RSC Advances

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Isaad, F. Malek and A. El Achari, *RSC Adv.*, 2013, DOI: 10.1039/C3RA43497D.

RSC Advances

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/advances Registered Charity Number 207890

Cite this: DOI: 10.1039/c0xx00000x

Water soluble and fluorescent copolymer for highly sensitive and selective fluorescent chemosensor for cyanide anion detection in biological medium

Jalal Isaad,*^{1,2} Fouad Malek,³ and Ahmida El Achari^{1,2}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

We report a simple colorimetric method based on water soluble polymer (WSP) for detection of cyanide sensitively and selectively in biological solution. The water soluble polymers WSP were prepared from a radical polymerization of a methacrylate with cyanide chemosensor moiety based on a coumarin -10 dicyano-vinyl derivative motif, and the polymer water solubility was achieved by copolymerizing this hydrophobic monomer with others glyco-conjugated methacrylate derivatives. The lowest concentration for quantification of cyanide ions was $0.05 \ \mu$ M, and other common anions nearly have no colorimetric response. Therefore, the chemical incorporation of some carbohydrates as lactose or its usual monosaccharide's moieties (glucose, lactose) represents a new way for the implementation of the 15 polymers for the cyanide anions detection in water selectively and efficiently.

Introduction

Published on 29 August 2013. Downloaded by University of Newcastle on 30/08/2013 10:30:52.

Considerable efforts have been put into the design and synthesis of functional molecules that serve as probes or sensors for the detection of chemically and biologically important ionic 20 species.^{1,2} Recent studies showed that some toxic anions also act as severe environmental pollutants and have adverse health effects. ³⁻⁶ One of the most rapidly acting and powerful poisons is cyanide CN-. It strongly binds the active site of cytochrome-c and inhibits the mitochondrial electron-transport chain, leading to ²⁵ decreased oxidative metabolism and oxygen utilization.^{7,8} The maximum permissive level of cyanide in drinking water is therefore set at 1.9 µM by the World Health Organization (WHO). ^{9,10} Given its acute toxicity, wide availability in massive

- amounts, and in light of increasing terrorist activity, there is a 30 pressing need for fast, accurate detection of cyanide at the regulated concentrations in aqueous mediums. Various methods used previously to analyze cyanide employ titrimetric,¹¹ voltammetric,¹² potentiometric¹³ and electrochemical methods¹⁴ as well as ion chromatography.¹⁵ However, these methods often
- 35 require extensive, time consuming procedures that involve the use of sophisticated instrumentation with high detection limits. Optical sensors for cyanide, in which a change in color and/or fluorescence intensity (or emission wavelength) is monitored, have been studied actively over the past ten years due to their
- 40 simple, inexpensive, and rapid implementation. Generally, three approaches for chemosensors ¹⁶: (a) the binding site-signaling subunit,¹⁷⁻¹⁹ (b) the chemodosimeters,²⁰⁻³³ or (c) the displacements³⁴⁻⁴⁰ has been extensively reported. However, these chemosensors suffer from several problems: they (i) act only in
- 45 pure organic solvents or solutions containing a large amount of

organic solvents; (ii) show poor selectivity to CN- and, (iii) show high detection limit. In the recent years, cyanide optical chemosensors that operate in aqueous solutions are developed, 41-⁴⁵ and in our laboratory we developed a novel water soluble

50 chemosensors ⁴⁶⁻⁵² behaves as a colorimetric cyanide receptor in water at room temperature. The chemical structure of these water soluble chemosensors is taken from the structure of our new glycoconjugated dyeing agents developed recently.53-59 The water solubility of these new chemosensor generation was given by the 55 incorporation of the saccharidic, ⁴⁶⁻⁴⁸ glycerol⁴⁹, moiety on the starting organic chemosensor or by the incorporation of the starting chemodosimeters on an adequate water soluble polymer as polyvinyl alcohol,⁵⁰ on a natural cellulose materials,⁵¹ through a chemical grafting or also by the organic chemosensor 60 incorporation into polymeric plastic film based on starch as a biosourced biopolymer.⁵² One the other hand, it should be noted that the area of responsive water soluble polymers (WSP) has nowadays evolved well beyond the demonstration of novel and interesting properties. Currently, the exploitation of useful and 65 advanced functions such as drug or gene carriers with triggered release properties, catalysis, detection and imaging, environmentally adaptive coatings, and self-healing materials has emerged to be a more relevant subject. The capability of facile manipulation of the solubility, hydrodynamic volume, and chain 70 configuration and conformation of responsive polymers by external stimuli has indeed enabled the development of responsive polymeric systems with novel functions. Intuitively, responsive polymers should play an important role in detection and sensing applications. However, stimuli-responsive polymer-75 based detection systems are still in its infancy stage as compared to the relatively mature field of small molecule probes.¹⁷⁻⁴⁰ In this paper, we designed and synthesized a novel glycoconjugated poly

15

25

Published on 29 August 2013. Downloaded by University of Newcastle on 30/08/2013 10:30:52

coumarin-cyanocarbon (P2) containing coumarin-dicyano-vinyl unit in its main chain as a highly selective and sensitive cyanide sensor and a carbohydrate, such as galactose as a water soluble moiety (figure 1). Its design is based on the consideration that the s dicyano-vinyl group can act as a selective cyanide-reactive unit for the nucleophilic addition reaction. Meanwhile, because of the water solubility property of the WSP, the solvated cyanide ions to reach the guest or the transducer cores, giving rise to the sensing phenomenon, resulting in higher sensitivity toward cyanide ¹⁰ detection

