67

An Efficient Synthesis of N-Methylamino Acids and Some of Their Derivatives

Jan Spengler, Klaus Burger*

Department of Organic Chemistry, University of Leipzig, Talstr. 35, D-04103 Leipzig, Germany Fax +49(341)9736599; E-mail: burger@organic.orgchem.uni-leipzig.de *Received 12 August 1997*

N-Methylamino acid derivatives are obtained in high yield by a stereoselective one-pot procedure from hexafluoroacetone protected amino acids via *N*-chloromethylation and treatment with triethylsilane/trifluoroacetic acid.

 α -*N*-Methylamino acids are constituents of various peptides and depsipeptides isolated from plant strains, microorganisms and marine species. Some of these are pseudopeptides like cyclosporine,¹ dolastatin,² didemnin³ etc. exhibiting highly interesting therapeutic profiles.⁴ Incorporation of α -*N*-methylamino acids into strategic positions of peptides leads to an enhanced proteolytic stability, to an increase in lipophilicity and to profound conformational changes.⁵ Therefore, they are valuable building blocks for the synthesis of peptidomimetics and combinatorial chemistry. Furthermore, certain α -*N*-methylamino acids themselves have been found to be biologically active in their own right.⁶ Consequently, a number of synthetic routes to optically pure α -*N*-methylamino acids have been developed.^{4, 7, 8}

Recently we have shown that hexafluoroacetone (HFA) is a useful reagent for the simultaneous protection of the amino and the carboxylic group of α -amino acids.⁹ The protected carboxylic group turned out to be stabile against a wide range of electrophilic reagents, however, the carboxylic group is activated towards nucleophiles. Therefore, deprotection of the carboxylic group and the α amino group can be achieved simultaneously under mild conditions. Nucleophilic ring opening reactions of the oxazolidinones are always coupled with the deprotection of the α -amino group.

We now report on a preparatively simple stereoconservative route to α -*N*-methylamino acid derivatives starting from hexafluoroacetone protected α -amino acids 2. In a three component condensation compound 2, paraformaldehyde and thionyl chloride react - without any solvent to give the α -*N*-chloromethyl compounds 3 in nearly quantitative yield. The progress of the reaction can be monitored by ¹⁹F NMR spectroscopy. Compounds 3 were treated without further purification with triethylsilane/trifluoroacetic acid.¹⁰ The transformation $3 \rightarrow 4$ is an exothermic process. Purification of 4 can be achieved by fractional distillation under reduced pressure. In the case of the low boiling compound **4a** diphenylmethylsilane instead of triethylsilane was used for the transformation of the *N*-chloromethylamino into the α -*N*-methylamino acid derivatives. The 2,2-bis(trifluoromethyl)-3-methyl-1,3-oxazolidin-5-ones **4** can be stored in the refrigerator without decomposition over weeks.

Since compounds **4** are carboxylic group activated species they can be readily transformed into acid hydrochlorides, ester hydrochlorides and hydroxamic acids, respectively.

 α -Amino hydroxamic acid derivatives are a class of amino acid analogs of current interest.¹¹ To our knowledge α -*N*-methylamino hydroxamic acids have not been described so far.

Solvents were purified and dried prior to use. Reagents were used as purchased. Melting points (uncorrected) were determined on a Boetius hot plate. Optical rotations were measured on a Polartronic polarimeter (Schmidt & Haensch) in a 5 cm cell. For C, H, N analyses a CHNO-Rapid-Elemental-Analyser (Hereaus) was used. Mass spectra were recorded on a VG 12-250 (Masslab) electron ionization spectrometer (EI = 70 eV) or by GC/MS on a HP5890 MSD spectrometer. IR spectra were obtained using a Specord spectrometer (Carl Zeiss, Jena). ¹H (200.041 or 300.075 MHz), ¹³C (50.305 or 75.462 MHz) and ¹⁹F NMR (188.205 or 282.33 MHz) spectra were recorded on a Varian Gemini 2000 or a Varian Gemini 300 spectrometer. TMS was used as reference standard for ¹H and ¹³C NMR spectra (internal) and TFA for ¹⁹F NMR spectra (external).

3-Chloromethyl-2,2-bis(trifluoromethyl)-1,3-oxazolidin-5-ones 3; General Procedure:

A mixture of 2,2-bis(trifluoromethyl)-1,3-oxazolidin-5-ones¹² **2** (20 mmol) and paraformaldehyde (1.20 g, 40 mmol) was stirred in $SOCl_2$ (5 mL) at 60°C until gas evolution ceased (l-5 h). The progress of the reaction was monitored by ¹⁹F NMR spectroscopy. After removal of the excess of $SOCl_2$, the residue was distilled in vacuo. The reaction mixture of **3** can be used without any purification for N-methylation to give **4** (Table 1).

