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The irradiation of a pyridine solution of vinylsilanes or vinyl sulfides in the presence of iron(III) chloride
under oxygen produced a-chloro ketones, with a carbonyl group at the olefinic carbon originally bearing a silicon

or sulfur atom.

We have previously reported that the iron(III) chlo-
ride-catalyzed photooxidation of mono- or disubstituted
olefin gives an «-chloro ketone (Type A), while that
of tri- or tetrasubstituted olefin gives a gem-dichloro
ketone (Type B) or an a,w-dichloro ketone (Type C),
depending upon the substitution pattern of the start-
ing olefins.)) The selectivity of the reaction type is
generally excellent, and no products from the alter-
native reaction type are observed. In the Type-A re-
action of unsymmetrical olefin, however, the regioselec-
tivity is poor, and a 1:1 mixture of 2-chloro-3-oc-
tanone (2) and 3-chloro-2-octanone (3) has been
obtained from 2-octene (1) in a total yield of 589,.
In the present study, we investigated the photooxida-
tion of vinylsilane and vinyl sulfide in order to find a
way to control the regioselectivity.

Results and Discussion

Pyridine solutions of vinylsilanes or vinyl sulfides
4—12 containing an equivalent amount of iron(III)
chloride were irradiated with Pyrex-filtered light for
I h while oxygen was being bubbled through. The
subsequent evaporation of the solvent, followed by ex-
traction, gave a-chloro ketones or aldehyde 13—21 as
almost exclusive products. The results are summariz-
ed in the table. The structures of the products were
determined by comparison with authentic samples pre-
pared by known methods. It is evident from the table
that the carbonyl group is introduced regioselectively
at the olefinic carbon originally bearing a silicon or
sulfur atom in every case except the reaction from 4,
which has the trimethylsilyl group at the terminal po-
sition. The steric effect caused by the presence of
the alkyl group on the ring system is not sufficient
to induce the regioselectivity, as exemplified by the
reaction of 3-methylcyclohexene. The product was as-
sumed from NMR analysis to be a mixture of cis-
and frans-2-chloro-3-methylcyclohexanone (18) and 2-
chloro-6-methylcyclohexanone (21). The assumption
was confirmed by the dehydrochlorination of the mix-
ture with lithium chloride in N,N-dimethylformamide
to afford a 1:1 mixture of 2- and 3-methyl-2-cyclo-
hexenone. It was confirmed that 21 produced 2-meth-
yl-2-cyclohexenone under dehydrochlorination condi-
tions, presumably because of the isomerization of the
primary product, 6-methyl-2-cyclohexenone.

The usefulness of these reactions as a synthetic meth-
od is demonstrated by the regioselective preparation
of alkyl-substituted 2-chlorocyclohexanones from appro-
priate vinylsilanes or vinyl sulfides. The requisite vinyl

compounds have been conveniently prepared from the
appropriate ketones either by an acid-actalyzed reac-
tion with thiols? or by a modified Shapiro reaction.?
These alkyl-substituted 2-chlorocyclohexanones have
also been prepared by other methods,%% but the regio-
selectivity is not as high as that observed in the present
study. The diastereoselectivity concerning the alkyl
group and chlorine atom was not attained because
the a-chloro ketones underwent a cis-frans isomeriza-
tion under the present reaction conditions.

As for the reaction mechanism of the iron(III) chlo-
ride-catalyzed photooxidation of olefin, we have pro-
posed a reaction scheme involving a photoinduced inter-
ligand electron transfer (long-range electron transfer),
followed by a chlorine and oxygen attack on the double
bond.'®) We assumed that the same type of reaction
proceeds in the present case and that the chlorine
atom produced by the long-range electron transfer at-
tacks the double bond in such a way as to produce
a radical stabilized by a silicon or sulfur atom. The
succeeding attack by the oxygen-radical anion, follow-
ed by protonation, produces a hydroperoxide 23, which
then affords the observed product. The isolated by-
product was either S-methyl methanethiosulfonate, S-
ethyl ethanethiosulfonate, or diphenyl disulfide, de-
pending on the substituent (methyl, ethyl, or phenyl
respectively) on the sulfur atom of the starting vinyl
sulfide. The poor regioselectivity in the case of vinyl-
silane 4 suggests that the stabilizing effect of the tri-
methylsilyl group for the «-radical is comparable to
that of the alkyl group. However, it seems that the
sulfur atom stabilizes the «-radical more effectively
than the methyl group, as is indicated by the forma-
tion of a single product 17 from vinyl sulfide 8.

