ISSN 1070-4280, Russian Journal of Organic Chemistry, 2010, Vol. 46, No. 11, pp. 1743–1744. © Pleiades Publishing, Ltd., 2010. Original Russian Text © B.A. Shainyan, I.V. Sterkhova, 2010, published in Zhurnal Organicheskoi Khimii, 2010, Vol. 46, No. 11, pp. 1732–1733.

SHORT COMMUNICATIONS

2,5-Diphenyl-1,4-(trifluoromethylsulfonyl)piperazine from *N*-(2-bromo-2-phenylethyl)trifluoromethanesulfonamide

B. A. Shainyan and I. V. Sterkhova

Faworsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033 Russia e-mail: bagrat@irioch.irk.ru

Received March 30, 2010

DOI: 10.1134/S1070428010110229

Aiming at preparation of unsaturated derivatives of trifluoromethanesulfonamide containing a fragment $CF_3SO_2NHCH=CH-$ we synthesized by the bromination of *N*-(2-phenylethyl)trifluoromethanesulfonamide (I) N-(2-bromo-2-phenylethyl)trifluoromethanesulfonamide (II) and carried out the dehydrobromination of compound II with triethylamine. It turned out unexpectedly that the reaction product was 2,5-diphenyl-1,4-(trifluoromethylsulfonyl)piperazine (III). By the ¹H and ¹³C NMR data and the melting point compound III was identical to the substance that we had obtained by the styrene reaction with trifluoromethylsulfonylnitrene and whose structure we had established with the use of XRD analysis [1] (Scheme 1).

As showed the ¹H and ¹³C NMR data the expected N-(2-phenylethenyl)trifluoromethanesulfonamide CF₃SO₂NHCH=CHPh or its tautomer N-(2-phenyl-ethylidene)trifluoromethanesulfonamideC F₃SO₂N=

=CHCH₂Ph were lacking in the reaction mixture.

Evidently due to the high NH-acidity of compound **II** first the treatment with the triethylamine generated the amide anion **IV**, then the substitution occurs of bromide

Scheme 1.

$$CF_{3}SO_{2}F + H_{2}NCH_{2}CH_{2}Ph \longrightarrow CF_{3}SO_{2}NHCH_{2}CH_{2}Ph$$

$$I$$

$$Ph$$

$$Br_{2}, hv, CCl_{4} \rightarrow CF_{3}SO_{2}NHCH_{2}CHBrPh \xrightarrow{Et_{3}N} CF_{3}SO_{2}N \longrightarrow NSO_{2}CF_{3}$$

$$II$$

$$Ph$$

$$II$$

$$II$$

$$II$$

Scheme 2.

 $\begin{array}{cccc} CF_{3}SO_{2}NHCH_{2}CHBrPh + Et_{3}N & \longrightarrow & Et_{3}^{+}NH + CF_{3}S\overline{O}_{2}NCH_{2}CHBrPh \\ II & IV \\ & \downarrow & CF_{3}SO_{2}NHCH_{2}CHBrPh \\ III & & CF_{3}SO_{2}NHCH_{2}CHBrPh \\ III & & CF_{3}SO_{2}N & CH_{2}CHBrPh \\ III & & IV \\ CHCH_{2}NSO_{2}CF_{3} & CH_{2}CHBrPh \\ III & & IV \\ CHCH_{2}NSO_{2}CF_{3} & CH_{2}CHPAP \\ III & & III \\ \end{array}$

in the second molecule **II** with electrophilic assistance of the triethylammonium cation.