Figure 1: Chemical structure of the monomers and the copolymer P2

2 Results and discussion

2.1 Monomer synthesis and characterization

As mentioned in the introduction, we hypothesized that the chemical anchoring of a sensing motif to a hydrophilic polymer ³⁵ chain could provide a water-rich environment to the sensing moiety upon polymer swelling, thus permitting the solvated

cyanide ions to reach the sensory receptor, giving rise to the sensing phenomenon, resulting in cyanide detection in water. For this purpose, methacrylic monomer containing a coumarin-⁴⁰ dicyano-vinyl derivative (7) as a colorimetric cyanide chemosensor and glyco-conjugated methacrylic monomers (S1b) were prepared as reported in scheme 1.

Scheme 1: Synthesis of the monomers. Reagents and conditions: (a) Na₂CaP₂O₇, EtOH/H₂O, RT, 1h (b) POCl₃, DMF, 50°C, 30 min (c) Na₂CaP₂O₇, EtOH/H₂O, RT, 1h (d) SnCl₂, MeOH, reflux, 4h (e,g) THF, methacrylic chloride, RT, 1h (f) 1. DMP, TsOH, 80°C, 8h, 2.
⁶⁵ NEt₃, 15 min, 3. H₂O/MeOH, 80°C, 1h.

Compounds **3** and **5** were prepared by Knoevenagel condensation of 2-hydroxy-4-nitrobenzaldehyde1 with diethyl malonate2 in the case of the compound **3** and 7-nitro-2-oxo-2H-

 $_{70}$ chromene-3-carbaldehyde 4 with malononitrile in the case of the compound 5, in the presence of Na_2CaP_2O_7 as a basic catalyst. The use of Na_2CaP_2O_7 as heterogeneous catalyst in the

Knoevenagel condensation has allowed the isolation of the compounds **3** and **5** rapidly (20 min for **3** and 15 for **5**) and with good yield (about 94%). The addition of water (5% in EtOH) remarkably decreases the reaction time of the Na₂CaP₂O₇ in the ⁵ Knoevenagel synthesis of the compounds **3** and **5**. In fact, the time reaction goes from 1h to 20 min and from 40 to 15 min in EtOH for **3** and **5** respectively. The Na₂CaP₂O₇ was regenerated,

by calcinations at 500°C during 15 min, and after seven successive recuperations. Then **3**was treated by POCl₃ chloride in

¹⁰ DMF to give the compound **4**. The compound **6** was obtained by the reduction of the nitro group in the presence of $SnCl_2$ inMeOH and under reflux. In the final step, and in order to prepare the corresponding monomors **7** and **S**_{1b}, the compounds **6** and **S**_{1a} were reacted with methacryloyl chloride in THF solution and at ¹⁵ room temperature to afford the corresponding methacrylate monomers. All intermediates and monomers were characterised by ¹H and ¹³C NMR spectroscopy. Figure 2 reports the ¹H NMR spectra of the monomer **7**.

³⁵ Figure 2: 1H NMR spectra of the monomer 7.

2.2 Copolymerization of 7 with S_{1b}

The free radical copolymerization of 7 with S_{1b} was performed in chloroform for 8 h at 65 °C using AIBN as an initiator as 40 reported in scheme 2. Different monomer ratios were considered. The copolymers P_1 were obtained with good yields (60– 95%), and then, they were deprotected by using TFA solution to afford the deprotected polymers P_2 .

Scheme 2: Synthesis of the copolymers P1 and P2. Reagents and conditions (a) AIBN, CHCl₃, 65°C, 8h (b) TFA, RT, 2h.

20

25

30

Published on 29 August 2013. Downloaded by University of Newcastle on 30/08/2013 10:30:52.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

The Table 1 reports the values of mass average molecular weight (Mw) and number average molecular weight (M_n) and polydispersity index (I) of copolymers **P2a-e** which are determined by size exclusion chromatography. The data indicate s that Mw and Mn were found to range from 11600 to 19600 g/mol and 6400 to 8700 g/mol, respectively. With all these glycoconjugated polymers with different sugar ratio, we can compare their solubility in water and their glycidic ratio (Table 1). The water solubility is immediate with the all polymers except the polymers with glycidic ratio under 50% which are insoluble and poorly soluble, respectively, in water. Therefore we can conclude that for these polymers **P2a-e** to be soluble, a minimum glycidic ratio of 50% is required.

 Table 1: Molecular weight data and water solubility for the

 15 copolymerization of 7 with S1b

	copolymers	Ratio	Mw	Mn	I	Water solubility	
		glycide/7				(g/L) ^a	
	P2a	30/70	11600	6400	1.81	Insoluble	
	P2b	40/60	15100	8100	1.86	Poorly soluble	
	P2c	50/50	19600	8700	2.25	81	
20	P2d	60/40	nd	nd	nd	113	
	P2e	80/20	nb	nd	nd	203	

The chemical structures of co-polymers **P2c** were confirmed by spectroscopic methods (IR and ¹H NMR).

