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BIOINORGANIC APPROACH TO THE CYTOCHROME OXIDASE ACTIVE SITE. STRONGLY 

SPIN-COUPLED COPPER (II)-IRON (III) HETERO-METAL BINUCLEAR COMPLEXES 
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Department of Chemistry, Faculty of Science, Kyushu University 33, 

Hakozaki, Higashiku, Fukuoka 812

Copper (II)-iron (III) binuclear complexes, CuFe(fsaR)Cl•E•nH2O, with 

N, N•Œ-bis (3-carboxysalicylidene) alkanediamines (H4fsaR) were prepared 

and characterized. Cryomagnetic measurements indicated a considerably 

strong antiferromagnetic spin-exchange interaction operating between 

the metal ions. The exchange integrals (ca. -50cm-1) are the largest 

among the copper ( -II)-iron (III) complexes so far reported, and hence 

the complexes mimic the cytochrome oxidase active center.

Cytochrome oxidase is the terminal oxidation-reduction enzyme in mitochondrial 

respiration.2) Recent ESR,2) MCD,3) and magnetic susceptibility 4,5) investigations 

have suggested the presence of a strongly spin-coupled copper (II)-iron (III) (s=5/2) 

system at the cytochrome a3 active site, where the metal ions are presumed to be 

bridged by imidazolate group. 2) However, no synthetic copper (II)-iron (III) complex 

with the imi.dazolate bridge has been obtained. In spite of the increasing interests 

in spin-exchange interaction between copper (II) and iron (III) ions
, copper (II)-

iron (III) complexes so far obtained showed practically no spin-exchange interaction 

between the metal ions.6-9) 

In this study we report the first example of copper (II)-iron (III) complexes 

displaying a strong antiferromagnetic spin-spin coupling between the metal ions. 

The ligands used for preparing the complexes are the 2:1 type Schiff bases which were 

obtained by reacting 3-formylsalicylic acid with ethylenediamine, 1, 2-propylenediamine, 

2, 3-butanediamine, 1, 2-cyclohexanediamine, or o-phenylenediamine, the ligands being 

abbreviated as H4fsaen, H4fsapn, H4fsabn, H4fsach, and H4fsaph, respectively. 

Mononuclear copper (II) complexes, Cu(H2fsaR) (R=en, pn, bn, ch, ph), were prepared 

by the method described previously.10) The synthetic methods of the copper (II)-

iron (III) complexes, CuFe(fsaR)Cl.nH2O, are nearly the same, and are exemplified by 

CuFe(fsaen)Cl•E2•E5H2O. To a suspension of Cu(H2fsaen)•E1/2H2O (86mg) in absolute 

methanol (70ml) was added FeCl3 (36mg). The mixture was stirred at ca. 50•Ž and 

to this was added triethylamine (50mg). A reddish purple solution thus formed was 

filtered and left stand overnight to give purplish brown prisms . NiFe(fsaR)Cl•EnH2O, 

which will serve for examining the magnetic properties of CuFe(fsaR)Cl•EnH2O, were 

also prepared in the same way. Elemental analyses of CuFe(fsaR)C1•nH
2O and 

NiFe(fsaR)Cl•EnH2O are given in Table 1 . 

Infrared spectra of CuFe(fsaR)Cl•EnH2O and NiFe(fsaR)Cl•EnH2O display a strong 

band around 1550cm-1, attributable to the coordinated carboxylate group. Electronic
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Table 1. ELEMENTAL ANALYSES OF COMPLEXES

spectra of the complexes were measured by reflection on a powder sample. The spectra 

of CuFe(fsaR)Cl•EnH2O are similar to each other and show absorption bands in the region 

19,000-21,000cm-1. It is known that the copper (II) ion coordinated to the O4-

donating site shows a d-d band near 13,500cm-1.10) Since no such a band was observed 

for CuFe(fsaR)Cl•EnH2O, we may conclude that the copper (II) ion is bonded to the N2O2-

donating site and the iron (III) ion to the O4-site (Fig. 1). It is noticed that 

CuFe(fsaR)Cl•EnH2O bears a marked spectral resemblance to Cu(H2fsaR)10) It is likely 

that the iron (III) is in high-spin state and hence shows no spin-allowed d-d transition 

bands. Electronic spectra of NiFe(fsaR)Cl•EnH2O resemble each other. In Ni2(fsaR)•EnH2O 

and CuNi(fsaR)•EnH2O,10-12) the nickel (II) ion bonded to the O4-donating site has an 

octahedral structure with two water molecules at the apical positions and exhibits d-d 

bands at 9,500 and 15,000cm-1. Since no absorption is observed in the region 6,000-

18,000cm-1 for NiFe(fsaR)Cl•EnH2O, we may conclude 

that these complexes also possess the binuclear

skeleton shown in Fig. 1. 

