept above 20 mbar). The aldehyde 4 (3.8 g, "122%") was obtained as a colourless oil which was used without further purification. - ¹H NMR (250.1 MHz, CDCl₃): $\delta = 1.45$, 1.62 [2 s, 6 H, C(CH₃)₂], 4.42 (dd, $J_{1,2} = 3.1$, $J_{2,3} = 7.5$ Hz, 1 H, 2-H), 4.86 (dd, $J_{2,3} = 7.5$, $J_{3,4} = 6.8$ Hz, 1 H, 3-H), 5.33 (dm, $J_{4,5E} = 10.3$ Hz, 1 H, 5-H_E), 5.47 (dm, $J_{4,5Z} =$ 17.1 Hz, 1 H, 5-H_Z), 5.77 (ddd, $J_{3,4} = 6.8$, $J_{4,5E} = 10.3$, $J_{4,5Z} =$ 17.1 Hz, 1 H, 4-H), 9.56 (d, $J_{1,2}$ = 3.1 Hz, 1 H, 1-H). - ¹³C NMR $(62.9 \text{ MHz}, \text{CDCl}_3): \delta = 25.3, 27.4 [C(CH_3)_2], 79.1, 82.2 (C-2, C-2)$ 3), 111.3 [C(CH₃)₂], 119.7 (C-5), 131.3 (C-4), 200.7 (C-1).

(Z)-4,5-Dideoxy-2,3-O-isopropylidene-D-erythro-4-pentenose N_{-} Benzyl Nitrone (5): MgSO₄ (6.00 g, 50.0 mmol) was added to a solution of the crude aldehyde 4 [1.90 g, containing ca. 1.56 g (10.0 mmol) of 4] and N-benzylhydroxylamine (1.23 g, 10.0 mmol) in CH₂Cl₂ (60 mL). The suspension was stirred at room temp. for 19 h, then MgSO₄ was removed by filtration and washed with CH₂Cl₂. The combined filtrates were evaporated to dryness. The remaining yellowish solid was purified by flash chromatography $(SiO_2 \text{ ethyl acetate/petroleum ether} = 7:3)$ affording analytically pure N-benzyl nitrone 5, (1.80 g, 69% based on 3), m.p. 96 °C. -Note: Three by-products (tetrahydro-1,2-oxazine derivatives) were isolated by further separation of the nonpolar fractions by column chromatography.^[34,38,39] - $[\alpha]_{D}^{20} = +181$ (c = 0.99, CH₂Cl₂). - IR (KBr): $\tilde{v} = 3060, 1595, 1375, 1365, 1250, 1200, 1160, 1140, 1052,$ 1030 cm⁻¹. - ¹H NMR (250.1 MHz, CDCl₃): $\delta = 1.37$, 1.49 [2 s, 6 H, C(CH₃)₂], 4.80 and 4.88 (2 d, ${}^{2}J$ = 13.6 Hz, 2 H, CH₂Ph), 4.90 (ddt, $J_{2,3} = 6.9$, $J_{3,4} = 6.3$, $J_{3,5E} = J_{3,5Z} = 1.1$ Hz, 1 H, 3-H), 5.04 (ddd, $J_{3,5E} = 1.1$, $J_{4,5E} = 10.4$, ${}^{2}J_{5E,5Z} = 1.8$ Hz, 1 H, 5-H_E), 5.32 (dd, $J_{1,2} = 5.5$, $J_{2,3} = 6.9$ Hz, 1 H, 2-H), 5.34 (ddd, $J_{3,5Z} =$ 1.1, $J_{4,5Z} = 17.1$, ${}^{2}J_{5E,5Z} = 1.8$ Hz, 1 H, 5-H_Z), 5.68 (ddd, $J_{3,4} =$ 6.3, $J_{4,5E} = 10.4$, $J_{4,5Z} = 17.1$ Hz, 1 H, 4-H), 6.74 (d, $J_{1,2} = 5.5$ Hz, 1 H, 1-H), 7.39 (m_c, 5 H, C₆H₅). - ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 24.9, 27.4 [C(CH_3)_2], 69.2 (CH_2Ph), 74.4 (C-2), 78.6 (C-3),$ 109.5 [C(CH₃)₂], 117.5 (C-5), 128.9, 129.2, 129.5, 132.3 (C₆H₅), 132.7 (C-4), 136.5 (C-1). - C₁₅H₁₉NO₃ (261.3): calcd. C 68.94, H 7.32, N 5.36; found C 68.89, H 7.37, N 5.22.

(1S, 2R, 3R, 4S)-*N*-Benzyl-3, 4-*O*-isopropylidenedioxy-2methylpyrrolidine *N*-Oxide 7: NaBH₄ (0.07 g, 1.9 mmol) was added to an ethanol solution (10 mL) of the *N*-benzyl nitrone 5 (1.00 g, 3.8 mmol) and the mixture was stirred for 4 h at 0 °C. A solution of citric acid (10 mL, 0.25 M) was added, then pH 8 was adjusted by the addition of NaOH (6 N). The aqueous phase was saturated with NaCl and extracted with $CHCl_3$ (3 \times 20 mL). The organic solutions were dried with MgSO₄, filtered, and then stirred for 16 h at room temp. to accomplish Cope-House cyclization of 6. After evaporation of the solvent, a colourless solid remained, identified as 7 and 8 (dr = 92:8, 0.94 g, 93%). Colourless crystals (m.p. 120-122 °C) of the major isomer 7 (0.66 g, 66%) were isolated by crystallization of the crude product from ethyl acetate/heptane (2:1). - The intermediate unsaturated hydroxylamine 6 was observed when recording an NMR spectrum immediately after workup: ¹H NMR (CDCl₃, 250.1 MHz): δ = 1.35, 1.45 [2 s, 6 H, C(CH₃)₂], 2.77 (dd, ${}^{2}J_{1a,1b} = 13.2$, $J_{1a,2} = 4.3$ Hz, 1 H, 1-H_a), 2.85 (dd, ${}^{2}J_{1a,1b} = 13.2$, $J_{1b,2} = 7.2$ Hz, 1-H_b), and 2.86 (bs, OH) [together 2 H], 3.81 and 3.89 (2 d, ${}^{2}J = 12.9$ Hz, 2 H, CH₂Ph), 4.53-4.63 (m, 2 H, 2-H, 3-H), 5.20 (dd, $J_{4,5E} = 10.3$, ${}^{2}J_{5E,5Z} =$ 1.8 Hz, 1 H, 5-H_E), 5.31 (dd, $J_{4,5Z} = 17.2$, ${}^{2}J_{5E,5Z} = 1.8$ Hz, 1 H, 5-H_Z), 5.80 (ddd, $J_{3,4} = 6.9$, $J_{4,5E} = 10.3$, $J_{4,5Z} = 17.2$ Hz, 1 H, 4-H), 7.32 (m_c, 5 H, C₆H₅). - 7: $[\alpha]_D^{20} = -5$ (c = 0.56, CH₂Cl₂). -IR (KBr): $\tilde{v} = 2980$, 1445, 1370, 1195, 1145, 1070 cm⁻¹. - ¹H NMR (500.1 MHz, CDCl₃): $\delta = 1.32$, 1.40 [2 s, 6 H, C(CH₃)₂], 1.64 (d, $J_{2,2-Me} = 6.4$ Hz, 3 H, 2-CH₃), 3.36 (quint, $J_{2,2-Me} = J_{2,3} =$ 6.4 Hz, 1 H, 2-H), 3.40 (dd, $J_{4,5a} = 5.6$, ${}^{2}J_{5a,5b} = 11.1$ Hz, 1 H, 5-H_a), 3.65 (dd, $J_{4.5b} = 6.5$, ${}^{2}J_{5a.5b} = 11.1$ Hz, 1 H, 5-H_b), 4.26 and 4.31 (2 d, ${}^{2}J = 13.0$ Hz, 2 H, CH₂Ph), 4.75 (dd, $J_{2,3} = 6.4$, $J_{3,4} =$ 7.0 Hz, 1 H, 3-H), 5.09 (ddd, $J_{3,4} = 7.0$, $J_{4,5a} = 5.6$, $J_{4,5b} = 6.5$ Hz, 1 H, 4-H), 7.44 (m_c, 5 H, C₆H₅). - ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 10.5 (2-CH_3), 23.6, 25.8 [C(CH_3)_2], 68.7 (CH_2Ph), 69.6 (C-5),$ 72.8 (C-2), 75.2 (C-4), 83.3 (C-3), 113.4 [C(CH₃)₂], 127.9, 128.7, 129.3, 130.8 (C₆H₅). - C₁₅H₂₁NO₃ (263.3): calcd. C 68.42, H 8.04, N 5.32; found C 68.16, H 8.04, N 5.27.

