
Substituent Effects on Temperature Dependence of Kinetic Isotope
Effects in Hydride-Transfer Reactions of NADH/NAD+ Analogues in
Solution: Reaction Center Rigidity Is the Key
Peter Maness,† Shailendra Koirala,† Pratichhya Adhikari, Nasim Salimraftar, and Yun Lu*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c02049 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Substituent effects on the temperature dependence of
primary kinetic isotope effects, characterized by ΔEa = EaD − EaH, for two
series of the title reactions in acetonitrile were studied. The change from
ΔEa ≈ 0 for a highly rigid system to ΔEa > 0 for systems with reduced
rigidities was observed. The rigidities were controlled by the electronic
and steric effects. This work replicates the observations in enzymes and
opens a new research direction that studies structure−ΔEa relationship.

Kinetic isotope effect (KIE) is an important measure to
study H-transfer reaction mechanisms. Within the

semiclassical transition state (TS) theory, the maximum
primary (1°) deuterium (D) KIE is about 9 and the isotopic
activation energy difference ΔEa (= EaD − EaH) is between 1.0
and 1.2 kcal/mol.1,2 When KIE and ΔEa are outside of their
limits, the Bell model with a H-tunneling correction to the said
theory is often used to rationalize them.3 One extreme case of
the Bell model is when ΔEa is close to zero. That corresponds
to a ground state tunneling where EaH = EaD ≈ 0 and KIE is
huge, which should happen at only extremely low temperature
conditions.1,2

In the past two decades, however, it has been frequently
observed that KIEs (both small and large) are temperature
independent (ΔEa ≈ 0) in the wild-type enzymes (wt-
enzymes) around physiological temperature conditions, but
they become temperature dependent to various extents with
enzyme variants (ΔEa > 0 or even above the semiclassical
limit).4−15 A few contemporary H-tunneling theories have
been established or used to explain the unusually small ΔEa
and its change relating to enzyme structures and further to
attempt to provide information for the possible role of protein
thermal motions in catalysis.8,11,16−22 One largely used is the
vibration-assisted activated H-tunneling (VA-AHT) model,
which could include the Marcus-like model and TS theory
extension, both of which involve a full H-tunneling
process.11,17,23 These phenomenological models presume that
heavy atom motions bring H-donor and -acceptor to a
tunneling-ready-state (TRS) where the activated reactant and
product moieties have matching energy, allowing H-tunneling
to occur over a range of donor−acceptor distances (DADs)
sampled by the constructive heavy atom vibrations. Within that
model, KIE is a function of DADTRS, and its temperature
dependence is related to the density of DADTRS distribu-
tions.21,24 Therefore, the ΔEa ≈ 0 with wt-enzymes has been

explained in terms of the well-organized reaction coordinate in
which DADTRS is short and the range of DADTRS’s sampled is
narrow. This could reason as the wt-enzyme has a densely
packed active site whose heavy atom motions press the two
reactants close to each other prohibiting them from being
separated. In enzyme variants, however, the active site
structure is impaired, the DADTRS becomes longer, and its
fluctuation range becomes broader, leading to ΔEa > 0.
The link of DADTRS distributions to ΔEa’s has prompted us

to start a new research direction to study the structure−ΔEa
relationship for the H-transfer reactions in solution.25 Under-
standing of this relationship could not only provide insight into
the above explanations for the observed trends of ΔEa’s in
enzymes but also help find the appropriate models for H-
transfer chemistry. Our hypothesis is, the more rigid the
reaction centers, the more densely distributed the DADTRS’s,
the weaker will be the temperature dependency of the KIEs
(i.e., smaller ΔEa). To investigate the hypothesis, the effect of
system rigidity on ΔEa’s needs to be studied. In our research,
we use the electronic and steric effects to control the rigidity of
the reaction centers (Scheme 1). That is, a TRS with rigid
reaction centers could be a tightly associated reactive complex
with strong electronic interactions/attractions between H-
donor and -acceptor, or with steric factors that minimize the
flexibility of the reaction centers.25