Figure 3: ¹H NMR spectrum of the co-polymers P2c

The IR spectra of the copolymers showed strong absorption bands characteristic of the carbonyls of methacrylate and ³⁵ cinnamate functions at about 1755 cm⁻¹ and 1720 cm⁻¹, respectively. A weak absorption band at 1613 cm⁻¹ was assignable to the CH=C unsaturation of cinnamate groups. A strong absorption bands characteristic of the glycidic hydroxyl groups appear at 3140 cm⁻¹. The ¹HNMR (figure 3) of the ⁴⁰ copolymer **P2c** shows a signals at δ = 7.94 - 6.83 ppm due to the aromatic protons. The proton of the C*H*=C unsaturation is observed at δ = 8.55 ppm. The presence of the glycidic part on the copolymers **P2c** is confirmed by the presence of the signals at

ARTICLE TYPE

5.28-3.30 characteristic of the galactoyl moiety. The peaks at δ = ⁴⁵ 1.78 and 1.67 ppm correspond to the *CH*₂ and *CH*₃ protons of ethyl and methyl groups respectively of the co-polymers.

2.3 Fluorescence spectra titration of P2c with various halide ions

The water polymer P2c shows a fluorescence emission band 50 with a maximum at **580** nm with a high fluorescence quantum vield (0.51) in in buffered aqueous solution (50 mM 50 HEPES. pH=7.4). Figure 4 reports the fluorescence emission spectra of the water soluble copolymer P2c in the presence and the absence of a different anions (CH₃COO⁻, HSO₄⁻, ClO₃⁻, ClO₄⁻, Cl⁻, Br⁻, ⁵⁵ H₂PO₄⁻, S₂O₃²⁻, F⁻, NO₃⁻, Γ⁻, NO₂⁻, SO₃²⁻, S²⁻, C₂O₄²⁻, SO₄²⁻, N₃⁻ , SCN⁻, CO₃²⁻, HCO₃⁻ and CN⁻). As shown in Figure 3, upon addition 50 equivalents of CN⁻, the fluorescence emission band with a maximum at 581 nm is blue shifted to 500 nm with a slight decrease of the fluorescence quantum yield (0.35) in buffered 60 aqueous solution. However, upon addition the other metal ions, no significant changes in the fluorescence emission spectra were observed both in buffered aqueous solution. This interesting feature revealed that the copolymer P2c can be used as selective fluorescent chemosensor for the cyanide anions in water for 65 possible applications of the present system in the anion analysis in the biological mediums.

⁸⁰ **Figure 4:** Fluorescence spectra (λ_{ex} = 460 nm) of **P2c** (50 µM) upon the addition of various (CH₃COO⁻, HSO₄⁻, ClO₃⁻, ClO₄⁻, Cl⁻, Br⁻, H₂PO₄⁻, S₂O₃²⁻, F⁻, NO₃⁻, I⁻, NO₂⁻, SO₃²⁻, S²⁻, C₂O₄²⁻, SO₄²⁻, N₃⁻, SCN⁻, CO₃²⁻, HCO₃²⁻ and CN) in buffered aqueous solution (50 mM HEPES, pH=7.4).

85

In addition to the changed fluorescent behavior caused by the

tuned D- π -A structure of fluorophore 7 in the copolymer P2c in the presence of the cvanide anions, the color change was another apparent phenomenon. The copolymer P2c contains a coumarin derivative as the fluorophore and a dicyano-vinyl group as a 5 putative cyanide-dependent reactive subunit. First, the P2c was

with a red color, upon addition of the cyanide anion to the buffered solution of **P2c**. The cyanide anions attack the α -position of the dicyano-vinyl group in the fluorophore 7 of the copolymer P2c, to generate the stabilized anionic specie of P2c -CN, which ¹⁰ presented a yellow color (figure 5).

²⁰ Figure 5: The colour and sensing mechanism of the copolymer P2c in the presence of the cyanide and other anions (CH₃COO⁻, HSO₄⁻, ClO₃⁻, ClO₄⁻, Cl⁻, Br⁻, H₂PO₄⁻, S₂O₃²⁻, F⁻, NO₃⁻, I⁻, NO₂⁻, SO₃²⁻, S²⁻, C₂O₄²⁻, SO₄²⁻, N₃⁻, SCN⁻, CO₃²⁻, HCO₃²⁻).

The fluorescence intensity of the copolymer P2c upon treatment with CN- (50 mM) was measured in the presence of 100 mM of 25 the different anions (CH₃COO⁻, HSO₄⁻, ClO₃⁻, ClO₄⁻, Cl⁻, Br⁻, H₂PO₄⁻, S₂O₃²⁻, F⁻, NO₃⁻, I⁻, NO₂⁻, SO₃²⁻, S²⁻, C₂O₄²⁻, SO₄²⁻, N₃⁻ 30

Published on 29 August 2013. Downloaded by University of Newcastle on 30/08/2013 10:30:52

45

, SCN⁻, $CO_3^{2^-}$, HCO_3^{-} and CN^{-}). The presence of background anions did not cause any significant quenching ratio (F/F_0) change of P2 as reported in figure 6.

Figure 6: Quench ratio (F/F_0) of the fluorescence intensity of P2c (50 mM) in buffered aqueous solution (50 mM HEPES, pH=7.4) upon the addition of 50 mM of CN⁻ in the presence of 100 mM of background anions (CH₃COO⁻, HSO₄⁻, ClO₄⁻, ClO₄⁻, Cl⁻, Br⁻, H₂PO₄⁻, 55 S₂O₃²⁻, F⁻, NO₃⁻, I⁻, NO₂⁻, SO₃²⁻, S²⁻, C₂O₄²⁻, SO₄²⁻, N₃⁻, SCN⁻CO₃²⁻, HCO₃²⁻).