(3S,4R)-2-(N-Benzylhydroxylamino)-3,4-O-isopropylidenedioxy-5hexene, (2S)-Isomer 9a or (2R)-Isomer 10a. – N-Benzyl-3,4-O-isopropylidenedioxy-2,5-dimethylpyrrolidine N-Oxides, (2S,3S,4R,5R)-Isomer 11a, (1S,2R,3S,4R,5R)-Isomer 12a, (2R,3S,4R,5S)-Isomer 13a

(a) By Addition of H₃CMgBr: A solution of N-benzyl nitrone 5 (290 mg, 1.11 mmol) in diethyl ether (10 mL) was placed in a flamedried flask under nitrogen. At -40 °C, a solution of H₃CMgBr in diethyl ether (3.0 M, 0.57 mL, 1.7 mmol) was added. Within 5 min a colourless precipitate formed. The reaction mixture was kept at -40 °C for 2 h and then quenched by adding NH₄Cl (0.3 g) and ice water (20 mL). The aqueous phase was extracted with diethyl ether (3 \times 20 mL). The combined extracts were dried with MgSO₄ and concentrated in vacuo. The residue (290 mg of a yellowish oil) was dissolved in CHCl₃ (10 mL) and the solution stirred for 14 h at room temp. After evaporation to dryness, the dr of the crude product was determined by ¹H and ¹³C NMR spectroscopy (11a/ 12a/13a = 38:48:14) and the diastereomers were separated by MPLC (10 bar, SiO₂, $CH_2Cl_2/MeOH = 9:1$). Thus, spectroscopically pure samples of the pyrrolidine N-oxides 11a (90 mg, 27%, m.p. 109-110 °C) and 12a (120 mg, 37%, m.p. 97-100 °C) were obtained. The minor isomer 13a (46 mg, 14%) was obtained in a mixture containing 11a, 12a, and 13a in a ratio of 10:13:77. – One of the intermediate hydroxylamines 9a or 10a was observed in the NMR spectrum of the crude product recorded immediately after work-up: ¹H NMR (CDCl₃, 300.1 MHz): $\delta = 1.10$ (d, $J_{1,2} =$ 7.2 Hz, 3 H, 1-H), 1.40, 1.52 [2 s, 6 H, C(CH₃)₂], 3.09 (m, 1 H, 2-H), 3.12 (bs, 1 H, OH), 3.87 and 3.99 (2 d, ${}^{2}J = 13.3$ Hz, 2 H, CH₂Ph), 4.33 (dd, $J_{3,4} = 5.7$, $J_{4,5} = 9.2$ Hz, 1 H, 4-H), 5.22 (d, $J_{5,6E} = 10.2$ Hz, 1 H, 6-H_E), 5.27 (d, $J_{5,6Z} = 17.9$ Hz, 1 H, 6-H_Z), 5.89 (ddd, $J_{4,5} = 8.8$, $J_{5,6E} = 10.0$, $J_{5,6Z} = 17.1$ Hz, 1 H, 5-H), 7.33 (m_c, 5 H, C₆H₅), signal of 3-H hidden by absorptions of the pyrrolidine *N*-oxides already present. – **11a** (monohydrate): $[\alpha]_{D}^{20} = 0$ (c = 0.56, CH₂Cl₂). – IR (KBr): $\tilde{v} = 3440$ (H₂O), 3190 (H₂O), 2980, 1450, 1375, 1365, 1245, 1200, 1145, 1065, 1005 cm⁻¹. – **12a** (monohydrate): $[\alpha]_{D}^{20} = -13$ (c = 1.03, CH₂Cl₂). – IR (KBr): $\tilde{v} = 3400$ (H₂O), 1375, 1195, 985 cm⁻¹. – ¹H and ¹³C NMR spectroscopic data of **11a**, **12a**, and **13a**: see Table 2 to 4. – C₁₆H₂₃NO₃ (277.4): calcd. C 69.29, H 8.36, N 5.05; found for **11a** C 64.74, H 8.39, N 4.63 (correct for M + 1.0 H₂O); found for **12a** C 65.30, H 8.37, N 4.73 (correct for M + 1.0 H₂O).

(b) By Addition of H₃CLi: A solution of H₃CLi (1.6 M, 1.45 mL, 2.3 mmol) was added to a solution of the nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (8 mL) under nitrogen at -80 °C and the mixture was kept at this temperature for 4.75 h. Work-up, Cope–House cyclization in CHCl₃ (18 h), and MPLC separation of the crude product (*dr* **11a**/**12a** = 91:9) were performed as described above, yielding analytically pure **11a** in the form of colourless crystals (112 mg, 53%, m.p. 121–123 °C). – **11a**: C₁₆H₂₃NO₃ (277.4): calcd. C 69.29, H 8.36, N 5.05; found C 68.98, H 8.44, N 4.97.

(c) By Complexation of the Nitrone 5 with Lewis Acids Prior to Grignard Addition: (i) A solution of ZnCl₂·Et₂O in CH₂Cl₂ (2.2 M, 0.42 mL, 0.9 mmol) was added to a suspension of the nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (8 mL) under nitrogen. The resulting clear solution was stirred for 30 min at -10 °C, and then cooled to -30 °C. H₃CMgBr (3.0 M in diethyl ether, 1.54 mL, 4.6 mmol) was added. The reaction mixture was kept for 6 h between -30 °C and -10 °C. After work-up, Cope-House cyclization (16 h in CHCl₃ at room temp.), and MPLC separation of the crude product (dr 11a/12a/13a = 13:66:21) as above, a wax consisting of 12a/13a (109 mg, 49%, dr = 90:10) was isolated and analyzed as $C_{16}H_{23}NO_3$ ($H_2O_{0.75}$; (*ii*) complexation of the nitrone 5 (200 mg, 0.77 mmol) with Et₂AlCl (1.0 м in hexanes, 0.84 mL, 0.8 mmol) and addition of H₃CMgBr (3.0 M in diethyl ether, 0.77 mL, 2.3 mmol) was performed as described above. The mixture was stirred for 3.25 h at -30 °C. After work-up, Cope-House cyclization, and flash chromatography (SiO₂, CH₂Cl₂/MeOH = 9:1) of the crude product (11a/12a/13a = 18:64:18), an analytically pure mixture of 11a, 12a, and 13a was isolated (130 mg, 59%, analyzing for C₁₆H₂₃NO₃·(H₂O)_{0.5}, dr unchanged).

N-Benzyl-2-ethyl-3,4-O-isopropylidenedioxy-5-methylpyrrolidine N-Oxides, (1R,2S,3S,4R,5R)-Isomer 11b, (1R,2R,3S,4R,5R)-Isomer 12b, (1S,2R,3S,4R,5S)-Isomer 13b: A suspension of the N-benzyl nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (8 mL) was treated with H_5C_2MgBr (3.0 m in diethyl ether, 0.77 mL, 2.3 mmol) at -30°C. The reaction mixture was stirred for 3.5 h between -20 °C and -30 °C. After work-up as above, Cope-House cyclization (15.5 h at room temp., dr of crude material 11b/12b/13b = 22:67:11), and MPLC separation (10 bar, SiO_2 , $CH_2Cl_2/MeOH = 9:1$), an analytically pure mixture of **11b** and **12b** (148 mg, 64%, dr = 24.76, m.p. 110-112 °C), and 13b (18 mg, 8%, m.p. 56-58 °C) were obtained. - 11b and 12b (inseparable mixture, dr 24:76): $[\alpha]_{D}^{20} = -19$ (c = 0.54, CH₂Cl₂). – IR (KBr): $\tilde{v} = 3400$ (b, H₂O), 2960, 1375, 1195, 1030, 1000 cm⁻¹. $- C_{17}H_{25}NO_3$ (291.4): calcd. C 70.07, H 8.65, N 4.81; found C 67.80, H 8.42, N 4.51 (correct for $M + 0.5 H_2O$). – MS (EI, 70 eV): m/z (%) = 291.2 (2.7) [M⁺], 246.2 (25), 200.2 (16), 150.2 (19), 91.1 (100), 18.1 (13). - HRMS (EI, 70 eV): exact mass calcd. for $C_{17}H_{25}NO_3$: 291.1834; found 291.1834. - 13b: $[\alpha]_D^{20} =$ $-12 (c = 0.83, CH_2Cl_2)$. - IR (KBr): $\tilde{v} = 3400 (b, H_2O), 1365$, 1195, 1060, cm⁻¹. – MS (FAB, glycerol): m/z (%) = 292.2 (100) [MH⁺], 91.0 (18). – HRMS (FAB, glycerol): exact mass calcd. for $C_{17}H_{25}NO_3 + H$: 292.1913; found 292.1906. - ¹H and ¹³C NMR of 11b, 12b, and 13b: see Table 2 to 4.

