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Design, synthesis and characterization of structurally dynamic 
cyclic N,S-acetals  
Emily K. Kirkeby and Andrew G. Roberts*

We report the synthesis, characterization and comparison of a 
series of electronically perturbed, cyclic N,S-acetals. Inspired by 
electrophilic auxiliaries utilized for amine capture and 
concomitant peptide ligation, we studied these N,S-acetal systems 
and evaluated their propensity to generate zwitterionic 
intermediates in situ. Certain N,S-acetals in this study exhibit 
structurally  dynamic  properties through a solvent and pH-
dependent ability to ring-open and ring-close via C1–S bond 
ionization at room temperature. 

Chemical protein synthesis via peptide ligation methodologies 
is an enabling technology utilized for the advancement of 
biochemical discovery.1 Native chemical ligation (NCL)2 is the 
most frequently employed method to chemically join peptide 
sequences (Fig. 1A). This dependable ligation requires 
synthetic or semisynthetic access3 to a C-terminal peptide 
thioester 1 and an N-terminal Cys peptide 2. The reaction 
proceeds with a transthioesterification event, followed by an 
S-to-N acyl shift (int-3) to access ligated protein 3a with an 
amide bond at Xaa–Cys, W = SH.2,4 If desired, the Cys residue 
can be chemoselectively dethiylated, 3a, W = SH  3b, W = H, 
providing Ala at the ligation site—a powerful advance referred 
to as Ala ligation (Fig. 1A).5,6 A recent meta-analysis7a revealed 
that the two-step Ala ligation is used more frequently than 
NCL alone, due to the greater frequency of Ala (9% total 
abundance) compared with Cys residues (<2%) within 
proteins.7 Naturally low Cys residue abundance has prompted 
the development of chemical methods for ligation at 
alternative sites, Xaa–Xaa, where Xaa is an ‘acyl donor’ and Xaa 
is an ‘acyl acceptor’.1,6       
     Among the Cys-independent methodologies,8 the 
development of aldehyde capture ligation (ACL) by Arora9a and 
Li9b represent a major advance toward the ideal of sequence-
independent ligation (4, X = S or Se, Fig. 1B). The method 
leverages the chemoselective reactivity of an electrophilic C-
terminal thioester-9 or selenoester-9b benzaldehyde derivative 

(4, X = S or Se) and an amine partner (5) under aqueous 
conditions. First, a transiently generated hemiaminal int-6’ 
undergoes X-to-N acyl shift, followed by the release of a 
peptide (6) with an amide bond at Xaa–Xaa.9 ACL is a useful 
alternative for peptide ligation between sterically encumbered 
partners (e.g., Val–Val), as well as for C-terminal partners 
considered to be epimerization prone (e.g., Phe–Val). Although 
enabling, the electrophilic benzaldehyde component (4) must 
be 

 

Figure 1 Native chemical ligation (A) and aldehyde capture ligation (B) inspire the 
design and characterization of a dynamic class of cyclic N,S-acetal molecules (C).
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Scheme 1 Redox-neutral synthesis and study of seven N,S-acetal derivatives. 
aYields are reported following multistep transformations that utilize crude 2-
mercaptobenzaldehydes (10a-10c).

synthetically prepared and the stoichiometric auxiliary is 
ultimately discarded as 7 (X = S or Se) along with other 
unknown derivatives. These issues present the opportunity to 
design a dynamic, small molecule organocatalyst to facilitate 
concomitant transthioesterification and amine trapping 
reactions for procedurally improved sequence-independent 
peptide ligation (Fig. 1C).8,9,10 Inspired by the productive 
reactivity of N,O-hemiaminal int-6’,9a we envisioned the study 
of a class of cyclic N,S-acetal molecules (8) designed with 
latent ambiphilicity. We hypothesize that a cyclic N,S-acetal (8) 
will exist in dynamic equilibrium with ‘open’ form zwitterion 
int-8, revealing benzylic iminium (electrophilic, + at C1) and 
aryl thiolate functionalities.11 An informed understanding of 
int-8, could facilitate the development of a general, 
organocatalyzed thioacyl aminolysis reaction, 1 + 5  6, via 
proposed ternary adduct int-8’, under aqueous 
conditions.9,10,12 We posited that controlled permutation and 
evaluation of electronics at positions R1 and R2 (8) would 
enable the discovery of a dynamic class of molecules. Through 
reactivity and spectroscopic characterization studies, we 
reveal the dynamic properties and reactivity exhibited by 
certain N,S-acetal variants (8).
     In our study, we envisioned electronic perturbations that 
would affect ionization of the C1–S bond in N,S-acetal 8.11a We 
designed a series of N,S-acetals (8a-8g) using Hammett 
substituent constants to predict ionization susceptibility a 
priori (Scheme 1).13 In other words, we anticipate an N,S-acetal 
(8) with an electron donating substituent at R1 (e.g., R1 = OMe) 
and/or an electron withdrawing substituent at R2 (e.g., R2 = 
NO2) to favor C1–S bond ionization relative to either converse 
case. The comparative study and characterization of N,S-
acetals organized into two groups, group I: 8b, 8c, 8d, and, 
group II: 8e, 8f, 8g, relative to the parent null, 8a, might offer 
further insight. Accordingly, designed N,S-acetals were 