The results reported in the figure 6 showed that the P2c could selectively detect CN⁻ in the presence of other anions such as $(CH_{3}COO^{-},\,HSO_{4}^{-},\,ClO_{3}^{-},\,ClO_{4}^{-},\,Cl^{-},\,Br^{-},\,H_{2}PO_{4}^{-},\,S_{2}O_{3}^{-2}^{-},\,F^{-},\,$ 60 NO₃⁻, I⁻, NO₂⁻, SO₃²⁻, S²⁻, C₂O₄²⁻, SO₄²⁻, N₃⁻, SCN⁺ CO₃²⁻, HCO_3^{2-} in water.

2.4 **Detection limit calculation**

The detection limit⁶⁰ of chemosensor P2c as a cyanide fluorescent probe was evaluated from the plot of fluorescence 65 intensity as a function of the CN⁻ concentration as reported in Figure 6. From a plot for the linear region, the detection limit⁶⁰ of cyanide with **P2c** was found to be 1.17 μ mol L⁻¹ (Figure 7) which is comparable with detection limits of the chemosensors ⁴⁶⁻ ⁵³ developed in our laboratory or in the literature.²⁰⁻³³ According 70 to the World Health Organization (WHO), cyanide concentrations

10

lower than 1.9 μ mol L⁻¹ are acceptable in drinking water,¹⁰ which meant that the water soluble polymer **P2c** based fluorescent method is sensitive enough to monitor cyanide concentration in drinking water.

Figure 7: Calibration curve of **P2c** –**CN**[•] in HEPES (pH=7.4). The excitation wavelength was 460 nm. The concentration of ¹⁵ the chemosensor **P**₂ was 50 μ M

3. Conclusions

A novel water soluble polymer **P2c** for the cyanide anions chemosensing was prepared and characterised. The chemosensor **P2c** shows a remarkably high ability to detect ²⁰ selectively the cyanide anions with a visible colorimetric and fluorometric changes in biological solution. The detection limit for the CN⁻ was calculated to be 1.17 µmol L⁻¹ which meant that the water soluble polymer **P2c** based fluorescent method is sensitive enough to monitor cyanide concentration ²⁵ in drinking water.

4. Experimental

4.1 Materials

- All chemicals were reagent grade (Aldrich Chemical Co.) and were used as purchased without further purification. Thin 30 layer chromatography (TLC) analysis was performed using Fluka aluminium foils coated with 25 mm particle size silica gel matrix F254. TLC development involved either UV (254 and 366 nm) or visible light inspection, followed by either treatment with an acid solution of p-anisaldehyde or a basic of $KMnO_4$ and heating. Flash 35 solution column chromatography was performed on Merck silica gel 60 (particle size 0.040 - 0.063 nm, 230 - 400 mesh ASTM) according to the procedure of Still.⁶³ Uv-visible spectra were recorded on a Cary-4000 Varian spectrophotometer, using 40 either 0.1 or 1 cm quartz cuvettes. Infra-red spectra were recorded in a KBr disk on a Perkin Elmer-Spectrum BX FTIR system. Absorptions are quoted in wavenumbers (cm-1). ¹H
- and ¹³C NMR spectra were recorded at 200 MHz 1H (50.0 MHz ¹³C) on a Varian Gemini spectrometer. Spin resonances ⁴⁵ are reported as chemical shifts (d) in parts per million (ppm) and referenced to the residual peak as an internal standard of the solvent employed, as follow: CDCl₃ 7.27 ppm (¹H NMR), 77 ppm (¹³C NMR, central band), DMSOd6 2.50 ppm (1H NMR, central band), 39.5 ppm (13C NMR, central band).
- ⁵⁰ Spin multiplicity is showed by s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, br=broad. Coupling constants *J* are reported in Hertz. Mass spectra were recorded on a ThermoScientific LCQ-Fleet mass spectrometer under

electrospray ionisation (ESI, +c or -c technique). High ⁵⁵ Resolution Mass Spectra (HRMS) were recorded on aLTPOrbitrap mass spectrometer from Thermo Electron Corporation under ESI (+c) technique. Mass spectrometric analysis is quoted in the m/z form. Elemental analyses were recorded on a Perkin Elmer 240 C Elemental Analyzer. The ⁶⁰ derivatives S_{1a} was prepared following our previous procedure [49].

4.2 The chemosensor 7 concentration determination

The initial concentration of the fluorophore 7 C_0 and its concentration C_1 after the copolymerisation (after separation ⁶⁵ from the copolymerisation solution) were determined by using HPLC (C18 column, reversed-phase). The quantitative determination of the fluorophore was carried out by UV detector settled at 494 nm. The concentration of the fluorophore 7 in the obtained copolymers is $C_0 - C_1$.