(1R,2R,3S,4R,5R)-N-Benzyl-2-isopropyl-3,4-O-isopropylidenedioxy-5-methylpyrrolidine N-Oxide (12c): A freshly prepared solution of iC_3H_7MgCl (2.3 mmol) in diethyl ether (5 mL) was added at -30°C to a suspension of the N-benzyl nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (5 mL). After stirring for 4.75 h, the usual workup, Cope-House cyclization by standing at room temp. for 15 h, and flash chromatography (SiO₂, $CH_2Cl_2/MeOH = 9:1$) of the crude product (dr 11c/12c/13c = 15:85:<5), a colourless solid was isolated (115 mg, 48%, m.p. 108 °C, mixture 11c/12c, dr = 12:88). $- [\alpha]_{D}^{20} = -14$ (*c* = 0.66, CH₂Cl₂). - IR (KBr): $\tilde{v} = 2950$, 1378, 1370, 1195, 1030, 1000 cm⁻¹. $- C_{18}H_{27}NO_3$ (305.4): calcd. C 70.79, H 8.91, N 4.59; found C 69.70, H 8.78, N 4.43 (correct for M + $0.25 \text{ H}_2\text{O}$). - MS (EI, 70 eV): m/z (%) = 305.2 (<1) [M⁺], 246.2 (92), 132.2 (18), 91.2 (100), 43.3 (11), 28.1 (18), 18.1 (55). - HRMS (EI, 70 eV): exact mass calcd. for C₁₈H₂₇NO₃: 305.1991; found 305.1989. - ¹H and ¹³C NMR spectroscopic data of 12c: see Table 2 to 4.

N-Benzyl-2-isobutyl-3,4-*O*-isopropylidenedioxy-5-methylpyrrolidine *N*-Oxides, (1*R*,2*S*,3*S*,4*R*,5*R*)-Isomer 11d, (1*R*,2*R*,3*S*,4*R*,5*R*)-Isomer 12d: Three variations of the addition of freshly prepared iC_4H_9MgBr to *N*-benzyl nitrone 5 (200 mg, 0.77 mmol) were examined:

(a) Addition of the Grignard reagent in diethyl ether (2.3 mmol, 15 mL) at 0 °C, stirring over a period of 19 h at room temp., cyclization in CHCl₃. MPLC separation (SiO₂, CH₂Cl₂/MeOH = 9:1) of the crude product ($dr \ 11d/12d/13d = 27:65:8$) afforded pure, colourless, crystalline samples of 11d (50 mg, 20%, m.p. 97-99 °C) and **12d** (125 mg, 49%, m.p. 112–113 °C). – **11d**: $[\alpha]_{D}^{20} = +26$ (c = 0.40, CH₂Cl₂). - IR (KBr): $\tilde{v} = 3400$ (b, H₂O), 3170 (b), 2940, 1460, 1370, 1360, 1245, 1200, 1140, 1060, 1010 cm⁻¹. -C₁₉H₂₉NO₃ (319.4): calcd. C 71.44, H 9.15, N 4.38; found C 69.29, H 9.04, N 4.24 (correct for M + 0.5 H₂O). - MS (EI, 70 eV): m/z $(\%) = 319.2 (3.4) [M^+], 261.2 (10), 246.2 (31), 228.2 (20), 150.1$ (51), 91.1 (100). - HRMS (EI, 70 eV): exact mass calcd. for $C_{19}H_{29}NO_3$: 319.2147; found 319.2145. - **12d**: $[\alpha]_D^{20} = -43$ (c = 0.46, CH₂Cl₂). – IR (KBr): $\tilde{v} = 3400$ (b, H₂O), 2940, 1370, 1195, 1025, 1000 cm⁻¹. $- C_{19}H_{29}NO_3$ (319.4): calcd. C 71.44, H 9.15, N 4.38; found C 68.69, H 9.04, N 4.18 (correct for M + 0.67 H_2O). - MS (EI, 70 eV): m/z (%) = 319.2 (2.4) [M⁺], 286.2 (12), 246.1 (45), 228.2 (18), 91.1 (100), 41.3 (13), 18.1 (23). - HRMS (EI, 70 eV): exact mass calcd. for C₁₉H₂₉NO₃: 319.2147; found $319.2147. - {}^{1}H$ and ${}^{13}C$ NMR spectroscopic data of **11d** and **12d**: see Table 2 to 4.

(b) iC_4H_9MgBr (3.1 mmol) was added at -30 °C to a solution of **5** in diethyl ether (8 mL). The solution was kept for 4.5 h between -30 °C and -10 °C, and was then allowed to warm to room temp. After a total reaction time of 8.5 h, work-up and Cope-House cyclization (10.5 h) were performed as above. The crude product (**11d/12d/13d** = 46:48:6) was purified by flash chromatography (SiO₂, CH₂Cl₂/MeOH = 9:1), yielding a colourless oil (214 mg, 87%, **11d/12d** = 50:50).

(c) After the addition of iC_4H_9MgBr (2.3 mmol) in ether (10 mL) at -25 °C, the reaction mixture was kept for 10 h between -30 °C and -10 °C. The crude product obtained after workup and Cope-House cyclization (CHCl₃, room temp., 10.5 h), was analyzed by ¹H and ¹³C NMR spectroscopy: conversion 50%, products **11d/12d/13d** dr = 26:67:7.

N-Benzyl-2-*tert*-butyl-3,4-*O*-isopropylidenedioxy-5-methylpyrrolidine *N*-Oxides, (1*R*,2*S*,3*S*,4*R*,5*R*)-Isomer 11e, (1*R*,2*R*,3*S*,4*R*,5*R*)-Isomer 12e: *tert*- C_4H_9MgBr (2.0 M in diethyl ether, 1.15 mL, 2.3 mmol) was added to a solution of the *N*-benzyl nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (8 mL). The mixture was stirred for 7.5 h at -30 °C. Usual work-up, cyclization by stirring in CHCl₃ for 15 h, and flash chromatography (SiO₂, CH₂Cl₂/MeOH = 9:1) afforded a mixture of **11e** and **12e** (dr = 24:76, 43 mg, 18%) and colourless crystals of **7** (49 mg, 24%), resulting from Grignard reduction. Attempts to separate **11e** and **12e** by preparative HPLC resulted in the transformation into new products not yet fully characterized. - ¹H and ¹³C NMR spectroscopic data of **11e** and **12e**: see Table 2 to 4.

N-Benzyl-3.4-O-isopropylidenedioxy-5-methyl-2-neopentylpyrrolidine N-Oxides, (1R,2S,3S,4R,5R)-Isomer 11f, (1R,2R,3S,4R,5R)-Isomer 12f: (a) The Grignard addition of freshly prepared neo-C₅H₁₁MgBr (2.3 mmol) in diethyl ether (15 mL) to the N-benzyl nitrone 5 (200 mg, 0.77 mmol) was performed at room temp. as described above. After a reaction time of 2 d, work-up, and Cope-House cyclization (CHCl₃, 3 d), conversion (66%) and dr (11f/12f/13f = 50:50:<5) were estimated from the NMR spectra. Flash chromatography (SiO₂, CH₂Cl₂/MeOH = 9:1) yielded pure 12f (30 mg of a yellowish solid, 12%, m.p. 62 °C) and a mixture (31 mg) consisting of 11f, 12f (dr = 70:30), and another two unidentified products. - ¹³C NMR spectroscopic data of 11f: see Table 4. – **12f:** $[\alpha]_{D}^{20} = -22$ (*c* = 0.33, CH₂Cl₂). – IR (KBr): $\tilde{v} =$ 2940, 1370, 1195, 1050, 1000 cm⁻¹. – ¹H and ¹³C NMR spectroscopic data: see Table 2 to 4. – MS (EI, 70 eV): m/z (%) = 333.2 (4.1) [M⁺], 246.1 (100), 160.1 (12), 132.0 (12), 91.0 (89), 70.0 (10), 57.0 (15), 28.0 (27), 18.0 (47). - HRMS (EI, 70 eV): exact mass calcd. for C₂₀H₃₁NO₃: 333.2304; found 333.2305.

(b) The reaction was run as described in (a), but with shorter reaction time (11 h) and at lower temperature ($-30 \degree C$ and $-10 \degree C$). After Cope-House cyclization in CHCl₃ at room temp. (10.5 h), the *dr* of the crude product (**11f/12f/13f** = 20:80:<5) and conversion (ca. 32%) were determined from the NMR spectrum.