Table 1. Compounds 2–4 Prepared

Pro- duct ^a	\mathbb{R}^1	\mathbb{R}^2	R ² NR	Yield (%)	bp (°C)/Torr	$\begin{bmatrix} \alpha \end{bmatrix}_{\rm D}^{25} \\ (c, \text{CHCl}_3)$	IR (film) v C=O (cm ⁻¹)	¹ H NMR (CDCl ₃ /TMS) δ , <i>J</i> (Hz)		13 C NMR (CDCl ₃ /TMS), δ				19 F NMR (CDCl ₃), δ^{b}	
								NR	H-4	NR	C-4	C-2	C-5	CF ₃	
2a	CH ₃	Н	Н	98	54/12	+14.4 (1.3)	1823	3.00 (br s)	4.01 (m)	_	50.9	88.8 (m)	172.8	-2.97 (br s)	
2b	(CH ₃) ₂ CH	Н	Н	98	74/13	-2.22 (4.1)	1823	2.95 (br s)	3.86 (t, <i>J</i> =4.8)	-	60.1	88.4 (m)	170.8	-2.71 (q, J=8.3) -2.38 (q, J=8.3)	
2c	(CH ₃) ₂ CHCH ₂	Н	Н	95	85/15	-3.81 (4.2)	1818	2.98 (d, <i>J</i> =7.0)	3.87 (m)	_	<u>5</u> 3.0	88.5 (m)	172.1	-2.82 (br s)	
2d	Н	Ph	Н	95	72/0.3	-68.3 (2.4)	1825	3.42 (d, <i>J</i> =6.0)	4.99 (d, <i>J</i> =6.4)	-	J <u>9</u> 8.7 ∭agau	88.4 (m)	170.0	-2.55 (q, J=8.0) -2.36 (q, J=8.0)	
3a	CH ₃	Н	CH ₂ C1	83	65/11	+30.9 (1.1)	1844	5.22 (d, <i>J</i> =12.2) 5.39 (d, <i>J</i> =12.2)	4.22 (q, <i>J</i> =6.4)	58.1	0.명	88.5 (m)	169.1	-0.65 (q, J=8.7) 3.23 (q, J=8.7)	
3b	(CH ₃) ₂ CH	Н	CH ₂ C1	87	88-90/8	+35 (1.0)	1841	5.18 (d, <i>J</i> =12.2) 5.38 (d, <i>J</i> =12.2)	4.10 (d, <i>J</i> =3.2)	58.5	a∰.6 Mado	87.4 (m)	167.4	0.74 (q, <i>J</i> =7.7) 3.46 (q, <i>J</i> =7.7)	
3c	(CH ₃) ₂ CHCH ₂	Н	CH ₂ C1	87	42/0.36	+105 (1.7)	1844	5.20 (d, <i>J</i> =12.4) 5.37 (d, <i>J</i> =12.4)	4.18 (m)	58.6	93.3 ti	87.7 (m)	169.0	-0.33 (q, <i>J</i> =9.0) 3.48 (q, <i>J</i> =9.0)	
3d	Н	Ph	CH ₂ C1	91	65-67/0.01	-209 (1.5)	1848	4.87 (d, <i>J</i> =12.1) 5.35 (d, <i>J</i> =12.1)	5.15 (s)	57.9	6.@	87.5 (m)	166.6	0.54 (q, <i>J</i> =9.0) 3.46 (q, <i>J</i> =9.0)	
4 a	CH ₃	Н	CH ₃	67	53/12	+32 (1.02)	1843	2.72 (q, <i>J</i> =1.6)	3.59 (d, <i>J</i> =6.6)	32.5	මිති.3 ග	89.9 (m)	170.8	-1.29 (q, J=8.0) 4.24 (q, J=8.0)	
4b	(CH ₃) ₂ CH	Н	CH ₃	75	87/23	+36 (1.06)	1837	2.70 (m)	3.45 (d, <i>J</i> =2.0)	32.3	₩4.3	88.9 (m)	167.7	-0,68 (q, J=7.7) 4.38 (q, J=7.7)	
4c	(CH ₃) ₂ CHCH ₂	Н	CH ₃	85	89–90/21	+44 (2.3)	1840	2.70 (q, <i>J</i> =2.2)	3.55 (t, <i>J</i> =4.8)	33.2	ණි.3 ල	90.0 (m)	170.6	-1.02 (q, J=8.0) 4.37 (q. J=8.0)	
4d	Н	Ph	CH ₃	83	44-46/0.05	120 (1.1)	1847	2.68 (q, <i>J</i> =2.3)	4.54 (s)	33.3	j∰.5	89.9 (m)	167.7	-0.50 (q, <i>J</i> =7.6) 4.25 (q, <i>J</i> =7.6)	

 a Satisfactory microanalyses obtained: C+ 0.46, H \pm 0.43, N \pm 0.35, b CF_3CO_2H was used as the external standard.