70 4.3 Intermediates and monomers

4.3.1 Synthesis of 7-nitro-2H-chromen-2-one (3)

2-hydroxy-4-nitrobenzaldehyde **1** (1.00 g, 5.95 mmol), diethylmalonate (2) (0.96 g, 5.95 mmol) and Na₂CaP₂O₇ catalyst (0.2 g) were combined in 10 mL of eco-compatible ⁷⁵ EtOH/water: 95/5 and stirred at room temperature for 20 min. Then, the catalyst was removed by filtration and washed with ethyl acetate. After concentration of the filtrate, the residue was purified by re-crystallization using EtOH leading to 7nitro-2H-chromen-2-one **3** (1.07 g, 94%) as yield. ¹H NMR ⁸⁰ (200 MHz, CDCl₃) δ = 8.16-8.10 (m, 3H), 7.93 (d, 1H), 6.29 (d, 1H) ppm. ¹³C NMR (50 MHz, CDCl₃) δ = 161.3, 154.7, 147.4, 143.5, 129.4, 126.3, 120.1, 113.0, 112.3 ppm. MS (ESI): m/z = 192.21 [M + 1] +. C₉H₃NO₄ (191.02): C, 56.55; H, 2.64; N, 7.33 found, C, 56.63; H, 2.77; N, 7.42.

85 4.3.2 Synthesis of 7-nitro-2-oxo-2H-chromene-3carbaldehyde (4)

Fresh distilled DMF (2 mL) was added dropwise to POCl₃ (2 mL) at 50 °C with N₂ atmosphere and stirred for 30 minutes to yield a red solution. This solution was combined with a ⁹⁰ portion of 3 (1.00 g, 5.24 mmol, dissolved in 10 mL DMF) to yield a scarlet suspension. The mixture was stirred at 60 °C overnight and then poured into 70 mL of ice water. NaOH solution 2M was added to adjust the pH of the mixture to yield large amount of precipitate. The crude product was ⁹⁵ filtered, thoroughly washed with water, dried and recrystallized in absolute ethanol to give 3 (0.80 g, 69%) as yield. ¹H NMR (200 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.38 (s, 1H), 8.17-8.11 (m, 3H) ppm. ¹³C NMR (50 MHz, CDCl₃) δ = 187.5, 159.5, 154.6, 147.5, 147.1, 134.7, 129.3, 124.4, 120.4, ¹⁰⁰ 112.8 ppm. MS (ESI): m/z = 220.17 [M + 1] +. C₁₀H₅NO₅

 $_{20}$ 112.8 ppm. MS (ESI): m/z = 220.17 [M + 1] +. C₁₀H₅NO₅ (219.02): C, 54.81; H, 2.30; N, 6.39found, C, 54.88; H, 2.39; N, 6.46.

4.3.3 Synthesis of 2-((7-nitro-2-oxo-2H-chromen-3-yl) methylene) malononitrile (5)

¹⁰⁵ 7-nitro-2-oxo-2H-chromene-3-carbaldehyde 4 (1.00 g, 4.54 mmol), Malononitrile (0.73 g, 4.54 mmol) and Na₂CaP₂O₇as catalyst (0.2 g) were combined in 15 mL of eco-compatible EtOH/water: 95/5 and stirred at room temperature for 15 min. Then, the catalyst was removed by filtration and washed with

ethyl acetate. After concentration of the filtrate, the residue was purified by re-crystallization using EtOH leading to **5** (1.12 g, 95%) as yield. ¹H NMR (200 MHz, CDCl₃) δ = 8.16-8.11 (m, 3H), 7.77 (s, 1H), 7.53 (s, 1H) ppm. ¹³C NMR (50 ⁵ MHz, CDCl3) δ = 165.5, 161.7, 154.2, 147.6, 138.6, 129.3, 124.3, 120.2, 119.6, 116.4, 112.7, 105.5 ppm. MS (ESI): m/z = 268.35 [M + 1] +. C₁₃H₅N₃O₄ (267.03): C, 58.44; H, 1.89; N, 15.73 found, C, 58.52; H, 1.94; N, 15.80.

4.3.4 Synthesis of 2- ((7 - amino - 2 - oxo - 2H - 10 chromen - 3 - yl) methylene) malononitrile (6)

To a solution of 5 (1. 00g, 3.74 mol) in methanol (10 ml), SnCl₂ (2 mol)] was added and the resulting mixture was stirred under reflux. After the completion of the reaction (monitored by TLC), the reaction mixture was filtered through 15 celite. The filtrate was evaporated under vacuum and the residue was taken into chloroform, washed twice with 80% saturated brine solution and finally with water. The organic laver was dried over anhydrous sodium sulphate and evaporation of the organic layer was followed by purification 20 either by column chromatography (AcOEt/PE: 10/3, Rf=0.47) to yield 6 in 84/ as yield. ¹H NMR (200 MHz, CDCl₃) δ = 7.75 (s, 1H), 7.54 (s, 1H), 7.32 (d, 1H), 6.59 (d, 1H), 6.31 (s, 1H), 6.22 (s, 2H) ppm. ¹³C NMR (50 MHz, CDCl₃) δ = 165.4, 161.5, 156.3, 152.3, 138.7, 129.3, 119.5, 116.6, 110.5, 108.4, $_{25}$ 105.4, 100.9 ppm. MS (ESI): m/z = 238.45 [M + 1] +. C₁₃H₇N₃O₂ (237.03): C, 65.82; H, 2.97; N, 17.71 found, C, 65.92; H, 3.11; N, 17.85.