N-Benzyl-3,4-*O*-isopropylidenedioxy-5-methyl-2-phenylpyrrolidine *N*-Oxides, (1*R*,2*S*,3*S*,4*R*,5*R*)-Isomer 11g, (1*R*,2*R*,3*S*,4*R*,5*R*)-Isomer 12g, (1*S*,2*R*,3*S*,4*R*,5*S*)-Isomer 13g

(a) By Addition of PhMgBr: PhMgBr (3.0 M in diethyl ether, 1.15 mL, 3.5 mmol) was added to a suspension of the N-benzyl nitrone 5 (300 mg, 1.15 mmol) in diethyl ether (15 mL) and the mixture kept at -20 °C for 1 h. The usual work-up, Cope-House cyclization in CHCl₃ at room temp. (16 h), and MPLC separation (SiO₂, 10 bar, CH₂Cl₂/MeOH = 93:7) of the crude product (dr 11g/ 12g/13g = 40:60:<5) afforded colourless crystals of 11g (96 mg, 25%, m.p. 135-137 °C), 12g (160 mg, 41%, m.p. 45-47 °C), and 13g (17 mg, 4%, m.p. 123 °C). - [Note: When kept neat, the pyrrolidine N-oxide 12g underwent partial ring opening within several days to form the unsaturated hydroxylamine 10g (ratio 10g/12g = 33:67). Pure 12g could be recovered by again stirring a CHCl₃ solution of this mixture for 4 d at room temp.] - Data of the unsaturated hydroxylamine 10g from mixture of 10g/12g: ¹H NMR $(300.1 \text{ MHz}, \text{CDCl}_3)$: $\delta = 1.46, 1.58 [2 \text{ s}, 6 \text{ H}, \text{C}(\text{CH}_3)_2], 3.88 \text{ (d},$ $J_{1,2} = 9.7$ Hz, 1 H, 1-H), 4.11 and 4.13 (2 d, $^{2}J = 14.3$ Hz, 2 H, CH₂Ph), 4.21 (ddt, $J_{2,3} = 5.7$, $J_{3,4} = 7.8$, ${}^{4}J_{3,5} = 1.0$ Hz, 1 H, 3-H), 4.86 (ddd, ${}^{4}J_{3,5Z} = 1.0$, $J_{4,5Z} = 17.1$, ${}^{2}J_{5E,5Z} = 1.7$ Hz, 1 H, 5- H_Z), 4.95 (dd, $J_{1,2} = 9.7$, $J_{2,3} = 5.7$ Hz, 1 H, 2-H), 5.01 (ddd, ${}^{4}J_{3,5E} = 0.9, J_{4,5E} = 10.3, {}^{2}J_{5E,5Z} = 1.7 \text{ Hz}, 1 \text{ H}, 5 \text{-H}_{E}$, 5.69 (ddd, $J_{3,4} = 7.8, J_{4,5E} = 10.3, J_{4,5Z} = 17.1$ Hz, 1 H, 4-H), 7.20–7.53 (m, 10 H, 2 C₆H₅). - **11g**: $[\alpha]_{D}^{20} = +12$ (c = 0.56, CH₂Cl₂). - IR (KBr): $\tilde{v} = 2960, 2920, 1440, 1370, 1260, 1195, 1080, 1060 \text{ cm}^{-1}$. C₂₁H₂₅NO₃ (339.4): calcd. C 74.31, H 7.42, N 4.13; found C 73.85, H 7.46, N 4.06. - 12g: $[\alpha]_{D}^{20} = -53$ (c = 0.52, CH₂Cl₂). -IR (KBr): $\tilde{v} = 2960, 2920, 1440, 1370, 1220, 1195, 1150, 1050$ cm⁻¹. – MS (FAB, nitrobenzyl alcohol): m/z (%) = 340.2 (100) [MH⁺], 212.1 (16), 91.0 (39). – HRMS (FAB, nitrobenzyl alcohol): exact mass calcd. for C₂₁H₂₅NO₃ + H: 340.1913; found 340.1912. – **13g**: $[\alpha]_{D}^{20} = -74$ (c = 0.63, CH₂Cl₂). – IR (KBr): $\tilde{v} = 3400$, 2960, 2920, 1368, 1195, 1100 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 339.2 (8.2) [M⁺], 308.1 (15), 248.1 (22), 132.0 (75), 91.0 (100), 77.0 (22), 57.9 (14). – HRMS (EI, 70 eV): exact mass calcd. for C₂₁H₂₅NO₃: 339.1834; found 339.1835. – ¹H and ¹³C NMR spectroscopic data of **11g**, **12g**, and **13g**: see Table 2 to 4.

(b) By Addition of PhLi: A solution of the nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (10 mL) was treated with PhLi (2.0 M in cyclohexane/ether, 1.16 mL, 2.3 mmol) at a temp. of -80 °C. The reaction mixture was stirred for 3 h at -80 °C. The usual work-up including Cope-House cyclization (16.5 h in CHCl₃ at room temp.) afforded a mixture of **11g**, **12g**, and **13g** (19:81:<5) which was separated by MPLC (cf. above). Thus, spectroscopically pure samples of **11g** (25 mg, 9%, m.p. 134–136 °C), **12g** (100 mg, 38%, 50-53 °C), and **13g** (9 mg, 3%) were obtained.

(c) By Complexation of the Nitrone 5 with Et₂AlCl Followed by Grignard Addition: Et₂AlCl (1.0 M in hexanes, 0.91 mL, 0.9 mmol) was added to a solution of the nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (10 mL). The mixture was stirred for 30 min at -30 °C, treated with PhMgBr (3.0 M in diethyl ether, 0.77 mL, 2.31 mmol), and stirred for another 3 h 45 min. From the usual work-up and Cope-House cyclization (16.5 h at room temp. in CHCl₃), a crude product consisting of **11g**, **12g**, and **13g** in a *dr* of 58:42:<5 was obtained. After MPLC separation (cf. above), analytically pure colourless crystals of **11g** (120 mg, 46%, m.p. 139–140 °C), spectroscopically pure crystals of **12g** (65 mg, 25%), and oily **13g** (12 mg, 5%) were isolated. – **11g**: C₂₁H₂₅NO₃ (339.4): calcd. C 74.31, H 7.42, N 4.13; found C 74.29, H 7.47, N 4.18.

N-Benzyl-3,4-O-isopropylidenedioxy-5-methyl-2-vinylpyrrolidine N-Oxides, (1R,2S,3S,4R,5R)-Isomer 11h, (1R,2R,3S,4R,5R)-Isomer 12h

(a) By Addition of Vinylmagnesium Bromide: Reaction of the Nbenzyl nitrone 5 (200 mg, 0.77 mmol) with vinylmagnesium bromide (1.0 M in THF, 1.15 mL, 1.2 mmol) in diethyl ether (8 mL) [2 h, -40 °C], Cope-House cyclization in CHCl₃ at room temp. for 13 h (dr 11h/12h = 67:33), and MPLC separation (SiO₂, 10 bar, CH₂Cl₂/ MeOH = 92:8) afforded 11h (131 mg of colourless crystals, 56%, m.p. 47 °C) and 12h (82 mg of viscous oil, "35%", containing some solvent not removed by drving). [Note: The major isomer 11h could be purified by Kugelrohr distillation (10^{-3} mbar, 60 °C) and distilled as the monohydrate. However, the minor diastereomer 12h was not separated by this method.] - 11h: $[\alpha]_D^{20} = -8$ (c = 0.15, CH_2Cl_2). – IR (KBr): $\tilde{v} = 3650 - 3000$ (b, H_2O), 2970, 1375, 1200, 1150, 1065 cm⁻¹. $- C_{17}H_{23}NO_3$ (289.4): calcd. C 70.56, H 8.01, N 4.84; found C 66.14, H 8.14, N 4.46 (correct for $M + 1.0 H_2O$). -MS (EI, 70 eV): m/z (%) = 289.2 (1.4) [M⁺], 170.2 (23), 91.2 (100), 43.3 (12), 18.1 (14). - HRMS (EI, 70 eV): exact mass calcd. for $C_{17}H_{23}NO_3$: 289.1678; found 289.1678. - **12h**: $[\alpha]_D^{20} = -51$ (c = 0.52, CH₂Cl₂). – IR (film): $\tilde{v} = 3365$ (b, OH), 2988, 1381, 1209, 1099 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 289.2 (3.6) [M⁺], 273.2 (16), 170.2 (18), 134.2 (11), 91.2 (100), 43.0 (18), 28.1 (29), 18.1 (21). – HRMS (EI, 70 eV): exact mass calcd. for $C_{17}H_{23}NO_3$: 289.1678; found 289.1678. - 1H and 13C NMR spectroscopic data of 11h and 12h: see Table 2 to 4.

(b) By Addition of Vinyllithium: PhLi (2.0 M in cyclohexane/ether, 1.73 mL, 3.5 mmol) was added at room temp. to a solution of tetravinyltin (190 mg, 0.84 mmol) in diethyl ether (2.5 mL) which resulted in the immediate formation of a colourless precipitate.^[85]

The mixture was stirred for 45 min at room temp., diluted with diethyl ether (5 mL), cooled to -80 °C, treated with the *N*-benzyl nitrone **5** (300 mg, 1.15 mmol), and stirred for another 5.25 h at this temperature. The usual work-up, including Cope–House cyclization in CHCl₃ at room temp. (18.5 h, *dr* **11h/12h** = 71:29), and column chromatography (SiO₂, CH₂Cl₂/MeOH = 92:8) afforded a mixture of **11h/12h** (colourless oil, 205 mg, 62%, *dr* unchanged).