Downloaded by: Collections and Te

Papers

69

Scheme 3

Table 2. Compounds 5 Prepared

Pro- duct	Yield	mp (°C)		$[\alpha]_{\rm D}$		¹ H NMR (D ₂	O/TMS), δ , J (Hz)	13 C NMR (D ₂ O/TMS), δ			
	(%)	found	reported	found	reported	NCH ₃	Н-2	NCH ₃	C-2	CO ₂ H	
5a 5b 5c 5d	84 70 95 81	146–152 143–145 139–142 209–211	165.5–166 ¹³ 149 ¹⁴ – 241 ¹⁵	$^{+5.9^{a}}_{+29^{b}}_{+20.5^{c}}_{-108^{d}}$	$+5.77^{13}$ +25.5 ¹⁴ +21.6 ⁸ -87 ¹⁵	2.59 (s) 2.59 (s) 2.58 (s) 2.47 (s)	3.82 (m) 3.63 (m) 3.76 (m) 4.78 (s)	31.1 2.9 34.5 31.2	56.8 67.4 62.6 64.6	172.5 171.1 174.6 170.7	

^a *c*=6, H₂O. ^c *c*=9, H₂O.

^b *c*=2, EtOH. ^d c=1.49, 1 N HCl.

Table 3. Compounds 6 Prepared

Pro- duct	Yield	mp (°C)		$[\alpha]_{\mathrm{D}}$		¹ H NMR (CDC)	¹ H NMR (CDCl ₃ /TMS), δ , J (Hz)			$^{13}\mathrm{C}$ NMR (CDCl_3/TMS), δ			
	(%)	found	reported	found	reported	NCH ₃	OCH ₃	H-2	NCH ₃	OCH ₃	C-2	C=O	
6a 6b 6c 6d	71 72 75 87	82–83 139–141 131 169–173	$82^{16} \\ 140-141^{17} \\ 127-128^{19} \\ 155-156^{21}$	$^{+1^{a}}_{+35^{c}}_{+34^{d}}_{-132^{e}}$	-3^{16} +30 ¹⁸ +31.4 ²⁰	2.61 (s) 2.77 (t, <i>J</i> =5.4) 2.68 (s) 2.61 (t, <i>J</i> =5.2)	3.70 (s) 3.85 (s) 3.78 (s) 3.77 (s)	3.97 (m) ^b 3.60 (m) 3.74 (m) 4.95 (m)	31.2 33.2 34.4 31.0	54.1 53.3 56.5 53.1	56.7 67.6 62.5 64.4	171.1 ^b 167.8 173.4 168.5	

^a *c*=2, EtOH. ^d c=1, EtOH.

^b Recorded in D₂O. ^e *c*=1, 1 N HCl.

^c c=1, EtOH.

Table 4. Compounds 7 Prepared

Pro-	Yield	mp (°C)	$[\alpha]_{\mathrm{D}}^{25}$	¹ H NMR,	δ, J (Hz)	¹³ C NMI	R, δ		IR (KBr) $v C = O (cm^{-1})$	$ \underset{\mathbf{M}^{+}}{\mathrm{MS}} (m/z) $	
	(0)			NCH ₃	H-2	NCH ₃	C-2	C=O	, c c (um)		
7a	85	149–152	-20 ^d	2.33 (s)	3.27 (m) ^b	33.8	56.5	170.7 ^c	1645	118	
7b	91	172-173	+30 ^e	2.51 (s)	$3.16 (m)^{b}$	34.9	68.9	168.2 ^b	1620	146	
7c	79	186–187	$+40^{f}$	2.15 (s)	$2.76 (m)^{c}$	34.0	59.4	170.7 ^c	1619	160	
7d	72	179	-140 ^g	2.17 (s)	$3.89(s)^{c}$	34.9	66.1	169.7 ^c	1623	180	

^g c=1, 1 N HCl.

^a Satisfactory microanalyses obtained: C \pm 0.11, H \pm 0.39, N \pm 0.24. ^e c=1, 1 N HCl. *c*=1, 3 N HCl.

^b Recorded in D₂O.

^c Recorded in $\overline{\text{DMSO-}d_6}$.

^d *c*=1, H₂O.