As a preliminary work, we have recently reported the
structural effects on ΔEa’s for hydride-transfer reactions of four
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very different NADH analogues with the same hydride
acceptor (NAD+ analogue) in acetonitrile.25 One reason to
choose these reactions to study is that they are enzyme model
reactions so that results can be more directly compared with
those from enzymes to provide insight into the possible role of
enzyme thermal motions or DADTRS sampling in catalysis. The
other reason is that these reactions are known to take place in
charge-transfer (CT) complexes so that use of the electronic
effects between reactants to control the rigidity could be
managed.25−27 The lowest and highest ΔEa values were 0.37
and 1.52 kcal/mol, respectively, which correspond with the
reactions of 1,3-dimethyl-2-phenylbenzimidazoline
(DMPBIH) and 1-benzyl-1,4-dihydronicotinamide (BNAH)
with 10-methylacridinium cation (MA+BF4

−). We found that a
more rigid system, which corresponds to more narrowly
distributed DADTRS’s, gave rise to a smaller ΔEa, supporting
the above explanations for enzymes and thus our hypothesis.25

In that paper, we also raised a question as to whether ΔEa ≈ 0
is unique to only wt-enzymes that the nature gives or a solution
system can also be designed to make ΔEa ≈ 0 happen. There,
the four systems have large variations in donor structures and
their electronic and steric effects are not clearly separated. To
isolate the electronic effect for study, in this paper, we
systematically studied the substituent effect on the ΔEa’s for
the two series of hydride-transfer reactions from DMPBIH and
10-methylacridine (MAH) to the 9-para-substituted (G)
phenylxanthylium ions (GPhXn+BF4

−, G = CN, CF3, Br, H,
CH3O, N(CH3)2), respectively, in the same solvent (Scheme
2). We expect that the GPhXn+ with an electron-withdrawing
group (EWG), as compared to electron-donating group
(EDG), will form a tighter CT/TRS complex and thus give
a smaller ΔEa. In the meantime, since DMPBIH has higher
hydride releasing ability (by 15.4 kcal/mol28,29) and quite
larger steric requirement than MAH at the reaction center, the
reactions of the former donor are expected to be much more

rigid and give smaller ΔEa values. It should be noted that one
initial reason to choose GPhXn+ as hydride acceptors is that
they are severely sterically hindered and are strong electron
acceptors for CT complexation.29 Since we have reported a
small ΔEa of 0.37 kcal/mol for the reaction of DMPBIH with
MA+ of lower steric requirement and less electron affinity than
PhXn+,25,29 the reaction of DMPBIH with GPhXn+ would be
expected to form a more rigid TRS and produce a smaller and
possibly close-to-zero ΔEa, especially when the substituent is a
strong EWG.
Figure 1 shows the Arrhenius plots of the reactions of

DMPBIH with selected GPhXn+. The KIEs at 25 °C, EaH

values, and ΔEa values for the two series of reactions are listed
in Table 1. Several features are immediately recognized: (1)

EWG facilitates the reaction; (2) the reactions of DMPBIH are
faster than those of MAH; (3) both KIE and ΔEa increase
from reactions of GPhXn+ with EWGs to EDGs; (4) the
reactions of DMPBIH have smaller ΔEa than those of MAH;
and (5) ΔEa ≈ 0 was found from the reactions of DMPBIH
with GPhXn+ of strong EWGs. It is important to note here that
the small KIEs with ΔEa ≈ 0 but Ea ≠ 0 determined at around

Scheme 1. Hypothesis Following the VA-AHT Model25a

aTwo factors are used to control the rigidities of the reaction centers,
electronic and steric effects. The thicker spring represents a stronger
donor−acceptor electronic interaction.