(c) By Complexation of the Nitrone 5 with Lewis Acids Followed by Grignard Addition: (i) Complexation of the N-benzyl nitrone 5 (200 mg, 0.77 mmol) with ZnCl₂·Et₂O (2.2 M in diethyl ether, 0.42 mL, 0.9 mmol) [30 min, -25 °C], subsequent addition of vinylmagnesium bromide (1.0 M in THF, 3.90 mL, 3.9 mmol) at -40 $^{\circ}$ C with stirring between $-30 \,^{\circ}$ C and $-10 \,^{\circ}$ C for 4.25 h, then cyclization in CHCl₃ at room temp. for 11.5 h (dr 11h/12h = 84:16), and MPLC separation (SiO₂, 10 bar, $CH_2Cl_2/MeOH = 92:8$) afforded colourless crystals of 11h [134 mg, 60%, m.p. 67-69 °C; analyzed as $C_{17}H_{23}NO_3 \cdot (H_2O)_{0.25}$]. - (*ii*) N-Benzyl nitrone 5 (200 mg, 0.77 mmol) was treated at -30 °C with Et₂AlCl (1.0 M in hexanes, 0.9 mmol) and, after 45 min vinylmagnesium bromide (1.0 м in THF, 2.31 mL, 2.3 mmol) was added at this temperature. After stirring for 3.5 h at -30 °C, work-up, and Cope-House cyclization (15 h at room temp. in CHCl₃) were performed as usual. The crude product (11h/12h = 84:16) was submitted to flash chromatography $(SiO_2, CH_2Cl_2/MeOH = 92:8)$ to afford a mixture of 11h and 12h [163 mg, 72%, analyzes for $C_{17}H_{23}NO_3$ ·(H₂O)_{0.25}].

(1R,2R,3S,4R,5R)-2-Allyl-N-benzyl-3,4-O-isopropylidenedioxy-5methylpyrrolidine N-Oxide (12i): A solution of the N-benzyl nitrone 5 (310 mg, 1.19 mmol) in diethyl ether (10 mL) was treated with allylmagnesium bromide (1.0 M in diethyl ether, 1.72 mL, 1.7 mmol). The mixture was stirred for 45 min at -40 °C. After work-up, Cope-House cyclization in CHCl₃ at room temp. (16 h), and MPLC separation (SiO₂, 10 bar, $CH_2Cl_2/MeOH = 93:7$), a colourless solid was isolated (12i, 181 mg, 47%) containing some solvent even after drying over P_4O_{10} at 10^{-3} mbar. Since 12i was found to be thermally labile, no attempts were made to remove these traces by heating the sample. [Note: The NMR spectra of the nonpolar fractions obtained during MPLC showed the presence of the conjugated hydroxylamine 14i (resulting from Cope elimination of 12i). The hydroxylamine 14i was also formed on prolonged storage of 12i]. - ¹H and ¹³C NMR spectroscopic data of 12i: see Table 2 to 4.

(1*R*,2*R*,3*S*,4*R*,5*R*)-*N*,2-Dibenzyl-3,4-*O*-isopropylidenedioxy-5methylpyrrolidine *N*-Oxide (12j)

(a) By Addition of BnMgBr: Freshly prepared BnMgBr (3.5 mmol) in diethyl ether (2.5 mL) was added at -30 °C to a solution of the *N*-benzyl nitrone **5** (200 mg, 0.77 mmol) in diethyl ether (8 mL); cf. methyl case, variant (a). After 2 h at -30 °C, work-up, and Cope-House cyclization in CHCl₃ at room temp. (11.5 h), the ¹H and ¹³C NMR spectra of the crude product showed the presence of only one pyrrolidine *N*-oxide **12j** and of the unsaturated hydroxylamine **14j** (85:15). Flash chromatography (SiO₂, CH₂Cl₂/MeOH = 92:8) afforded **12j** (161 mg, 59%, m.p. 66–69 °C) as a colourless solid. $- [a]_{D}^{2D} = -25 (c = 0.51, CH_2Cl_2). - IR (KBr): \tilde{v} = 2960, 2910, 1445, 1370, 1195, 1035, 1005 cm⁻¹. - ¹H and ¹³C NMR spectroscopic data of$ **12j**: see Table 2 to 4. - MS (EI, 70 eV):*m/z*(%) = 353.2 (3.4) [M⁺], 295.2 (10), 262.2 (36), 246.2 (62), 172.1 (19), 150.1 (39), 146.0 (11), 91.0 (100). - HRMS (EI, 70 eV): exact mass calcd. for C₂₂H₂₇NO₃: 353.1991; found 353.1995.

(b) By Complexation of the Nitrone 5 with Et₂AlCl Followed by Grignard Addition: A solution of *N*-benzyl nitrone 5 (200 mg, 0.77 mmol) in diethyl ether (8 mL) was treated with Et₂AlCl [1.0 M

in hexanes, 0.84 mL, 0.8 mmol; cf. methyl case, variant (c)] at -30 °C. The reaction was continued as described under (a) [reaction time: 2.75 h between -10 °C and -30 °C, crude product with ratio **12j/14j** = 83:17], yielding **12j** as a colourless solid (154 mg, 57%, m.p. 66–69 °C).

[Note: As described for the 2-allyl derivative **12i**, the solvent was not completely removed by drying **12j** over P_4O_{10} at 10^{-3} mbar. Due to the thermal lability of **12j**, no further attempts were made at this.]

N-Benzyl-2-(3-butene-1-yl)-3,4-O-isopropylidenedioxy-5-methylpyrrolidine N-Oxides, (1R,2S,3S,4R,5R)-Isomer 11k, (1R,2R,3S,4R,5R)-Isomer 12k, and N-Benzyl-2-(1,2-O-isopropylidenedioxy-3-butene-1-yl)-5-methylpyrrolidine N-Oxide (15): According to the standard procedure, the N-benzyl nitrone 5 (200 mg, 0.77 mmol) was added at a temp. of -20 °C to a solution of freshly prepared butenylmagnesium bromide (2.3 mmol) in diethyl ether (10 mL). The mixture was kept for 3.5 h at -20 °C. The usual work-up, cyclization in CHCl₃ (5 d, dr 11k/12k/15 = 22:37:41), and MPLC separation (SiO₂, 10 bar, $CH_2Cl_2/MeOH = 92:8$) afforded spectroscopically pure samples of 11k (colourless crystals, 33 mg, 13%, m.p. 92-94 °C), 12k (colourless crystals, 58 mg, 23%, m.p. 108–110 °C), and 15 (viscous oil, 58 mg, 23%). – 11k: $[\alpha]_{D}^{20} = +23$ $(c = 1.38, CH_2Cl_2)$. – IR (KBr): $\tilde{v} = 3400$ (b, H₂O), 2960, 2915, 1445, 1370, 1360, 1245, 1195, 1145, 1070 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 317.2 (1) [M⁺], 259.2 (12), 246.2 (18), 150.1 (55), 91.1 (100). - HRMS (EI, 70 eV): exact mass calcd. for $C_{19}H_{27}NO_3$: 317.1991; found 317.1988. -12k: $[\alpha]_{D}^{20} = -49$ (c = 0.22, CH₂Cl₂). - IR (KBr): $\tilde{v} = 3400$ (b, H₂O), 2920, 1370, 1195, 1045, 1030, 1000 cm^{-1} . – MS (FAB positive ion, nitrobenzyl alcohol): m/z (%) = 318.2 (100) [MH⁺], 91.0 (16). - HRMS (FAB positive ion, nitrobenzyl alcohol): exact mass calcd. for $C_{19}H_{27}NO_3 + H$: 318.2069; found 318.2065. - ¹H and ¹³C NMR spectroscopic data of 11k and 12k: see Table 2 to 4. - C₁₉H₂₇NO₃ (317.4): calcd. C 71.89, H 8.57, N 4.42; found for 11k C 69.78, H 8.54, N 4.31 (correct for M + 0.5 H₂O); found for 12k C 70.06, H 8.48, N 4.23 (correct for M + 0.5 H₂O). - 15: $[\alpha]_{D}^{20}$ = +45 (c = 1.46, CH₂Cl₂). - IR (film): $\tilde{v} = 3386$ (H₂O), 2985, 2935, 1380, 1217, 1044 cm⁻¹. - ¹H NMR $(500.1 \text{ MHz}, \text{CDCl}_3): \delta = 1.51 \text{ (d, } J_{5,5-\text{Me}} = 7.1 \text{ Hz}, 3 \text{ H}, 5-\text{CH}_3),$ 1.52, 1.67 [2 s, 6 H, C(CH₃)₂], 1.71 (m_c, 3 H, 3-H, 4-H_a), 1.95 (m_c, 1 H, 4-H_b), 3.23 (m_c, 1 H, 5-H), 3.45 (m_c, 1 H, 2-H), 4.25 and 5.05 $(2 \text{ d}, {}^{2}J = 13.4 \text{ Hz}, 2 \text{ H}, \text{ CH}_{2}\text{Ph}), 4.44 \text{ (dd}, J_{1',2'} = 5.7, J_{2',3'} =$ 9.0 Hz, 1 H, 2'-H), 5.19 (d, $J_{3',4'E} = 10.0$ Hz, 1 H, 4'-H_E), 5.21 (dd, $J_{2,1'} = 9.1, J_{1',2'} = 5.7$ Hz, 1 H, 1'-H), 5.27 (d, $J_{3',4'Z} = 17.1$ Hz, 1 H, 4'-H_Z), 5.81 (ddd, $J_{2',3'} = 9.0$, $J_{3',4'E} = 10.0$, $J_{3',4'Z} = 17.1$ Hz, 1 H, 3'-H), 7.43 (m_c, 3 H, C₆H₅), 7.63 (m_c, 2 H, C₆H₅). - ¹³C NMR (125.8 MHz, CDCl₃): $\delta = 12.3$ (5-CH₃), 22.1 (C-3), 25.9, 28.4 [C(CH₃)₂], 27.7 (C-4), 66.9 (C-5), 67.0 (CH₂Ph), 68.6 (C-2), 76.4 (C-1'), 79.4 (C-2'), 110.1 [C(CH₃)₂], 119.5 (C-4'), 128.8, 129.3, 131.5, 132.5 (C₆H₅), 134.6 (C-3'). – $C_{19}H_{27}NO_3$ (317.4): calcd. C 71.89, H 8.57, N 4.42; found C 67.90, H 8.55, N 4.02 (correct for $M + 1.0 H_2O$). – MS (FAB positive ion, nitrobenzyl alcohol): m/z $(\%) = 318.2 (100) [MH^+], 91.0 (28). - HRMS (FAB positive ion,$ nitrobenzyl alcohol): exact mass calcd. for C₁₉H₂₇NO₃ + H: 318.2069; found 318.2060.