N-(2-Phenylethyl)trifluoromethanesulfonamide (I). A mixture of 1.0 ml (0.12 mol) trifluoromethanesulfonyl fluoride CF₃SO₂F frozen with liquid nitrogen and 50 ml (0.47 mol) of 2-phenylethylamine was placed into a pressure reactor and heated for 12 h at 70-80°C, then cooled with liquid nitrogen, the reactor was opened, the formed thick syrupy mass was diluted with water, acidified with HCl (overall volume 400 ml), strirred for 2 h, and extracted with ethyl ether. The extract was dried with MgSO₄, the solvent was distilled off, the residue was distilled in a vacuum. Yield 16.5 g (53%), bp 106°C (2 mm Hg). IR spectrum, v, cm⁻¹: 3320 (NH), 1604, 1455, 1373, 1232, 1198, 1147, 1071, 701, 610. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.83 m (2H, CH₂Ph), 3.38 m (2H, CH₂N), 7.25 m (5H, Ph), 9.44 m (1H, NH). ¹³C NMR spectrum (CDCl₃), δ, ppm: 35.95 (CPh), 44.83 (NC), 119.85 q (CF₃, *J*_{CF} 322.4 Hz), 126.50 (C^{*p*}), 128.42 (C^{*m*}), 128.83 (C^o), 137.91 (C¹). ¹⁹F NMR spectrum (CDCl₃), δ, ppm: -77.76. Found, %: C 42.19; H 3.98; F 23.33; N 6.62; S 12.78. C₉H₁₀F₃NO₂S. Calculated, %: C 42.69; H 3.98; F 22.51; N 5.53; S 12.66.

N-(2-Bromo-2-phenylethyl)trifluoromethanesulfonamide (II). To a solution of 3.8 g (15 mmol) of compound I in 25 ml of CCl₄ was added dropwise 1 ml (3.1 g, 19 mmol) of Br₂ over 3 h while stirring and irradiation with an UV lamp. The residue after evaporation of the solvent was dried in a deep vacuum. Yield 5 g (98%). IR spectrum, v, cm⁻¹: 3313 (NH), 1601, 1429, 1377, 1234, 1199, 1145, 1073, 699, 610. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.87 m (2H, CH₂N), 5.04 d.d (1H, CHBr, *J* 8.1, 6.6 Hz), 5.39 yIII.t (1H, NH, *J* 6.0 Hz), 7.41 m (5H, Ph). ¹³C NMR spectrum (CDCl₃), δ , ppm: 50.98 (CHBr), 52.38 (CH₂), 119.57 q (CF₃, *J*_{CF} 32.8 Hz), 127.69 (C^m), 129.34 (C^o), 129.66 (C^p), 140.52 (C¹). Found, %: C 31.98; H 2.72; Br 24.61; F 17.21; N 4.23; S 9.23. C₉H₉BrF₃NO₂S. Calculated, %: C 32.55; H 2.73; Br 24.06; F 17.16; N 4.22; S 9.65.

2,5-Diphenyl-1,4-(trifluoromethylsulfonyl)piperazine (III). A solution of 5 g (15 mmol) of compound II and 15 ml (0.1 mol) of triethylamine in 50 ml of CCl₄ was heated under reflux for 2 h, the solvent and excess triethylamine was distilled off, the residue was dried and subjected to column chromatography on silica gel, eluents hexane, hexane-ethyl ether, 1 : 2, ethyl ether, methanol. Yield 0.65 g (9%). Colorless crystals, mp 128°C. IR spectrum, v, cm⁻¹: 1403, 1229, 1202, 1122, 1028, 956, 876, 759, 742, 699, 611, 498. ¹H NMR spectrum (CD₃CN), δ, ppm: 4.01 d.d [1H, 3(6)-H_{trans}, J15.2, 11.4 Hz], 4.40 d.d [1H, 3(6)-H_{cis}, J15.6, 6.7 Hz], 5.32 d.d [1H, 2(5)-H, J 10.8, 6.8 Hz], 7.46 m (5H, Ph). ¹³C NMR spectrum (CD₃CN), δ, ppm: 48.63 (CH₂), 61.66 (CH), 120.47 q (CF₃, J_{CF} 321.0 Hz), 127.50 (C^o), 129.99 (C^m), 130.17 (C^p), 137.74 (C¹). ¹⁹F NMR spectrum (CD₃CN), δ, ppm: -77.34.

IR spectra were recorded on a spectrophotometer Bruker Vertex 70 from thin film or pellets with KBr. NMR spectra were registered on a spectrometer Bruker DPX 400 at operating frequencies 400 (¹H), 100 (¹³C), 386 MHz (¹⁹F), chemical shifts are reported with respect to TMS (¹H, ¹³C) and CCl₃F (¹⁹F).

ACKNOWLEDGMENTS

The study was carried out under a financial support from the Russian Foundation for Basic Research (grant no.10-03-00110).

REFERENCES

Shainyan B.A., Moskalik M.Yu., Starke I., and Schilde U., *Tet-rahedron*, 2010, vol. 66, p. 8383.