synthesized using the redox-neutral sulfenylation chemistry 
described by Seidel and co-workers.11a This acid-promoted 
reaction combines commercially available 1,2,3,4-
tetrahydroisoquinolines (9a-9c) reacted with prepared 2-
mercaptobenzaldehydes (10a-10c) (see the ESI†). All seven 
N,S-acetal variants 8a-8g were purified by trituration with 
ethyl acetate and isolated as solids in useful yields, with 
derivatives 8d-8g being previously unknown. Preliminary 
studies using 1H NMR spectroscopy (500 MHz, CDCl3) to 
characterize 8b, 8c, and 8d were perplexing. We observed 
spectral line broadening in the upfield region ( ppm, 4.75-
2.25), while the downfield regions ( ppm, 10.0-5.5) were 
resolved as one would expect. Despite being previously 
characterized,11a the spectroscopic anomalies in comparative 
1H NMR spectra for 8a and 8b were not explained. Overall, the 
phenomenal spectral features observed for 8b, 8c, and 8d 
were seemingly incongruent with comparative data for 8a, 8e, 
8f, and 8g. However, the general observations based on data 
appeared to be naturally in line with our initial hypotheses 
concerning C1–S ionization susceptibility. Further investigation 
revealed an intriguing dynamic behavior exhibited by the study 
of 8b, 8c and 8d in solvents of varied polarity.
     A comparative analysis of 1H NMR spectra (500 MHz, CDCl3, 
 ppm, 4.75-2.25) for 8a-top and 8b-middle (Fig. 2) serves to 
emphasize the impact that a single methoxy group exhibits on 
the N,S-acetal system. Null system 8a exhibits complete 
resolution for each diastereotopic methylene proton: Hb (4.56, 
d, J = 16.6 Hz, 1H), Hb’ (3.96, d, J = 16.6 Hz, 1H), Hcc’ (3.22, m, 
2H), Hdd’ (2.86, m, 2H). The respective methylene protons, Hbb’, 
Hcc’, and Hdd’, in the methoxy variant (8b) exhibit significant 
line broadening, despite total resolution of the methoxy group, 
CH3O- (3.79, s, 3H), and the downfield region ( (ppm), 10.0-
5.5). Intriguingly, this odd behavior is subject to changes in 
solvent polarity (see ESI† Fig. S-2, Fig. S-3). Analysis of the 1H 
NMR spectrum of 8b in benzene-d6 (500 MHz, C6D6) exhibits 
total resolution (Fig. 2, bottom), including for respective 
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Figure 2 Characterization of N,S-acetals (8a, 8b) by 1H NMR spectroscopy. 

methylene protons: Hb (4.21, d, J = 16.6 Hz, 1H), Hb’ (3.56, d, J = 
16.6 Hz, 1H), CH3O- (3.29, s, 3H), Hc (3.22, td, J = 11.8, 4.3 Hz, 
1H), Hc’ (2.94, ddd, J = 18.2, 12.0, 6.6 Hz, 1H), Hdd’ (2.37, m, 
2H).
     Intriguingly, select variants 8b, 8c and 8d (group I) in the 
series exhibit dynamic properties observable by 1H NMR 
spectroscopy (see ESI†).11,14 In the exemplary case of methoxy-
substituted variant, 8b, we observe significant 1H signal 
broadening for methylene positions Hbb’, Hcc’ and Hdd’ in CDCl3 
at ambient conditions. Contrarily, the entire 1H spectrum is 
resolved in benzene-d6. This solvent-controlled dynamicity is 
also temperature dependent. For example, the 
characterization of 8b by variable temperature 1H NMR 
demonstrates that cooling from 21 C (broadened signals) to –
45 C in CDCl3 results in spectral resolution (Fig. 3A, see ESI† 
Fig. S-1).
     We attribute these observations to a dynamic equilibrium 
of interconverting antiperiplanar and synperiplanar 
diastereoisomers (Fig. 3B). The respective nomenclatures 
describe the relationship between the lone pair at nitrogen 
and the C1–S bond. The depicted antiperiplanar conformer 
(8b-antiperiplanar, shown) is presumed to be 
thermodynamically favored, the nitrogen lone pair is oriented 
anti to the C1–S bond, this is also confirmed by x-ray 
crystallography (Fig. 3B, for x-ray structures of 8a and 8d, see 
ESI†). This type of stereospecific dynamicity has been 
previously described for alkaloid N,O-acetal systems and 
highlights the importance of stereochemistry at nitrogen.15 In 
the parent null case, 8a (R1 = H, R2 = H), and for group II 
variants (8e, 8f, and 8g) interconversion from antiperiplanar to 
synperiplanar form at room temperature is presumed to be 
disfavored. These N,S-acetals, 8a, 8e, 8f and 8g, exhibit fully 
resolved 1H NMR spectra in both CDCl3 and benzene-d6. 
However, in the methoxy substituted case 8b (shown), this 
interconversion is proposed to be facile and this room 
temperature equilibration is responsible for the signal 
broadening observed in CDCl3. Benzene-d6 is hypothesized to 
destabilize the zwitterionic int-8b, precluding the 
interconversion of the antiperiplanar and synperiplanar 
diastereoisomers. These observations distinguish the chemical 
dynamicity of group I N,S-acetals (8b, 8c, 8d) and the 
importance of electronic perturbations to their reactivity.
     Using theory-based computation to study mechanism, 
Houk, Seidel and coworkers previously suggested int-8a to be 
the penultimate intermediate en route to the formation of 8a 
from the reaction of 9a with 10a (Scheme 1).11a Accordingly, 
relative energy values obtained  from quantum mechanical 
modelling11 of N,S-acetals, 8a, 8d, 8g, and their respective 
zwitterionic forms, int-8a (R1 = H, R2 = H), int-8d (R1 = OMe, R2 
= NO2) and int-8g (R1 = NO2, R2 = OMe), support a C1–S bond 
ionization susceptibility rank of: 8d > 8a > 8g (see ESI† Fig. S-7). 
This relative comparison of the extremely polarized cases, 8d 
and 8g, is consistent with our qualitative spectroscopic 
observations. A solution of N,S-acetal 8d in CDCl3 at room 
temperature is structurally dynamic, whereas variant 8g is not.