(5*E*)-(2*R*,3*R*,4*S*)-2-(*N*-Benzylhydroxylamino)-3,4-*O*-isopropylidenedioxy-5,7-octadiene (14i): An NMR tube containing 12i (10 mg, 0.03 mmol) dissolved in [D₆]DMSO was placed into the spectrometer and heated to 80 °C. After 15 min, a ¹H NMR spectrum was recorded, showing quantitative transformation of 12i into 14i. – ¹H NMR (300.1 MHz, [D₆]DMSO, 80 °C): $\delta = 0.99$ (d, $J_{1,2} = 6.5$ Hz, 3 H, 1-H), 1.31, 1.42 [2 s, 6 H, C(CH₃)₂], 2.90 (m, 2-H), 3.82 and 3.90 (2 d, ²J = 13.8 Hz, 2 H, CH₂Ph), 4.27 (dd, $\begin{array}{l} J_{2,3} = 8.7, \, J_{3,4} = 5.6 \, \mathrm{Hz}, \, 1 \, \mathrm{H}, \, 3\mathrm{-H}), \, 4.49 \, (\mathrm{dd}, \, J_{3,4} = 5.6, \, J_{4,5} = \\ 8.1 \, \mathrm{Hz}, \, 1 \, \mathrm{H}, \, 4\mathrm{-H}), \, 5.08 \, (\mathrm{d}, \, J_{7,8E} = 10.0 \, \mathrm{Hz}, \, 1 \, \mathrm{H}, \, 8\mathrm{-H}_E), \, 5.21 \, (\mathrm{d}, \\ J_{7,8Z} = 16.4 \, \mathrm{Hz}, \, 1 \, \mathrm{H}, \, 8\mathrm{-H}_Z), \, 5.76 \, (\mathrm{dd}, \, J_{4,5} = 8.1, \, J_{5,6} = 14.6 \, \mathrm{Hz}, \\ 1 \, \mathrm{H}, \, 5\mathrm{-H}), \, 6.22 \, (\mathrm{dd}, \, J_{5,6} = 14.6, \, J_{6,7} = 10.3 \, \mathrm{Hz}, \, 1 \, \mathrm{H}, \, 6\mathrm{-H}), \, 6.34 \\ (\mathrm{dt}, \, J_{6,7} = J_{7,8E} = 10.3, \, J_{7,8Z} = 16.4 \, \mathrm{Hz}, \, 1 \, \mathrm{H}, \, 7\mathrm{-H}), \, 7.25 \, (\mathrm{m_c}, \, 5 \, \mathrm{H}, \\ \mathrm{C_6H_5)}. \, - \, ^{13}\mathrm{C} \, \mathrm{NMR} \, (62.9 \, \mathrm{MHz}, \, \mathrm{CDCI_3}): \, \delta = 10.5 \, (\mathrm{C-1}), \, 25.8, \, 28.4 \\ [\mathrm{C}(\mathrm{CH}_3)_2], \, 59.5 \, (\mathrm{C-2}), \, 59.9 \, (\mathrm{CH}_2\mathrm{Ph}), \, 79.1 \, (\mathrm{C-4}), \, 79.8 \, (\mathrm{C-3}), \, 108.9 \\ [C(\mathrm{CH}_3)_2], \, 118.5 \, (\mathrm{C-8}), \, 127.1, \, 128.2, \, 129.5 \, (\mathrm{C}_6\mathrm{H}_5), \, 134.7 \, (\mathrm{C-6}), \\ 136.0 \, (\mathrm{C-7}), \, 138.3 \, (\mathrm{C}_6\mathrm{H}_5). \end{array}$

(E)-(2R,3R,4S)-2-(N-Benzylhydroxylamino)-3,4-O-isopropylidenedioxy-6-phenyl-5-hexene (14j): A solution of 12j (103 mg, 0.29 mmol) in DMSO was stirred for 30 min at 80 °C. After removal of the solvent under reduced pressure (50-60 °C, 0.25 mbar), the residue was purified by flash chromatography (SiO₂, ethyl acetate/petroleum ether = 1:1) yielding 14j (82 mg, 76%) as a colourless oil. $- [\alpha]_{D}^{20} = +6$ (c = 0.51, CH₂Cl₂). - IR (film): $\tilde{v} = 3407$ (b), 2986, 1453, 1371, 1245, 1216, 1064, 1040 cm⁻¹. $- {}^{1}$ H NMR (500.1 MHz, CDCl₃): $\delta = 1.09$ (d, $J_{1,2} = 6.6$ Hz, 3 H, 1-H), 1.43, 1.57 [2 s, 6 H, C(CH₃)₂], 3.08 (dq, $J_{1,2} = 6.6, J_{2,3} =$ 9.3 Hz, 1 H, 2-H), 3.85 and 4.01 (2 d, ${}^{2}J = 13.1$ Hz, 2 H, CH₂Ph), 4.35 (dd, $J_{2,3} = 9.3$, $J_{3,4} = 5.7$ Hz, 1 H, 3-H), 4.60 (dd, $J_{3,4} = 5.7$, $J_{4,5} = 9.0$ Hz, 1 H, 4-H), 6.09 (s, 1 H, OH), 6.17 (dd, $J_{4,5} = 9.0$, $J_{5,6} = 15.8$ Hz, 1 H, 5-H), 6.56 (d, $J_{5,6} = 15.8$ Hz, 1 H, 6-H), 7.32 $(m_c, 10 \text{ H}, 2 \text{ C}_6\text{H}_5)$. - ¹³C NMR (125.8 MHz, [D₆]DMSO): δ = 10.0 (C-1), 25.8, 28.4 [C(CH₃)₂], 59.4 (C-2), 59.9 (CH₂Ph), 78.4 (C-4), 78.7 (C-3), 107.6 [C(CH₃)₂], 126.5 (C-5), 132.5 (C-6), 126.4, 127.7, 128.5, 129.0, 136.2, 139.5 (C_6H_5). - $C_{22}H_{27}NO_3$ (353.5): calcd. C 74.26, H 7.70, N 3.96; found C 71.31, H 7.74, N 3.71 (correct for $M + 1.0 H_2O$).

(2S,3S,4R,5R)-N-Benzyl-3,4-dihydroxy-2,5-dimethylpyrrolidine N-Oxide (16a): Under argon, 11a (93 mg, 0.31 mmol) was dissolved in a mixture of water (2 mL), MeOH (2 mL), and conc. HCl (0.25 mL). The clear solution was stirred for 1 d at room temp. The crude product was purified using a column (5 cm \times 1.2 cm) packed with Dowex 50WX8 (H⁺ form). The resin was first washed with MeOH (50 mL) and water (50 mL), before 16a was eluted using NH₃ (1 N, 50 mL). Concentration in vacuo afforded a colourless solid (75 mg), which was recrystallized from MeOH/diethyl ether. This yielded colourless needles of 16a suitable for X-ray analysis (62 mg, 84%, m.p. 186 °C). $- [\alpha]_D^{20} = 0$ (c = 0.10, MeOH). - IR (KBr): $\tilde{v} = 3190$ (b, OH), 3050, 2980, 2940, 1495, 1455, 1445, 1430, 1365, 1165, 1135, 1090 cm⁻¹. - ¹H NMR (500.1 MHz, MeOD): $\delta = 1.57$ (d, $J_{2,2-Me} = J_{5,5-Me} = 6.4$ Hz, 6 H, 2-CH₃, 5-CH₃), 3.18 $(m_c, 2 H, 2-H, 5-H), 3.92 (m_c, 2 H, 3-H, 4-H), 4.23 (s, 2 H, CH_2Ph),$ 7.47 (m_c, 5 H, C₆H₅). - ¹³C NMR (125.8 MHz, MeOD): δ = 11.5 (2-CH₃, 5-CH₃), 66.1 (CH₂Ph), 73.4 (C-2, C-5), 73.5 (C-3, C-4), 130.4, 131.2, 132.9 (C₆H₅). - C₁₃H₁₉NO₃ (237.3): calcd. C 65.80, H 8.07, N 5.90; found C 65.66, H 8.10, N 5.91.

