A Novel Route to Thiocarbonyl–Metal Complexes via Electron Transfer to $(\eta^2$ -CS₂R)-Metal Cations

Daniel Touchard,^a Chantal Lelay,^a Jean-Luc Fillaut,^b and Pierre H. Dixneuf^b

^a Institut Universitaire de Technologie, 44606 Saint-Nazaire, France ^b Laboratorie de Chimie de Coordination organique, campus de Beaulieu, Université de Rennes, 35042 Rennes, France

The reduction with sodium-amalgam of the cations $[Fe(\eta^2-CS_2Me)(CO)_2L_2]PF_6$ (1), containing basic phosphines L (PMe₃, PMe₂Ph, PBuⁿ₃), gives rise to low-valent thiocarbonyl-iron complexes $Fe(CS)(CO)_2L_2$ (3).

Low-valent thiocarbonyl-metal complexes have already been prepared *via* four main routes:¹ (i) the desulphurization of (η^2 -CS₂) metal complexes by phosphines,^{1,2} (ii) the reaction of thiophosgene with metal carbonyl anions,^{3,4} (iii) the addition of hydride to M(η^2 -CS₂R)⁺ cations *via* M(H)(η^1 -CS₂R) intermediates,^{5,6} and (iv) the addition of NaSH to dihalogenocarbene-metal complexes.⁷ We now report a novel route to thiocarbonyl-metal complexes by reduction of M(η^2 -CS₂R)⁺ cations with sodium-amalgam and the preparation of lowvalent thiocarbonyl-iron(0) complexes.

Although a route to cationic thiocarbonyl-iron(II) complexes has been described,^{1,8} only two Fe⁰CS derivatives have been obtained so far: the unstable Fe(CS)(CO)₄ complex by the reaction of Fe(CO)₄²⁻ with thiophosgene⁴ and Fe-(CS)(CO)₂{P(OPh)₃}₂ by treatment of the corresponding Fe(η^2 -CS₂)(CO)₂{P(OPh)₃}₂ derivative with PBuⁿ₃-CCl₄,⁹ a reaction which seems restricted to the use of the weak electron donor P(OPh)₃ as ligand.

Published on 01 January 1986. Downloaded by University of Prince Edward Island on 29/10/2014 15:01:30

We have already shown that the reduction of cation (1a), with sodium-amalgam,¹⁰ led to the red product (2a) arising from the C-C coupling of the one-electron reduced species of (1a). The reduction under similar conditions of the analogous cation (1b), but containing the basic phosphine PMe₃, occurred in a quite different way. A solution of $(1b)^{11}$ (2) mmol) in 50 ml of dry tetrahydrofuran (THF) was poured, under an inert atmosphere, onto 20 g of 1% sodium-amalgam. The solution turned slowly from orange to yellow. After 4 h at room temperature a yellow complex was obtained by crystallization in pentane in 30-35% yield (m.p. 180-182 °C) and identified as (3b) (Scheme 1) {i.r.(Nujol): v(CO) 1930, 1870, v(CS) 1215 cm⁻¹; m/z: 307.985 [calc. for $M^+(C_9H_{18})$ -FeO₂P₂S): 307.985]; ¹H n.m.r. (CDCl₃, 80 MHz): δ 1.31 (d, PMe₃, ²J_{PH} 8.8 Hz); ³¹P n.m.r. (CDCl₃, 32.38 MHz): δ 37.7 p.p.m. (s, PMe₃); ¹³C n.m.r. (C₆D₆, 75.469 MHz): δ 324.6 (t, CS, ${}^{2}J_{PC}$ 37 Hz), 213.3 (t, CO, ${}^{2}J_{PC}$ 25 Hz), 19.6 (t, PMe₃, ${}^{1}J_{PC}$ 32 Hz). It is noteworthy that (3b) was not observed during the attempted desulphurization of $Fe(\eta^2-CS_2)(CO)_2(PR_3)_2$ by phosphines.¹¹ By addition of 0.9 equiv. of HgCl₂ to a solution of (3b) in diethyl ether a stable light yellow precipitate was obtained (85%) and identified as the donor-acceptor adduct $Cl_2Hg \leftarrow Fe(CS)(CO)_2(PMe_3)_2$ (5)† [i.r.(Nujol): v(CO) 1995, 1965, v(CS) 1280 cm⁻¹; ³¹P n.m.r. (CDCl₃, 32.38 MHz): 13.9 p.p.m., ²J(³¹P-¹⁹⁹Hg) 620.1 Hz], containing equivalent PMe₃ groups *cis* to the Fe \rightarrow Hg bond.¹²

Under similar conditions, complex (1c) led to two complexes isolated in low yields: the yellow derivative (3c)[†] (8% yield) [i.r.(Nujol): v(CO) 1960, 1895, v(CS) 1230 cm⁻¹] and a blue product identified as $L(OC)_2Fe-S=C(SMe)-C(SMe)=S$ (4c) (L = PMe₂Ph, 9%). The analogous product (4a)[†] (L = PPh₃) has already been reported to be formed by decomposition of (2a),¹⁰ during the reduction of (1a) with Na/Hg. The thiocarbonyl-iron(0) complexes (3) can be directly obtained by reduction, with an excess of Na/Hg, of the readily accessible cation $(1a)^{11}$ in THF, but in the presence of 2.3 equiv. of the tertiary alkylphosphines PMe₃, PMe₂Ph, and PBun₃. Thus the complexes (3b) (28%), (3c) (8%), and (3d) (9%) [i.r.(Nujol): v(CO) 1945, 1885, v(CS) 1225 cm⁻¹] were isolated. In these reactions the formation of (2a), the reduction product of (1a) with Na/Hg,¹⁰ was not observed; therefore the substitution of the PPh₃ groups of (1a) by alkylphosphines is faster than the reduction of (1a). This reaction is an example of radical-promoted substitution of phosphines by more basic ligands and can be related to the substitution reaction of carbonyl ligands by phosphines in radical ions.¹³