4.3.5 Synthesis of N-(3-(2,2-dicyanovinyl)-2-oxo-2Hchromen-7-yl) methacrylamide (7)

³⁰ To a solution of the dye 6 (1.00g, 4.21 mol) in 15 mL of THF, methacrylic chloride (0.44g, 4.21 mol) was added and the mixture was stirred at room temperature for 1 h. TLC showed the formation of one major spot at (Rf. 0.53, dichloromethane / methanol: 10:0.20). The reaction mixture was evaporated to 35 dryness under reduced pressure. The residue was dissolved in chloroform (20mL) and washed with solution of HCl 5% (20mL) and water (3 x 20mL). The organic solution was dried over Na₂SO₄ and filtered, the filtrate was concentrated under the reduce pressure and the residue was purified by Flash 40 chromatography (dichloromethane/methanol: 10:0.20) to afford 7 in 71%) as yield. ¹H NMR (200 MHz, CDCl₃) δ = 8.51 (s, 1H), 7.84 (s, 1H), 7.78 (s, 1H), 7.58-7.55 (m, 3H), 5.85-5.60 (2d, 2H, CH_2 =), 1.77 (s, 3H), ppm. ¹³C NMR (50 MHz, CDCl3) δ = 165.6, 163.4, 161.4, 156.1, 141.3, 138.8, 45 135.2, 128.5, 119.7, 118.5, 118.1, 116.8, 113.6, 111.7, 105.6, 40.2, 21.9 ppm. MS (ESI): m/z = 306.42 [M + 1] +. C₁₇H₁₁N₃O₃ (305.08): C, 66.88; H, 3.63; N, 13.76 found, C, 66.93; H, 3.69; N, 13.82.

4.3.6 6-O-(methyl methacrylate) -1,2:3,4-di-O-50 isopropylidene-α-D-galactopyranose (S_{1b})

To a solution of S_{1a} (1.00g, 3.84 mmol) in 15 mL of THF, methacrylic chloride (0.41g, 3.84 mmol) was added and the mixture was stirred at room temperature for 1h. TLC showed the formation of one major spot at (Rf. 0.49, AcOEt/PE: 3:2).

⁵⁵ The reaction mixture was evaporated to dryness under reduced pressure. The residue was dissolved in chloroform (20 mL) and washed with solution of HCl 5% (20mL) and water (3 x 20mL). The organic solution was dried over Na₂SO₄ and filtered, the filtrate was concentrated under the reduce pressure and the residue was purified by Flash chromatography (AcOEt/PE: 3:2) to afford **S1b** in 86%) as yield. ¹H NMR (200 MHz, CDCl₃): see table 2 for the glycidic part and δ = 6.14 and 5.90 (2d, 2H, CH₂=), 2.08 (s, 3H), 1.51, 1.45, 1.34, 1.33 [4s, each 3 H, 2 x C(CH₃)₂] ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 167.3, 136.8, 125.2, 109.1, 108.3 [2 x C(CH₃)₂], 95.7, 70.5, 70.1, 69.8, 65.4, 63.2, 25.4, 25.3, 24.4, 23.9 [2 x C(CH₃)₂], 18.7 ppm. MS (ESI): m/z = 329.36 [M + 1] ⁺. C₁₆H₂₄O₇ (328.15): C, 58.52; H, 7.37 found, C, 58.63; H, 7.44.

⁷⁰ **Table 2**: ¹H NMR spectroscopic data (δ , ppm; J, Hz) in CDCl₃ of the glycide portion for protected 6-O-D-galactoyl (**S1b**) derivatives.

1-H	2-H	3-H	4-H	5-H	6a-H	6b-H
5.54	4.34	4.63	4.30	4.01	4.18	4.21
J _{1,2}	J _{2,3}	$J_{3,4}$	$J_{4,5}$	J5.6a	J5,6b	J6a,6b
5.0	2.5	7.9	1.8	7.4	4.8	10.2

4.3.7 Synthesis of the polymers P1a-b

Five copolymerization experiments were performed using 7 and S_{1b} as co-monomers. Various monomer molar ratios $S_{1b}/7$ (a- 30/70, b- 40/60, c- 50/50, d- 70/30 and e- 80/20) were 80 considered. Appropriate amounts of monomers, initiator (AIBN, 1% compared to 7), and chloroform (5 ml) were introduced in a round-bottom flask fitted with a condenser. The mixture was placed under nitrogen atmosphere, and then stirred at 65 °C for 8 h. The polymers formed were 85 concentrated by evaporation and purified by precipitation with methanol (5 mL) and diethyl ether (100 mL). After drying in vacuum, the polymers P1a-e were obtained as a red solid. Yield: 65–90%. ¹H NMR (200 MHz, DMSOd₆) δ = 8.57 (s, -CH=C-), 8.11 (s, NH), 7.96 (s, Ar-H), 7.58-7.54 (m, Ar-H), 90 7.01-6.89 (m, Ar-H), 6.71 (s, Ar-H), 5.57 (m, gly-H), 4.61 (m, gly-H), 4.37-4.08 (m, gly-H), 1.79 (s, CH₂), 1.69 (s, CH₃), 1.52, 1.45, 1.32, 1.31 [4s, each 3 H, 2 x $C(CH_3)_2$] ppm. ¹³C NMR (50 MHz, DMSOd₆) δ = 176.5, 175.8 (CO), 165.6 (=CH), 161.6 (Ar C), 156.4 (Ar C), 139.2 (Ar =CH), 138.9 95 (Ar C), 128.2 (Ar C) 119.5 (=C-CH=), 109.2, 108.6 [2 x C(CH₃)₂], 118.4 (Ar C), 113.4 (Ar C), 111.7 (Ar C), 105.7 (N=C-C), 95.4, 70.6, 70.3, 69.5, 65.6, 63.0, 43.6 $(C-CH_3)$, 38.7, 37.5 (CH₂), 25.5, 25.2, 24.6, 23.6 [2 x C(CH₃)₂] 22.5, 22.1 (CH₃), ppm.