X-ray Structural Analysis of 16a:^[89] C₁₃H₁₉NO₃ (237.3), colourless needle (1.0 mm × 0.1 mm × 0.1 mm), a = 9.890(2) Å, b = 11.245(2) Å, c = 11.377(2) Å, V = 1265.3(4) Å³, T = 293(2) K, orthorhombic, space group Pnma, Z = 4, K: $\mu = 0.088$ mm⁻¹. Intensity data were collected using a Nicolet P3 diffractometer with graphite-monochromated Mo- K_{α} radiation (0.71073 Å). The structure was solved with direct methods using SHELXS-86.^[90] Refinement (full-matrix least-squares) was performed against F^2 using SHELXL-93.^[91] 1173 measured reflections in the range of 2.55 to 24.99°, 1173 unique reflections and 932 with $F_O > 2\sigma(F_O)$. *R*1 [$F_O > 2\sigma(F_O)$] = 0.0645, *wR2* for all data = 0.1315, GoF = 1.239, residual electron density: 0.19 e/Å³.

Acknowledgments

We are grateful to Fonds der Chemischen Industrie for general support of this work, to EU (COST D13) for travel grants, and to Landesgraduiertenförderung Baden-Württemberg, Stipendienfonds der Chemischen Industrie, and Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie for fellowships (to A. M. P.). Furthermore, we would like to thank Dr. W. Frey for providing the X-ray structure of pyrrolidine N-oxide 16a and Ms. I. Kienzle for experimental help.

- ^[1] For Part II see ref.^[36]; to be considered Part I in this series: ref.[34]
- ^[2] Part of the forthcoming dissertation of A. M. Palmer, Universität Stuttgart. - Presented at the 17th ICHC, Vienna, August 1999, the 2000 Lausanne Workshop on Glycomimetics (COST D13), Lausanne, May **2000**, and ISOR-2000, Tokyo, October **2000**, cf. ref.^[34, 38, 39]
- [3] E. Truscheit, W. Frommer, B. Junge, L. Müller, D. D. Schmidt, W. Wingender, Angew. Chem. 1981, 93, 738-755; Angew. Chem. Int. Ed. Engl. 1981, 93, 744-761.
- ^[4] D. A. Winkler, G. Holan, J. Med. Chem. 1989, 32, 2084-2089.
- ^[5] B. Winchester, G. W. J. Fleet, *Glycobiology* **1992**, *2*, 199–210.
- ^[6] M. L. Sinnott, Chem. Rev. 1990, 90, 1171-1202
- ^[7] G. Legler, Adv. Carbohydr. Chem. Biochem. 1990, 48, 319-384.
- ^[8] E. J. Hehre, Adv. Carbohydr. Chem. Biochem. 1999, 55, 265-310.
- [9] P. Ermert, A. Vasella, M. Weber, K. Rupitz, S. G. Withers, Carbohydr. Res. 1993, 250, 113-128.
- ^[10] V. Jäger, R. Müller, T. Leibold, M. Hein, M. Schwarz, M. Fengler, L. Jaroskova, M. Pätzel, P.-Y. LeRoy, Bull. Soc. Chim. Belg. 1994, 103, 491-507.
- ^[11] W. Hümmer, E. Dubois, T. Gracza, V. Jäger, Synthesis 1997, 634 - 642
- ^[12] V. Jäger, T. Gracza, E. Dubois, T. Hasenöhrl, W. Hümmer, U. Kautz, B. Kirschbaum, A. Lieberknecht, L. Remen, D. Shaw, U. Stahl, O. Stephan, in: Organic Synthesis via Organometallics OSM 5 (Eds.: G. Helmchen, J. Dibo, D. Flubacher, B. Wiese), Vieweg, Braunschweig, **1997**, p. 331-360.
- ^[13] S. V. Evans, L. E. Fellows, T. K. M. Shing, G. W. J. Fleet, Phytochem. 1985, 24, 1953-1955.
- ^[14] C.-H. Wong, L. Provencher, J. A. Porco, Jr., S.-H. Jung, Y.-F. Wang, L. Chen, R. Wang, D. H. Steensma, J. Org. Chem. 1995, 60, 1492-1501.
- ^[15] S. Inouye, T. Tsuruoka, T. Niida, J. Antibiot. Ser. A 1966, 19, 288 - 291.
- ^[16] S. Inouye, T. Tsuruoka, T. Ito, T. Niida, *Tetrahedron* 1968, 23, 2125–2144.
- ^[17] G. W. J. Fleet, P. W. Smith, S. V. Evans, L. E. Fellows, J. Chem. Soc., Chem. Commun. 1984, 1240-1241.
- ^[18] B. P. Bashyal, G. W. J. Fleet, M. J. Gough, P. W. Smith, Tetrahedron 1987, 43, 3083-3093.
- ^[19] F.-M. Kieß, P. Poggendorf, S. Picasso, V. Jäger, Chem. Commun. 1998, 119-120.
- ^[20] V. Wehner, V. Jäger, Angew. Chem. 1990, 102, 1180-1181; Angew. Chem. Int. Ed. Engl. 1990, 102, 1169-1171.
- ^[21] V. Jäger, R. Öhrlein, V. Wehner, P. Poggendorf, B. Steuer, J. Raczko, H. Griesser, F.-M. Kieß, A. Menzel, Enantiomer 1999, 4, 205-228.
- ^[22] L. Bierer, Dissertation, Universität Stuttgart, 1999
- ^[23] L. Bierer, D. Shaw, V. Jäger, poster presentation, Orchem 98, Bad Nauheim, September 1998, Abstr. P 7.
- ^[24] H. O. House, D. T. Manning, D. G. Melillo, L. F. Lee, O. R. Haynes, B. E. Wilkes, J. Org. Chem. 1976, 41, 855-863.
- ^[25] H. O. House, L. F. Lee, J. Org. Chem. 1976, 41, 863-869.
- ^[26] E. Ciganek, J. Org. Chem. 1990, 55, 3007-3009.
- ^[27] E. Ciganek, J. M. Read, Jr., J. C. Calabrese, J. Org. Chem. 1995, 60, 5795-5802.
- ^[28] W. Oppolzer, A. C. Spivey, C. G. Bochet, J. Am. Chem. Soc. **1994**, *116*, 3139–3140.
- ^[29] W. Oppolzer, Gazz. Chim. Ital. 1995, 125, 207-213.
- ^[30] P. C. Astles, S. V. Mortlock, E. J. Thomas, in: Comprehensive

Organic Synthesis (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, Vol. 6, p. 1011-1039.