This formation of thiocarbonyl-iron(0) complexes directly from (1a) has been used to produce an FeCS derivative where the Fe(η^2 -CS₂) precursor was not available. The reaction of a mixture of (1a) (1.3 mmol) and dppe (Ph₂PCH₂CH₂PPh₂) (1.5 mmol) in THF with Na/Hg led to the isolation of Fe(CS)-(CO)₂(dppe) (6)[†] (6% yield) [i.r.(Nujol): v(CO) 1970, 1930,

[†] All new compounds reported have microanalytical, mass spectral, and spectroscopic data in accord with their assigned structures.

Fe(CS)(CO)₂(dppe) (6)

1915, v(CS) 1235 cm⁻¹; ³¹P n.m.r. (CDCl₃, 297 K, 32.38 MHz) broad signal at 35.6 p.p.m.].

The reduction of cations (1a—c) with Na/Hg in THF shows the versatility of the behaviour of the reduced species, (A) (Scheme 2) according to the nature of the ancillary phosphorus groups L. A reasonable explanation of these results is as follows. With the relatively poor donor groups $L = PPh_3$, (1a) is reduced irreversibly at -0.74 V vs. saturated calomel electrode (s.c.e.)‡ and the intermediate (A) undergoes homolytic cleavage of the Fe–C bond to afford the radical (B), precursor of (2a).¹⁰ With the donor groups $L = PMe_3$, (1b) is reduced irreversibly at -1.04 V vs. s.c.e.‡ and the inter-

[‡] Cathodic potential of the cyclic voltammogram of 20 mg of (1) in 0.1 M [Buⁿ₄N]PF₆ acetonitrile solution using Platine as a working electrode. Scan rate: 100 mV s⁻¹.

J. CHEM. SOC., CHEM. COMMUN., 1986

mediate (A) may lead to the metal centred radical (C) with a strong Fe-C bond. The homolytic cleavage of the C-S(R) bond is then expected to give the RS[•] radical which can be trapped by Hg^{0,14} or its elimination can be assisted by Hg⁰, to form Hg(SR)₂. Actually with (1c) (L = PMe₂Ph) both processes occurred to give (3c) (A) \rightarrow (C) and (4c) via (2c) (A) \rightarrow (B). Indeed (1c) is reduced at -0.94 V vs. s.c.e.,‡ at a potential between those of (1a) and (1b).

The reaction $(1) \rightarrow (3)$ is then expected to be used for the preparation of other MCS complexes, when the reduction of the corresponding $M(\eta^2-CS_2R)^+$ cations takes place at negative potential ($\lesssim -1 \text{ V } vs. \text{ s.c.e.}$), *e.g.* when donor groups are bonded to the metal centre. It is noteworthy that this method is complementary of the desulphurization reaction of $M(\eta^2-CS_2)$ precursors by phosphines which by contrast readily occurs¹ when ancillary ligands are not basic.

We are grateful to the C.N.R.S. for financial support and Dr. H. Le Bozec for electrochemical studies and valuable discussions.

Received, 30th July 1985; Com. 1123

References

- 1 I. S. Butler, Acc. Chem. Res., 1977, 10, 359 and references therein.
- 2 M. C. Baird, G. Hartwell, and G. Wilkinson, J. Chem. Soc. A, 1967, 2037.
- 3 B. D. Dombek and R. J. Angelici, Inorg. Chem., 1976, 15, 1089.
- 4 W. Petz, J. Organomet. Chem., 1978, 146, C23.
- 5 T. J. Collins, W. R. Roper, and K. G. Town, J. Organomet. Chem., 1976, 121, C41.
- 6 C. Bianchini, A. Meli, and G. Scapacci, Organometallics, 1983, 2, 1934.
- 7 G. R. Clark, K. Marsden, W. R. Roper, and L. J. Right, J. Am. Chem. Soc., 1980, 102, 1206.
- 8 L. Busetto, V. Belluco, and R. J. Angelici, J. Organomet. Chem., 1969, 18, 213.
- 9 P. Conway, A. R. Manning, and F. R. Stevens, J. Organomet. Chem., 1980, 186, C64.
- 10 D. Touchard, J. L. Fillaut, P. H. Dixneuf, C. Mealli, M. Sabat, and L. Toupet, *Organometallics*, 1985, 4, 1684.
- 11 D. Touchard, H. Le Bozec, P. H. Dixneuf, A. J. Carty, and N. J. Taylor, *Inorg. Chem.*, 1981, **20**, 1811; H. L. Bozec, P. H. Dixneuf, A. J. Carty, and N. J. Taylor, *ibid.*, 1978, **17**, 2568.
- 12 H. Le Bozec, P. H. Dixneuf, and R. D. Adams, Organometallics, 1984, 3, 1919.
- 13 C. M. Arewgoda, B. H. Robinson, and J. Simpson, J. Chem. Soc., Chem. Commun., 1982, 284.
- 14 J. Q. Chambers, in 'Encyclopedia of Electrochemistry of the Elements,' eds. A. J. Bard and H. Lund, M. Dekker, New York, 1978, vol. XII, pp. 393—417.