2,2-Bis(trifluoromethyl)-3,4-dimethyl-1,3-oxazolidin-5-one (4a): To a mixture of **3a** (5.7 g, 20 mmol) and diphenylmethylsilane (4.8 g, 24 mmol), was added CF₃CO₂H (4 mL) with stirring. An exothermal reaction started immediately! The mixture was stirred until gas evolution ceased (0.5 h). Then the volat¹le compounds were distilled off (0.05 Torr/25 °C) and collected in a trap at -196°C. The distillate was dissolved in CH_2Cl_2 (50 mL), treated with ice / water mixture (2 × 25 mL) and satd NaHCO3 solution until the organic phase was neutral. After drying (MgSO₄) and evaporation of the solvent the residue was distilled in vacuo (Table 1).

2,2-Bis(trifluoromethyl)-3-methyl-1,3-oxazolidin-5-ones 4b–4d; General Procedure:

To a mixture of **3** (20 mmol) and Et_3SiH (2.8 g, 24 mmol) was added CF_3CO_2H (4 mL) with stirring. An exothermic reaction started immediately! The mixture was stirred until gas evolution ceased (0.5 h) and distilled in vacuo (Table 1).

N-Methylamino Acid Hydrochlorides 5a-5d; General Procedure:

A mixture of oxazolidinone 4 (10 mmol), 2-propanol (5 mL) and 3 N HCl (5 mL) was refluxed for 12 h. After complete hydrolysis of 4 (19 F NMR analysis) the mixture was evaporated to dryness in vacuo. The residue was triturated with Et₂O and the crystalline product was filtered and washed with Et₂O (Table 2).

N-Methylamino Acid Methyl Ester Hydrochlorides 6; General Procedure:

Oxazolidinone **4** (10 mmol) was dissolved in a saturated solution of HCl gas in anhyd MeOH (5 mL) and stirred overnight. After completion of the reaction (19 F NMR analysis) the mixture was evaporated to dryness and the residue triturated with Et₂O to afford **6** as a white solid. After filtration and washing with Et₂O the ester hydrochlorides **6** were obtained in analytically pure form (Table 3).

α-N-Methylamino Hydroxamic Acids 7; General Procedure:

A solution of 4 (10 mmol) in 2-propanol (5 mL) was treated with an aqueous solution of hydroxylamine (1 mL, 50 %). After an induction period (10 min–5 h), compounds 7 crystallized, which were filtered and washed with Et_2O (Table 4).

We gratefully acknowledge the financial support from the Hermann Schlosser Stiftung, Deutsche Forschungsgemeinschaft and Fond der Chemischen Industrie. We thank Degussa AG and Hoechst AG, Frankfurt / Main for providing chemicals. This project is associated to an INTAS Network.

- (1) Wenger, R. M. Helv. Chim. Acta 1984, 67, 502.
- (2) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Dufresne, C.; Bates, R. B.; Schmidt, J. M.; Cerny, R. L.; Kizu, H. J. Org. Chem. 1990, 55, 2989.

Bates, R. B.; Brusoe, K. G.; Burns, J. J.; Caldera, S.; Cui, W.; Gangwar, S.; Gramme, M.R.; McClure, K. J.; Rouen, G. P.; Schadow, H.; Stessman, C. C.; Taylor, S. R.; Vu, V. H.; Yarick, G.V.; Zhang, J.; Pettit, G. R.; Bontems, R. *J. Am. Chem. Soc.* **1977**, *119*, 2111.

Pettit, G. R.; Kamano, Y.; Herald, C. L.; Fujii, Y.; Kizu, H.; Boyd, M. R.; Boettner, F. E.; Doubek, D. L.; Schmidt, J. M.; Chapuis, J. C.; Michel, C. *Tetrahedron* **1993**, *49*, 9151.

(3) Jouin, P.; Poncet, J.; Dufour, M.-L.; Pantaloni, A.; Castro, B. J. Org. Chem. 1989, 54, 617.
 Biskupiak, J. E.; Ireland, C. M. Tetrahedron Lett. 1984, 25, 2025

2935. Li, W.-R.; Jouillé, M. M. In *Studies in Natural Products Chemistry, Vol. 10, Stereoselective Synthesis (Part F)*; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, **1992**, pp 241-302. Ramanjulu, I. M.; Ding, X.; Joullié, M. M. *J. Org. Chem.* **1997**, 62, 4961.

(4) Chruma, J. J.; Sames, D.; Polt, R. Tetrahedron Lett. 1997, 38, 5085.