Experimental

Starting Materials. 1-Trimethylsilyl-(Z)-1-octene (4)
was prepared from l-trimethylsilyl-1-octyne by hydrobora-
tion, followed by protonolysis.®) Vinylsilanes 5, 6, 7a, and
12a were prepared from the corresponding tosylhydrazones
and chlorotrimethylsilane according to the reported meth-
od.” In a similar way, vinyl sulfide 12b was prepared
from 2-methylcyclohexanone tosylhydrazone and dimethyl
disulfide in a 519, yield. 12b: IR, 3040, 2920, 1620, 1435,
1335, 995, and 790 cm~'; NMR, ¢ 1.22 (3H, d, /=8 Hz),
1.5—2.0 (4H, m), 2.31 (3H, s), 2.0—2.6 (3H, m), and 5.60
(1H, t, /=4 Hz). Vinyl sulfides 7b, 7¢c, 8, and 10b were
prepared from the corresponding cyclohexanones and thiols,
using p-toluenesulfonic acid or titanium(IV) chloride-triethyl-
amine as a catalyst, according to the previously reported
method.? Vinyl sulfides 9 and 11 were prepared from the
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tosylhydrazone of 2-methylcyclohexanone or of 4-methyl-
cyclohexanone respectively by utilizing a modified Shapiro
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PRODUCTS AND YIELDS OF THE PHOTOOXIDATION
OF VINYL SILANES OR VINYL SULFIDES

TaBLE 1.

Starting material Product Yield/9%,
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a: X=Si(CH,), 72
7 R=H, b: X=SCH; 16 58
c: X=SC,H, 53
8 R=2-CH,, X=SCH, 17 50
_a_ _ cis 32
9 R=3-CH,, X—SCH, 18 { os 32
a: X=Si(CH,), {cis 28
10 R—4-CH,, 19 i trans 36
cis 3
b: X=SC,H; {trans 31
5. _ cis 32
11 R=5-CH, X=SCH, 20 {tmm z
a: X=Si(CH,), {cz’s 38
12 R—6-CH,, 21 trans 38
cis 22
b: X=SCH, trans 22
CoH, X O0O0H
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22 23

X=SR or SiR,
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reaction, according to the previously reported method.»

Photooxidation. The irradiation was carried out on a
solution of vinylsilane or vinyl sulfide (10 ml, 0.025 M)t
containing an equivalent molar amount of iron(III) chlo-
ride; it was done in Pyrex tubes for 30 min or 60 min while
oxygen gas was being bubbled through. A high-pressure
mercury lamp [Ushio UM 452 (450 W)] was used as the
light source. The irradiated solution was worked up by
either of the following two ways. Work-up I: The solvent
was removed in vacuo, and the reaction product was extracted
with carbon tetrachloride or dichloromethane from the res-
idue. The extract was passed through a short colunm of
Florisil, and the eluate was concentrated in vacuo. The
material thus obtained was analyzed directly by GLC or
NMR techniques. 1,1,2,2-Tetrachloroethane was used as an
internal reference for the NMR analysis. Work-up II: The
pyridine solution after the irradiation was neutralized with
4 M hydrochloric acid and shaken with chloroform or di-
chloromethane. The extract was dried over sodium sul-
fate, and the solvent was removed in vacuo. The residue
was analyzed as above.

In all cases except the reaction of 10, each product was
isolated in a pure form on preparative GLC or TLC; the
spectroscopic data and retention time on a GLC were com-
pared with those of authentic samples prepared by known
methods: 13,9 14,'» 15,9 16,'» 17,5 18,5 19, 20,52
and 21.5») The spectroscopic data of 13 and 15 are as fol-
lows: 13: IR, 2950, 2925, 2855, 2710, 1733, 1470, 1380,
and 785 cm~'; NMR 6 0.88 (3H, dist. t), 1.1—1.6 (8H,
m), 1.7—2.0 (2H, m), 4.03 (1H, dt, /=6 and 2 Hz), and
9.48 (1H, d, J=2 Hz); 15: IR, 2960, 2875, 1715, 1460,
and 785 cm~'; NMR 6 0.95 (3H, t, J=8 Hz), 1.03 (3H,
t, J=8 Hz), 1.4—2.1 (4H, m), 2.62 (2H, t, J=7 Hz), and
3.93 (1H, t, J=7 Hz).

The spectroscopic and GLC analyses of 19 were carried
out and the results compared with those of an authentic
sample as a mixture of cis- and trans-isomers.?
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t 1 M=1 mol dm-3.