Scheme 2. Hydride-Transfer Reactions Studied in This
Work (G = CN, CF3, Br, H, CH3O, N(CH3)2)

Figure 1. Arrhenius plots of the KIEs for the reactions of DMPBIH
with selected GPhXn+ (from 5 to 45 °C). Lines represent nonlinear
regression to an exponential equation.

Table 1. Substituent Effects on Kinetics of Hydride-Transfer
Reactions in Acetonitrilea

substituent (G) KIE25 °C EaH (kcal/mol) ΔEa (kcal/mol)

DMPBIH/GPhXn+

CN 2.62 (0.03) 2.83 (0.10) 0.04 (0.18)
CF3 2.56 (0.03) 3.33 (0.05) 0.03 (0.07)
Br 2.55 (0.03) 3.70 (0.05) 0.07 (0.07)
H 2.68 (0.04) 4.13 (0.05) 0.27 (0.06)
CH3O 2.74 (0.03) 4.58 (0.05) 0.55 (0.06)
(CH3)2N 2.89 (0.06) 7.52 (0.04) 0.50 (0.08)

MAH/GPhXn+

CN 3.85 (0.03) 7.48 (0.05) 0.85 (0.06)
CF3 4.06 (0.04) 7.59 (0.06) 0.89 (0.07)
Br 4.04 (0.03) 7.91 (0.06) 0.89 (0.07)
H 4.08 (0.03) 8.11 (0.04) 0.88 (0.05)
CH3O 4.18 (0.04) 8.79 (0.08) 0.92 (0.16)
(CH3)2N 4.45 (0.05) 11.12 (0.08) 0.96 (0.18)

aNumbers in parentheses are standard deviations.
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room temperature, like observed in wt-enzymes, strongly
suggest H-tunneling mechanism but cannot be explained by
the Bell model.
We have reported the CT absorptions of many similar

systems that include DMPBIH and MAH as hydride donors as
well.25,27 Although it appears reasonable to expect that EWGs
in GPhXn+ would favor a tighter CT-complex in the TRS than
EDGs (due to a more favorable ΔG°), we have determined the
substituent effect in GPhXn+ (G = CF3, H, (CH3)2N) on the γ-
2° KIEs at the N,N-2CH3/2CD3 position of DMPBIH for
their reactions to attempt to verify the expectation. The 2° KIE
originates from a decrease in negative hyperconjugation
between the lone-pair electrons on N and σ* orbital of the
attached C-H/D bond due to the loss of electron density on N
in the reaction.30,31 This process with electron density loss
tightens the C-H/D bonds, leading to an inverse 2° KIE. It is
expected that an EWG would make a tighter CT complex so
that the DMPBIH moiety at the TRS ends up with more
electron density loss, equivalent to more positive charge gain,
producing a more inverse 2° KIE. On the other hand, we are
aware that the positive charge accumulation on DMPBIH is
not solely from the CT complexation, the hydride-transfer
from its 2-C-H bond cleavage also contributes to the
accumulation of the positive charge at DMPBIH. Under the
latter circumstances, however, according to the Hammond’s
postulate, GPhXn+ with an EWG would form an early TRS so
that less positive charge would be developed on DMPBIH
producing less inverse 2° KIE. Our results in Table 2 show that

the 2° KIEs are indeed inverse and the value increases from
GPhXn+ with CF3 (0.89) to H (0.91) to (CH3)2N (0.94).
They strongly suggest that the EWGPhXn+ forms a tighter CT
complexation in the TRS structure (Scheme 3). By comparison

of the 2° KIEs with the equilibrium isotope effect (2° EIE =
0.81) for the conversion from DMPBIH to DMPBI+ that
reflects a gain of a full positive charge on N, the partial positive
charge carried by the DMPBIH moiety at the TRS is calculated
(ζ = (1−2° KIE)/(1−2° EIE)) and listed in Table 2 as well.31

It decreases from the reactions of GPhXn+ with CF3 (0.58+) to
H (0.47+) to (CH3)2N (0.32+).