- (5) Ovchinnikov, Y. A.; Ivanov, V. T. *Tetrahedron* 1975, *31*, 2177.
 (6) Sangster, A. W.; Thomas, S. E.; Tingling, N. L. *Tetrahedron* 1975, *31*, 1135.
 Paruszewski, R.; Rostafinska-Suchar, G.; Strupinska, M.; Jaworski, P.; Stables, J. P. *Pharmazie* 1996, *51*, 145.
 Okamoto, K.; Quastel, J. H. Br. J. Pharmacol. 1977, *59*, 551; *Chem. Abstr.* 1977, *87*, 78729.
- (7) Muller, D.; Zeltser, I.; Bitan, G.; Gilon, C. J. Org. Chem. 1997, 62, 411.

Luke, R. W.; Boyce, P. G. T.; Dorling, E. K. *Tetrahedron Lett.* **1996**, *37*, 263. O'Donnell, M. J.; Bruder, W. A.; Daugherty, B. W.; Lui, D.;

Wojciechowski, K. Tetrahedron Lett. 1984, 25, 3651.

Olsen, R. A. J. Org. Chem, **1970**, 35, 1970. Oppolzer, W.; Cintas-Moreno, P.; Tamura, O. Helv. Chim. Acta

1993, *76*, 187.

Coulton, S.; Moore, G. A.; Ramage, R. *Tetrahedron Lett.* **1976**, *44*, 4005.

- Cheung, S. T.; Benoiton, N. L. *Can. J. Chem.* **1977**, *55*, 906. Grieco, P. A.; Bahsas, A. *J. Org. Chem.* **1987**, *52*, 5746.
- Dorow, R. L.; Gingrich, D. E. J. Org. Chem. 1995, 60, 4986.

Ebata, M.; Takahashi, Y.; Otsuka, H. Bull. Chem. Soc. Jpn 1966, 39, 2535.

Quitt, P.; Hellerbach, J.; Vogler, K. Helv. Chim. Acta 1963, 43, 327.

Effenberger, F.; Burkard, U.; Willfahrt, J. *Liebigs Ann. Chem.* **1986**, 314.

- (8) Fischer, E.; v. Mechel, L. Ber. Dtsch. Chem. Ges. 1916, 49, 1355.
- (9) Pires, R.; Fehn, S.; Golubev, A.; Winkler, D.; Burger, K. *Amino Acids* **1996**, *11*, 301, and literature cited therein.
- (10) Freidinger, R. M.; Hinkle, J. S.; Perlow, D. S.; Arison, B. H. J. Org. Chem. 1983, 48, 77. Colvin, E. W. Silicon in Organic Synthesis, Butterworths: London, 1981.
- (11) Bihofsky, R.; Levinson, B. L.; Loewi, R. C.; Erhardt, P. W.; Polokoff, M. A. J. Med. Chem. 1995, 38, 2119.
 Tamaki, K.; Ogita, T.; Tanzawa, K.; Sugimura, Y. Tetrahedron Lett. 1993, 34, 683.
 Floyd, C. D.; Lewis, C. D.; Patel, S. R.; Whittaker, M. Tetrahedron Lett. 1996, 37, 8045.
- (12) Weygand, F.; Burger, K.; Engelhardt, K. Chem. Ber. 1966, 99, 1461.
- (13) Fischer, E.; Lipschitz, W. Ber. Dtsch. Chem. Ges. 1915, 48, 369.
- (14) Cook, A. H.; Cox, S. F.; Farmer, T. H. J. Chem. Soc. 1949, 1024.
- (15) Araga, T.; Saito, T.; Kotage, H. Nippon Kagaku Zasshi 1965, 86, 111; Chem. Abstr. 1965, 62, 16365.
- (16) Portnova, S. L.; Bystrov, V. F.; Tsetlin, V. I.; Ivanov, V. T.; Ovchinnikov, Y. A. *Zh. Obshch. Khim.* 1968, *38*, 428; *Chem. Abstr.* 1968, *69*, 107048.
- (17) Shemyakin, M. M.; Ovchinnikov, Y. A.; Ivanov, V. T.; Kiryushkin. A. A. Tetrahedron Lett. 1962, 301.
- (18) Coste, J.; Frerot, E.; Jouin, P. J. Org. Chem. 1994, 59, 2437.
- (19) Shemyakin, M. M.; Ovchinnikov, Y. A.; Ivanov, V. T.; Kiryushkin, A. A. *Tetrahedron* **1963**, *19*, 581.
- (20) Suganu, H.; Higaki, K.; Miyoshi, M. Bull. Chem. Soc. Jpn. 1973, 46, 231.
- (21) Klosa; J. Arch. Pharm. (Weinheim, Ger.) 1952, 285, 401.