100 4.3.8 Synthesis of the polymers P2a-e

A solution of **P1a-b** (1.00 g) in 90% aqueous TFA (15 mL) was stirred at room temperature for 3 h. The violet solution was repeatedly co-evaporated with toluene (5 x 25 mL) at reduced pressure to give the final product **P2a-e** (0.78 g) as a ¹⁰⁵ red powder consisting of a mixture of α - and β -pyranosic anomers in a ratio of 50:50, calculated on the basis of the relative *C-1* signal intensities. ¹H NMR (200 MHz, D₂O) δ = 8.55 (s, -*CH*=C-), 8.13 (s, N*H*), 7.94 (s, Ar-*H*), 7.57-7.52 (m, Ar-*H*), 7.00-6.85 (m, Ar-*H*), 6.72 (s, Ar-*H*), 5.28-5.20 (d, gly-¹¹⁰ H), 4.78 (d, gly-H), 3.83-3.61 (m, gly-H), 3.47-3.31 (m, gly-H), 1.78 (s, *CH*₂), 1.67 (s, *CH*₃) ppm. ¹³C NMR (50 MHz, D₂O) see Table 3 for the glycidic part and δ = 176.4, 175.6 (CO), 165.5 (=CH), 161.3 (Ar C), 156.7 (Ar C), 139.4 (Ar =CH). 138.6 (Ar C), 128.5 (Ar C) 119.4 (=C-CH=), 118.2

105

(Ar C), 113.3 (Ar C), 111.9 (Ar C), 105.4 (N=C–C), 43.5 (C–CH₃), 38.6, 37.2 (CH₂), 22.9, 22.3 (CH₃) ppm.

Table 3. ¹³C NMR spectroscopic data (δ , ppm) for the glycide portions for deprotected 6-*O*-D-galactoyl derivatives.

	solvent	C-1	C-2	C-3	C-4	C-5	C-6
Р2-ар	D ₂ O	92.4	72.2	81.9	72.1	70.1	61.2
Р2-вр	D ₂ O	96.9	76.7	85.2	74.6	69.8	61.1

5. Notes and references

- ¹ University Lille Nord de France, F-5900 Lille, France
- ¹⁰ ² ENSAIT, GEMTEX, F-59056 Roubaix, France
- ³ Faculté des Sciences, Université Mohamed Premier, Laboratoire de Chimie Organique, Macromoléculaire et Produits Naturels-URAC 25, Bd Mohamed VI, BP: 717, 60 000. Oujda, Morocco. Tel: (+33) 0320258936
- 15 E-mail: jalal.isaad@ensait.fr
- † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/
- A.P De Silva, H Gunarane, T.A Gunnlaugsson, J.M Huxley, Chem. Rev 1997, 97, 1515
- 2. L Fabbrizzi, A Poggi, Chem. Soc. Rev 1995, 24, 197
- M Boiocchi, L.D Boca, D.E Gomez, L Fabbrizzi, M Licchelli, E Monzani, J. Am. Chem. Soc, 2004, 126, 16507
- 4. H Miyaji, J.L Sessler, Angew. Chem, 2001, 113, 158
- 25 5. J.D Brender, J.M Olive, M Felkner, L Suarez, W Marckwardt, K.A Hendricks, Epidemiology, 2004, 15, 330
 - 6. J.M Doyle, M.L Miller, B.R McCord, D.A McCollam, G.W Mushrush, Anal. Chem, 2000, **72**, 2302
- 7. R Koenig, Science, 2000, **287**, 1737
- ³⁰ 8. F Baud, Hum. Exp. Toxicol, 2007, **26**, 191
 - P.W Camerino, T.E King, J. Biol. Chem, 1966, 241, 970
 Guidelines for Drinking Water Quality; World Health Organization: Geneva, Switzerland, 1996.
- T Suzuki, A Hiolki, M Kurahashi, Anal. Chim.Acta, 2003, 476, 159
 A Safavi, N Maleki, H.R Shahbaazi, Anal. Chim.Acta, 2004, 503, 213
 - 13. D Shan, C Mousty, S Cosnier, Anal. Chem, 2004, 76, 178
 - V.K Rao, S.R Suresh, N.B.S.N Rao, P Rajaram, Bull. Electrochem, 1997, 13, 327
- 40 15. T.T Christison, J.S Rohrer, J. Chromatogr. A, 2007, 1155, 31
 - 16. Z Xu, X Chen, J Yoon, Chem. Soc. Rev, 2010; 39: 127.
 - T Agou, M Sekine, J Kobayashi, T Kawashima, J. Organomet. Chem, 2009, 694, 3833.
- 18. V Kumar, M.P Kaushika, A.K Srivastava, A Pratap, V Thiruvenkatam, T.N Row, Anal. Chim.Acta, 2010, **663**, 77
- 19. J Wang, C.S Ha. Tetrahedron, 2010, 66, 1846
- H.T Niu, D Su, X Jiang, W Yang, Z Yin, J He, J.P Cheng, Org. Biomol.Chem, 2008, 6, 3038
- 21. Y Sun, G Wang, W Guo, Tetrahedron, 2009, 65, 3480
- 50 22. K.M Kim. K Swamy, S Park, J Yoon, Tetrahedron Lett, 2008, 49, 4102
- 23. D.G Cho, J.H Kim. J.L Sessler, J. Am. Chem. Soc, 2008, 130, 12163
- 24. J.L Sessler, D.G Cho, Org. Lett , 2008, 10, 73
- 25. Y.K Yang, J Tae, Org. Lett, 2006, 8: 5721
- 55 26. G Qian, X Li, Z.Y Wang, J. Mater. Chem, 2009, 19, 522
- 27. J.O Huh, Y Do, M.H Lee, Organometallics, 2008, 27, 1022.
- M Jamkratoke, V Ruangpornvisuti, G Tumcharen, T Tuntulani, B Tomapatanaget, J. Org. Chem, 2009, 74, 3919.
- 29. L Peng, M Wang, G Zhang, D Zhang, D Zhu, Org. Lett, 2009, 11, 1943
- 30. Y Sun, Y Liu, W Guo, Sens. Actuators, B, 2009, 143, 171
- 31. J Jo, D Lee, J. Am. Chem. Soc, 2009, 131, 16283
- 32. H.T Niu, X Jiang, J He, J.P Cheng. Tetrahedron Lett, 2009, 50, 6668
- 33. K.S Lee, H.J Kim, G.H Kim, I Shin, J.I Hong, Org. Lett, 2008, 10, 49