     To further understand this solvent-dependent dynamic 
behavior, we reasoned that a zwitterionic intermediate int-8 
may be directly observable spectroscopically or inferred by 
trapping either the benzylic iminium or thiolate functionalities 
to form a stable derivative. Thus, we developed an 
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Figure 3 (A) Variable temperature 1H NMR spectroscopy in CDCl3, 21 C to –45 
C, demonstrates 8b-antiperiplanar as the favored diastereomer; (B) Proposed 
equilibration of two diastereoisomeric forms: Impact of electronics and 
stereoelectronics on structural dynamics (8b and 8d).

understanding of dynamic reactivity for group I N,S-acetals, 8b, 
8c and 8d, under more extreme conditions (Scheme 2). The 
reaction of 8b [16 mM] under acidic conditions, a. neat 
CF3CO2H, or b. 10 equiv CF3CO2H in CDCl3, forms the 
protonated form of int-8b rapidly, <1 min for condition b, and 
quantitatively (> 95% purity 1H NMR). This benzylic iminium 
int-8b is characterized by 1H, 13C and 2-D NMR experiments 
(see ESI† Fig. S-4, Fig. S-5, Fig. S-6). Notably, the methine Ha 
and C1 signals are diagnostic (500 MHz, CDCl3), as signals shift 
from N,S-acetal 8b (Ha = 6.14 ppm, C1 = 67.1 ppm) to benzylic 
iminium int-8b (Ha = 8.57 ppm, C1 = 163.9 ppm). As expected, 
methylene signals, Hb, Hc and Hd, for int-8b are homotopic and 
fully resolved. Similar ring-opening results are observed for the 
additional group I N,S-acetal variants, 8c and 8d (see ESI†).
     This N,S-acetal (8b) ionization process is reversible (Scheme 
2). Titration of crude int-8b from CDCl3 experiment (condition 
b) with 10 equiv triethylamine (condition c) quantitatively 
reforms the ‘closed’ form, N,S-acetal 8b, as observed by 1H 
NMR spectroscopy (see ESI† Fig. S-4). Interestingly, reclosure is 
also affected by altering the polarity of the solvent mixture. 
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Treatment of crude int-8b from CDCl3 experiment (condition b) 
with 100 equiv CH3OH (condition d) reforms N,S-acetal 8b as 
observed by thin-layer chromatography and 1H NMR 

N
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a. neat CF3CO2D, or

b. 10 equiv CF3CO2D,
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c
d

1

1

8b
dynamic mixture

Ha

67.1 ppm
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1
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CH3OH
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X = OMe, OCOCF3

adduct mixture
8b   +

Scheme 2 N,S-acetal 8b, C1–S ionization, chemically induced formation of 
zwitterion int-8b and reactivity.

spectroscopy.  Anticipated in situ formed adducts consistent 
with N,O-acetals (11b, X = OMe or OCOCF3) are not detected.16

     Further studies will evaluate the propensity of benzylic 
iminium int-8b to undergo addition-type reactions with various 
nucleophiles, including amines, alcohols and thiols.16,17 
Collectively, these results suggest that the development of pH 
controlled, buffered conditions may permit systematic N,S-
acetal opening and closure reactivity. Further studies will 
involve the generation and reactivity characterization of N,S-
acetal derived scaffold–peptide adducts (e.g., int-8’, Fig. 1C) 
toward the development of an organocatalysis platform for 
sequence-independent peptide ligation.18 The understanding 
of 
group I N,S-acetal (8b, 8c, 8d) reactivity may also have 
implications for the control of nucleophile capture and release 
events important to X,S-acetal systems (X = O or N)19 and 
dynamic covalent chemistry derived materials.20
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