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Cyclization of Tricarbonyliron Complexes by Oxygen to 4a,9a-Dihydro-9H-carbazoles: 

Application to the Synthesis of Mukonine, Mukonidine, and Pyrido[3,2,1-jk]carbazoles 

Hans-Joachim Kn#lker* and Marcus Wolpert 

Institut ~ r  Organische Chemie, Universit~it Karlsruhe, Richard-Willst~itter-AUee, 76131 Karlsruhe, Germany 

Abstract: Aryl-substituted tricarbonyl(rl4-cyclohexa - 1,3-diene)iron complexes are oxida- 

tively cyclized in protic medium in the air to tricarbonyliron-complexed 4a,9a-dihydro- 

9H-carbazoles. The method is applied to the total synthesis of mukonine and mukonidine. 
© 1997, Elsevier Science Ltd. All rights reserved. 

A broad range of biologically active carbazole alkaloids have been isolated from natural sources# In the course 

of our ongoing project directed towards synthetic approaches to these natural products we described several 

tricarbonyliron-mediated syntheses) The cyclizations of the intermediate aryl-substituted tricarbonyl(rl4-cyclo - 

hexa-l,3-diene)iron complexes were achieved with appropriate oxidizing agents, e.g. very active manganese 

dioxide, iodine, or ferricenium hexafluorophosphate, providing either directly the aromatized 9H-carbazoles or 

the intermediate tricarbonyliron-complexed 4a,9a-dihydro-9H-carbazoles. 1,4 We now report a novel cyclization 

to the 4a,9a-dihydro-9H-carbazole complexes by oxidation with molecular oxygen in presence of acid. 5 
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The application of this novel cyclization technique to the total synthesis of the alkaloid mukonine, 6 previously 

obtained by cyclization with manganese dioxide, 7 is shown in Scheme 1. An optimized procedure for the 

reaction of the complex salt I with the arylamine 2 provided complex 3 in 61% yield. Stirring of a solution of 3 

in toluene with trifluoroacetic acid in the air resulted in smooth cyclizing dehydrogenation and afforded the 

tricarbonyl(4a,9a-dihydro-9H-carbazole)iron complex 4. Aromatization of 4 with concomitant demetalation to 
mukonine was achieved by oxidation with ferricenium hexafluorophosphate in presence of sodium bicarbonate. 
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The isolation of mukonidine (methyl 2-hydroxycarbazole-3-carboxylate) was claimed by Chakraborty from 

Murraya koenigii 8 and by Wu from Clausena excavata. 9 However, the spectral data and the melting points for 

both natural products were not in agreement and therefore, one of them must have a different structure. 10 In 
order to solve this problem we envisaged a total synthesis of mukonidine. Previous attempts via tricarbonyliron 

complexes 11 and using a molybdenum-mediated approach 12 were unsuccessful. Cyclization of complex 511 

with air in toluene/TFA at room temperature afforded the corresponding dihydrocarbazole complex which was 

in situ aromatized and demetalated by refluxing in toluene withp-chloranil to give mukonidine (Scheme 2). 
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The spectral data (UV, IR, IH-NMR, and MS) 13 of our synthetic mukonidine (colorless crystals, m.p. 190°C) 

are in good agreement with those reported for the natural product by Wu (rap. 168-170°C). 9 Whereas the 

melting point is in better agreement with that reported by Venkataraman (m.p. 188°C). 10b It is therefore 

concluded that the structure of the natural product isolated by Chakraborty (m.p. 245°C) 8 may be different. 
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For a projected synthesis of indole alkaloid derivatives we devised an iron-mediated route to the pyrido[3,2, l- 

jk]carbazole framework (Scheme 3). 2-Nitro-5-hydroxybenzaldehyde 6 was transformed into methyl 2-amino- 

5-methoxycinnamate 7 by modification of a literature procedure. 14 Electrophilic substitution of 7 by the iron 

complex salt 1 afforded regio- and stereoselectively the complex 8. Bubbling of air through a stirred solution of 

complex 8 in toluene/trifluoroacetic acid (15:1) led to a selective cyclizing dehydrogenation and provided the 

tricarbonyl(4a,9a-dihydro-9H-carbazole)iron complex 9 in 91% yield. Cleavage of the ester and subsequent 

hydrogenation of the double bond enabled cyclization to the tricarbonyliron-complexed tetracyclic lactam 10. 

Alternatively, the desired pyrido[3,2,1-jk]carbazole ring system was constructed by aromatization prior to 

lactamization. Demetalation of 9 with trimethylamine N-oxide 15 gave the deliberated free ligand 11 in 73% 

yield. Aromatization of 11 with palladium on carbon followed by hydrogenation of the double bond and cycli- 

zation with p-toluenesulfonic acid in mesitylene at reflux afforded the aromatized tetracyclic lactam 12 in 92% 

overall yield. 16 Dehydrogenation with very active manganese dioxide 17 provided 2-methoxy-6H-pyrido[3,2,1- 

jk]carbazol-6-one 13. 
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Smooth demetalation of the iron-complexed lactam l0 with trimethylamine N-oxide 15 afforded in 83% yield 

the dihydro derivative 14 which exhibited useful reactivity in further transformations. 5 First, dehydrogenation 

with palladium on carbon opens up an alternative route to the aromatized tetracyclic lactam 12. Second, the 

stereoselectivity of reactions at the cyclohexadiene moiety was shown by a 1-aza-l,3-butadiene-catalyzed 18 

recomplexation of 14 with nonacarbonyldiiron in glyme at reflux. This reaction afforded in 87% yield complex 

10 with the original stereochemistry resulting from approach of the tricarbonyliron fragment from the convex 

face and represents a further example of the complete exo-selectivity in reactions of annulated cydohexadienes 

incorporated in a carbazole framework. Third, the stereoselective Diels-Alder cydoaddition of 14 with 

4-phenyl- 1,2,4-triazoline-3,5-dione (PTAD) 19 provided compound 15 in 8 l% yield. The stereochemistry was 

assigned based on analogy with the exo-selective Fe(CO)3-recomplexation. 

In conclusion, we could demonstrate that methoxycarbonyl-substituted hydroxy- and methoxyanilines can be 

converted to the corresponding tricarbonyl(4a,9a-dihydro-9H-carbazole)iron complexes by a two-step process 

on reaction with the complex salt 1 without using strong oxidizing agents. The transformation involves C-C 

bond formation by regioselective electrophilic substitution of the ortho-arfflno position and subsequent C-N 

bond formation by oxygen-mediated cyclization of the resulting iron complex in acidic toluene solution. 
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