The above analyses suggest that the reactions of GPhXn+ of
EWGs with both DMPBIH and MAH, as compared to EDGs,
would have more narrowly distributed DADTRS’s. Correlations
of the trend of the DADTRS distributions with the observed
smaller ΔEa’s in the reactions with EWGs and larger ΔEa’s with
EDGs in both systems (Table 1) clearly indicate that a smaller
ΔEa results from a greater rigidity of the donor−acceptor
centers. Moreover, the reactions of DMPBIH would produce
the more rigid TRS’s than the reactions of MAH due to the
greater steric requirement and higher electron/hydride
donating ability of the DMPBIH donor (see introduction).
The observed smaller ΔEa’s in the reactions of DMPBIH (0−
0.55 kcal/mol) than in the reactions of MAH (0.85−0.96 kcal/
mol) also suggest that a more rigid system gives a smaller ΔEa.
All of these correlations between the reaction center rigidity
and ΔEa strongly support our hypothesis. Furthermore, we
note that the extent of change in ΔEa is much greater in the
reactions of DMPBIH than in the reactions of MAH over the
same range of substituents (Table 1). This suggests that ΔEa is
more sensitive to the electronic effect in a more rigid system.
Importantly, as expected, the ΔEa ≈ 0 was found in the
reactions of DMPBIH with GPhXn+ of a strong EWG (CN or
CF3). While the ΔEa ≈ 0 is rarely seen in solution reactions,
perhaps the more important discovery is that the result is
associated with the most rigid TRS among the reactions.
To summarize, substituent/electronic effects on ΔEa’s for

the two series of NADH/NAD+ model reactions were studied
to investigate the hypothesis that a more rigid system gives a
smaller ΔEa. Reactions with a tighter CT complexation
between H-donor and acceptor and more crowded reaction
centers give a smaller ΔEa. ΔEa ≈ 0 was found in the most
rigid system. Therefore, ΔEa ≈ 0 is not unique to the wt-
enzyme catalyzed H-transfer reactions, and modification of the
system rigidity could make ΔEa ≈ 0 for the reactions in
solution. All of the results strongly support our hypothesis. The
change from ΔEa ≈ 0 for a highly rigid system to ΔEa > 0 for
systems with reduced rigidities in solution well replicates the
trends of ΔEa’s observed in wt-enzymes versus variants. This
supports the explanations in terms of the DADTRS sampling
difference in relation to the densely packed active site in wt-
enzymes and impaired loosely packed active site in their
variants within the VA-AHT model. One other prediction from
the latter model is that a longer DADTRS leads to a larger
KIE.32,33 This has indeed been observed in this work. In both
series of reactions, both DADTRS and KIE increase from EWGs
to EDGs (Table 1). Studies of the other predictions from the
model is continuing in this lab.34−37 Note that other
contemporary H-transfer/tunneling theories have also been
used to simulate the ΔEa’s observed in enzymes,20,32,38−40 but
none of them could predict a straightforward structure−ΔEa
relationship beforehand. We have not excluded the possibility
that our results could be explained by these latter theories, but
they can certainly add to the current debates on the
appropriateness of models to describe H-transfer reactions in
enzymes and solution.
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Table 2. Γ-2CH3/2CD3 2° KIEs on DMPBIH and Charges
at the DMPBIH Moiety of the TRSa

acceptor
γ-2CH3/2CD3 2° KIEs

on DMPBIHb
charge (ζ) carried at
DMPBIH at the TRS

CF3PhXn
+ 0.89 (0.01) 0.58+ (0.05)

PhXn+ 0.91 (0.01) 0.47+ (0.05)
(CH3)2NPhXn

+ 0.94 (0.02) 0.32+ (0.11)
aAt 25 °C. bNumbers in parentheses are standard deviations.

Scheme 3. CT Complexation at the TRS of Reactions of
DMPBIH with GPhXn+a

aOnly the reactive rings of the reactants are drawn. The oval-shaped
H represents a H-wave packet.
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