- ⁶⁵ 34. J.H Lee, A.R Jeong, I.S Shin, H.J Kim, J.I Hong, Org. Lett, 2010, **12**, 764
 - R Guliyev, O Buyukcakir, F Sozmen, O.A Bozdemir, Tetrahedron Lett, 2009, 50, 5139
 - 36. L Shang, L Zhang, S Dong, Analyst, 2009, 134, 107
- 70 37. F.H Zelder, Inorg. Chem, 2008, 47, 1264
- 38. Z Xu, J Pan, D.R Spring, J Cui, J Yoon. Tetrahedron, 2010, 66, 1678
- Y Liu, K Ai, X Cheng, L Huo, L Lu, Adv. Funct. Mater, 2010, 20, 951
- 40. C Mannel-Croise, B Probst, F Zelder, Anal. Chem, 2009, 81, 9493
- 75 41 J Junyong, I Dongwhan. JACS 2009, **131**, 16283
 - 42 P Lihua, W Ming, Z Guanxin, Z Deqing, Z Daoben. OrgLett, 2009, 11, 1943
 - 43 InorgChem 2009, 48, 1272
 - 44 N Phambu, A Sunda Meya, E Beaudelaire Djantou, E Nzuzi Phambu,
 - P Kita-Phambu, L M. Anovitz. J. Agric. Food Chem. 2007, **55**, 10135 45 Y Young-Keun, T Jinsung. OrgLett 2006, **8**, 5721
 - 46. J Isaad, A Perwuelz. Tetrahedron Lett, 2010, 51, 5810
 - 47. J Isaad, A El achari. Anal chima acta, 2011, **694**, 120
 - 48. J Isaad, A El Achari. Tetrahedron, 2011, 67, 4196
- 85 49. J Isaad, A El Achari. Tetrahedron, 2011, 67, 5678
- 50. J Isaad, F salaun. Sens and Actualitors B, 2011, 157, 26
- 51. J Isaad, A El Achari. Tetrahedron, 2011, 67, 4939
- 52. J Isaad, A El Achari, F Malek. Dyes and Pigments, 2013, 97, 134
- 53. R Bianchini, G Catelani, J Isaad, F D'Andrea, M Rolla, T Nocentini, F Bonacorsi. Eur. Pat. Appl. 2008, EP 2 085 434 A1.
- R Bianchini, G Catelani, R Cecconi, F D'Andrea, L Guazzelli, J Isaad, M Rolla. Eur. J. Org. Chem, 2008, 3, 444
- R Bianchini, G Catelani, R Cecconi, F D'Andrea, E Frino, J Isaad, M Rolla, Carbohydr. Res 2008, 343, 2067
- 95 56. J Isaad, M Rolla, R Bianchini. Eur. J. Org. Chem, 2009, 17, 2748
 - 57. R Bianchini, G Catelani, E Frino, J Isaad, M Rolla. BioRes, 2007, 4, 630
- 58. J Isaad, A El Achari, F Malek. Dyes and Pigments, 2012, 92, 1212
- 59. J Isaad. Tetrahedron, 2013, 69, 2239
- 100 60. M Zhu, M Yuan, X Liu, J Xu, J Lv, C Huang, H Liu, Y Li, S Wang, D Zhu, Org. Lett, 2008, 10, 1481.
- 61. H.A Benesi, J.H Hildebrand, J. Am. Chem. Soc, 1949, 71, 2703
- 62 M Barra, C Bohne, J.C Scaiano, J. Am. Chem. Soc, 1990, 112, 8075
- 63. WC Still, M Kahn, A Mitra. J of Org Chem, 1978, 43, 2923

Published on 29 August 2013. Downloaded by University of Newcastle on 30/08/2013 10:30:52