- ^[31] A. C. Cope, E. R. Trumbull, Org. React. 1960, 11, 317-493.
- ^[32] R. Grigg, J. Markandu, T. Perrior, S. Surendrakumar, W. J. Warnock, *Tetrahedron* 1992, 48, 6929-6952.
- ^[33] The term "Cope-House cyclization" replaces our earlier sug-gestion (Cope cyclization)^[34] following a discussion with Prof. A. B. Holmes (Cambridge), in order to acknowledge the pioneering work by House and his group in this area, see ref. [24, 25].
- ^[34] V. Jäger, L. Bierer, H.-Q. Dong, A. M. Palmer, D. Shaw, W. Frey, J. Heterocycl. Chem. 2000, 37, 455-465.
- ^[35] J. K. Whitesell, in: Methods of Organic Chemistry (Houben-Weyl), 4th edition, Thieme, Stuttgart, 1995, Vol. E 21c, p. 3271-3297.
- ^[36] A. M. Palmer, V. Jäger, Synlett 2000, 10, 1405-1407.
- ^[37] I. A. O' Neil, E. Cleator, N. Hone, J. M. Southern, D. J. Tapolczay, Synlett 2000, 10, 1408-1410.
- ^[38] A. M. Palmer, V. Jäger, poster presentation, 17th ICHC, Wien, August 1999, Abstr. PO-439.
- ^[39] A. M. Palmer, V. Jäger, poster presentation, 2000 Lausanne Workshop on Glycomimetics (COST D13), Lausanne, May 2000, Abstr. 4.
- ^[40] A. M. Palmer, V. Jäger, Eur. J. Org. Chem. submitted.
- [41] J. K. Gallos, T. V. Koftis, A. E. Koumbis, J. Chem. Soc., Perkin Trans. 1 1994, 611-612.
- ^[42] J. K. Gallos, E. G. Goga, A. E. Koumbis, J. Chem. Soc., Perkin Trans. 1 1994, 613-614.
- ^[43] L. A. Paquette, S. Bailey, J. Org. Chem. 1995, 60, 7849-7856.
- ^[44] N. J. Leonard, K. L. Carraway, J. Heterocycl. Chem. 1966, 3, 485 - 489
- [45] P. J. Garegg, B. Samuelsson, J. Chem. Soc., Chem. Commun. 1979, 978-980.
- [46] P. J. Garegg, B. Samuelsson, J. Chem. Soc., Perkin Trans. 1 1980, 2866-2869
- [47] M. Schlosser, in: Methoden der Organischen Chemie (Houben-Weyl), 4th edition, Thieme, Stuttgart, 1972, Vol. 5/1b, p. 213.
- ^[48] cf. M. Kleban, U. Kautz, J. Greul, P. Hilgers, R. Kugler, H.-Q. Dong, V. Jäger, Synthesis 2000, 1027-1033.
- ^[49] For related use of butyllithium see: B. Bernet, A. Vasella, Helv. Chim. Acta 1979, 62, 1990-2016.
- ^[50] A. Dondoni, S. Franco, F. Junquera, F. Merchán, P. Merino, T. Tejero, *Synth. Comm.* **1994**, *24*, 2537–2550.
- ^[51] An alternative approach to unsaturated hydroxylamines suitable for Cope-House cyclization using D-ribose as a starting material for complementary nitrones was presented by Knight and co-workers, see: J. R. Hanrahan, D. W. Knight, Chem. Commun. 1998, 2231–2232.
- ^[52] W. Rundel, in: Methoden der Organischen Chemie (Houben-Weyl), 4th edition, Thieme, Stuttgart, 1968, Vol. X/4, p. 309 - 448.
- ^[53] D. Döpp, H. Döpp, in: Methoden der Organischen Chemie (Houben-Weyl), 4th edition, Thieme, Stuttgart, 1990, Vol. E14b/2, p. 1372-1544.
- ^[54] K. B. G. Torssell, Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, VCH, New York, 1988.
- Asymmetry 1997, 8, 1725–1729.
 [^{56]} D. S. C. Black, J. E. Doyle, Aust. J. Chem. 1978, 31, 2317–2322.
- ^[57] E. Ciganek, J. Org. Chem. 1995, 60, 5803-5807.
- ^[58] J. M. J. Tronchet, M. Zsely, R. N. Yazji, F. Barbalat-Rey, M. Geoffroy, Carbohydr. Lett. 1995, 1, 343-348.
- ^[59] R. D. Bach, D. Andrzejewski, L. R. Dusold, J. Org. Chem. **1973**, 38, 1742–1743.
- ^[60] D. J. Cram, J. E. McCarty, J. Am. Chem. Soc. 1954, 76, 5740-5745.
- ^[61] D. J. Cram, M. R. V. Sahyun, G. R. Knox, J. Am. Chem. Soc. **1962**, *84*, 1734–1735.
- ^[62] J. Goerdeler, in: Methoden der Organischen Chemie (Houben-Weyl), 4th edition, Thieme, Stuttgart, 1958, Vol. XI/2, p. 638-639.
- ^[63] K. N. Houk, S. R. Moses, Y.-D. Wu, N. G. Rondan, V. Jäger, R. Schohe, F. R. Fronczek, J. Am. Chem. Soc. 1984, 106, 3880-3882.

FULL PAPER

- ^[64] M. Schwarz, Dissertation, Würzburg, 1993.
- ^[65] V. Jäger, H. Grund, V. Buß, W. Schwab, I. Müller, R. Schohe, R. Franz, R. Ehrler, *Bull. Soc. Chim. Belg.* **1983**, *92*, 1039–1054.
- ^[66] V. Jäger, I. Müller, R. Schohe, M. Frey, R. Ehrler, B. Häfele, D. Schröter, *Lect. Heterocycl. Chem.* 1985, 8, 79–98.
- ^[67] J.-B. Behr, A. Defoin, N. Mahmood, J. Streith, *Helv. Chim. Acta* 1995, 78, 1166–1177.
- [68] A. Defoin, Th. Sifferlen, J. Streith, I. Dosbaâ, M.-J. Foglietti, *Tetrahedron: Asymmetry* 1997, 8, 363–366.
- ^[69] T. Sifferlen, A. Defoin, J. Streith, D. Le Nouën, C. Tarnus, I. Dosbaâ, M.-J. Foglietti, *Tetrahedron* 2000, 56, 971–978.
- ^[70] M. Joubert, C. Tarnus, A. Defoin, J. Streith, poster presentation, 2000 Lausanne Workshop on Glycomimetics (COST D13), Lausanne, May 2000, Abstr. 7.
- [71] C.-H. Wong, T. Kojimoto, K.-C. Liu, L. Chen, US Patent 5,276,120 (The Scripps Research Institute, La Jolla, Ca., Jan 4th, 1994), CAS-Nr. 121:83886j.
- ^[72] A. Dondoni, F. Junquera, F. L. Merchán, P. Merino, T. Tejero, *Tetrahedron Lett.* **1992**, *33*, 4221–4224.
- [^{73]} A. Dondoni, S. Franco, F. Merchan, P. Merino, T. Tejero, Synlett 1993, 78-80.
- ^[74] A. Dondoni, S. Franco, F. Junquera, F. L. Merchán, P. Merino, T. Tejero, *Tetrahedron Lett.* **1993**, *34*, 5475–5478.
- ^[75] A. Dondoni, S. Franco, F. L. Merchán, P. Merino, T. Tejero, V. Bertolasi, *Chem. Eur. J.* **1995**, *1*, 505–520.
- ^[76] F. L. Merchán, P. Merino, T. Tejero, *Tetrahedron Lett.* 1995, 36, 6949-6952.
- [77] T. Franz, M. Hein, U. Veith, V. Jäger, E.-M. Peters, K. Peters, H. G. von Schnering, *Angew. Chem.* **1994**, *33*, 1308–1311; *Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 1298–1301.
- ^[78] U. Veith, S. Leurs, V. Jäger, Chem. Commun. 1996, 329-330.
- [79] O. Schwardt, U. Veith, C. Gaspard, V. Jäger, Synthesis 1999, 1473-1490.
- ^[80] The conformational models of the pyrrolidine N-oxides 11a and 12a were designed to discuss the NMR spectroscopic data obtained for the isomers 11 and 12. For a more thorough conformational analysis of these pyrrolidine structures, a group of different, easily interconverting conformers needs to be taken

into account. As suggested by one of the referees the following conformations are the most probable ones: **11a**: 1T5, 1E, 1T2; **12a**: 2T1, E1, ST1; **12g,h**: E1, ST1, SE or 2E, 2T1, E1. These notations are only applicable if the pyrrolidines **11**, **12** are seen from a distinct point of view, as depicted. For a discussion of ring conformers cf. L. D. Hall, P. R. Steiner, C. Pedersen, *Canad. J. Chem.* **1970**, *48*, 1155–1165.

- ^[81] CS Chem 3D Pro 4.0, distributed by Cambridge Soft Corporation (Cambridge, MA 02139, USA, www.camsoft.com).
- [82] For information about MM2 see U. Burkert, N. L. Allinger, Molecular Mechanics, ACS, Washington D. C., 1982 or T. Clark, Computational Chemistry, Wiley, New York, 1985.
- [83] For information about MOPAC see: James J. P. Stewart, MO-PAC manual, 7th edn., 1993, under http://jschem.korea.ac.kr/ services/mopac/1.html.
- ^[84] G. Helmchen, B. Glatz, Appendix to Habilitationsschrift, Universität Stuttgart, **1978**.
- [85] D. Seyferth, M. A. Weiner, J. Am. Chem. Soc. 1961, 83, 3583-3586.
- ^[86] H. Freytag in Methoden der Organischen Chemie (Houben-Weyl), 4th edition, Thieme, Stuttgart, 1958, Vol. 11/2, pp. 190-205.
- ^[87] K. Doser, R. Hemmer, in: *Methoden der Organischen Chemie* (*Houben-Weyl*), 4th edition, Thieme, Stuttgart, **1990**, Vol. E16a/1, p. 404–420.
- ^[88] A. Albini, Synthesis 1993, 263-277.
- ^[89] Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-147799. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44–1223/336-033 or E-mail: deposit@ccdc.cam.ac.uk].
- [90] G. Sheldrick, Program SHELXS-86, Universität Göttingen, 1986.
- [91] G. Sheldrick, Program SHELXL-93, Universität Göttingen, 1993.

Received August 9, 2000 [O00423]