Magnetic moments of CuFe(fsaR)Cl•EnH2O were 

measured in the temperature range 80-300K 

(Table 2). Temperature-dependences of magnetic 

moments indicate spin-spin coupling between the 

metal ions. Based on the Heisenberg model 

(H=-2Js1s2), two spin states, s=2 and 3, are 

brought about by spin-spin coupling between 

copper (II) (s=1/2) and iron (III) (s=5/2) ions. 

The energy separation between the s=2 ground 

state and the s=3 excited state is given by 

-6J (J being the exchange integral). By applying 

the Van yleck equation, the susceptibility for 

the (s=1/2)-(s=5/2) system is given by the 

equation, 

XM=Ng2ƒÀ2/kT 5exp(-6J/kT)+14/5exp(-6J/kT)+7+Nƒ¿, 

where each symbol has its usual meaning. Fig. 1. Structure of complexes.
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Table 2. TEMPERATURE VARIATIONS OF MAGNETIC SUSCEPTIBILITIES AND MAGNETIC 

MOMENTS OF CuFe(fsaR)Cl•EnH2O.

Magnetic susceptibilities of CuFe(fsaR)Cl-nH2O can be interpreted by the equation 

given above. A typical example of the best fit-between the experimental and the 

theoretical susceptibilities is given in Fig. 2. The exchange integrals determined for 

other complexes, assuming g=2.0 and Na=O, are as follows: J=-64cm-1 for CuFe(fsapfi)Cl•E-

2.5H2O, -52cm-1 for CuFe(fsabn)Cl•E4H2O, -48cm-1 for CuFe(fsach)Cl•E3.5H2O, and -48cm-1 

for CuFe(fsaph)•EH2O. Powder ESR spectra (X-band at 77.4K) of CuFe(fsaR)Cl•EnH2O showed 

a very broad band in the region 500-4000gauss (=10-4T), owing to the short relaxation 

time due to spin-exchange interaction. 

The magnetic moments of CuFe(fsaR)Cl•EnH2O near liquid nitrogen temperature are 

lower than 4.90 BM, the spin-only value expected for the fully spin-coupled (s=1/2)-

(s=5/2) system. In order to elucidate this, magnetic susceptibilities of NiFe(fsaR)Cl•E

nH2O were measured in the range 80-300K. The room temperature magnetic moments fall 

in the range 5.85-5.94BM, typical for high-spin iron (III) complexes. However, the 

moments decrease considerably with lowering of temperature to 5.32-5.55BM near liquid 

nitrogen temperature. Zero-field splitting of the iron (III) (s=5/2) state seems to be 

the major contribution to the decrease in magnetic moment. Similar zero-field splitting 

may occur in CuFe(fsaR)Cl•EnH2O and this should be responsible for the slight deviation 

of magnetic susceptibility from the theoretical curve at low temperature. 

Since we neglect the zero-field splitting and temperature-independent paramagnetism, 

the exchange integrals evaluated for CuFe(fsaR)Cl•EnH2O are approximate values. However, 

those effects seem much smaller than the spin-spin coupling. Hence, we may conclude 

that a fairly strong antiferromagnetic spin-exchange interaction (J•`-50cm-1) operates 

in the complexes. The present complexes are the strongest in antiferromagnetic spin-

spin coupling among the copper (II)-iron (III) complexes so far reported and mimic the 

cytochrome s3 active center.
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Fig. 2. Temperature variation of magnetic susceptibility 

of CuFe( _fsaen)Cl•E2.5H2O. Solid curve is drawn on the 

basis of the theoretical susceptibility expression using 

parameters, J=-50cm-1, g=2.0 and Nƒ¿=O.
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