

0957-4166(95)00353-3

An Efficient Asymmetric Functionalization to Highly Substituted Pyrrolidines

Hidemi Yoda,^{*} Hiroyasu Yamazaki, Miho Kawauchi, and Kunihiko Takabe^{*}

Department of Molecular Science, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

Abstract: A stereoselective route to enantiomerically and diastereomerically pure pentasubstituted pyrrolidines has been developed by using reductive deoxygenation of quaternary α -hydroxy N-Boc pyrrolidine derivatives prepared from alkylation of the functionalized homochiral lactams. Stereochemistry of the new stereogenic center generated has been comfirmed unambiguously to be **R** by the formation of C2-symmetrical compounds.

Structurally complex alkaloidal sugar mimics with a nitrogen in the ring have been isolated from plants and microorganisms and inhibit various glycosidases in a reversible and competitve manner.¹ Since such glycosidase inhibitors proved to have the potential to produce antiviral, insect antifeedant, antidiabetic, and anticancer effects, as well as immune modulatory properties, they have held considerable interest in the context of stereoselective heterocyclic synthesis. In particular, polysubstituted pyrrolidine alkaloids containing hydroxy functions such as preussin,² anisomycin,³ and codonopsinine⁴ have been the subject of extensive synthetic efforts which have culminated in numerous syntheses of racemic and homochiral forms.

Although in the preparation of such nitrogen-containing natural products the synthetic utility of the N-acyliminium ion obtained from N-acyl pyrrolidines has been well documented,⁵ little, if any, effort has been made for the utilization of the quaternary α -hydroxy carbon center present in such compounds.

In a recent continuation of our work designed to extend the employment of N-acyliminium ions for the synthesis of biologically active compounds, the *trans*-selective lactam formation protocol⁶ and the application to

the first total synthesis of antibiotic, lentiginosine⁷ have been developed in this laboratory.

The central feature of this communication is to detail the results that the labile quaternary α -hydroxy N-Boc pyrrolidines underwent complete diastereospecific deoxygenation, leading to pentasubstituted sole products with **R** configuration.

Several homochiral lactams 3 were prepared from commercially available 2,3,5-tri-O-benzyl- β -Darabinofuranose 1 through successive amination and extremely stereoselective addition of Grignard reagents, followed by oxidative degradation with PCC (Scheme 1).^{3c,8} The complete absence of the epimer of 3 at C-4 was ascertained unambiguously according to our reported double-check method.^{3c} Thus, the compounds 3 were transformed into the desired N-Boc lactams 4 by 2 steps. As shown in Scheme 2, nucleophilic addition

Scheme 1. Reagents and conditions: (a) MPMNH₂, CH₂Cl₂, MS 4A; quant.; (b) 1 R₁MgX, -78--30 °C, THF; 2 PCC, MS 4A, CH₂Cl₂; $[R_1=C_4H_9: 52\%$ (**3a**), $R_1=C_9H_{19}: 42\%$ (**3b**), $R_1=Bn: 51\%$ (**3c**), based on **1**] (c) Ce(NH₄)₂(NO₃)₆, CH₃CN-H₂O; 2 (Boc)₂O, Et₃N, DMA P, CH₂Cl₂; $[R_1=C_4H_9: 76\%$ (**4a**), $R_1=C_9H_{19}: 58\%$ (**4b**), $R_1=Bn: 76\%$ (**4c**)] (2 steps).

of butylmagnesium bromide to 4a at -78 °C interestingly afforded the labile quaternary α -hydroxy pyrrolidine 5a which slowly tends to come to equilibrium with its open keto form 6a.⁹ The mixture of 5a and 6a was submitted to reduction with NaBH4 to give 7a¹⁰ which was followed by mesylation and cyclization with *t*-BuOK¹¹, leading to the almost non-stereoselective diastereomer mixture of 8a (41%) and 9a (37%)¹² after separation on silica-gel chromatography. The newly created stereogenic centers of 8a and 9a were easily determined to be *R* and *S* respectively as indicated based on ¹H and ¹³C NMR, since 9a possesses a C₂-axis

Scheme 2. Reagents and conditions: (a) C₄H₉MgBr, -78 °C, THF; (b) NaBH₄, EtOH; 73%; (2 steps); (c) 1 MsCl, Et₂N, CH₂Cl₂; 2 t-BuOK, THF; 41% (8a); 37% (9a) (2 steps).

of symmetry.

Next, we investigated the utilization of the quaternary α -hydroxy pyrrolidine **5a** for Lewis acid-induced deoxygenation.⁶ When the Grignard adduct to **4a** was treated with Et3SiH in the presence of BF3 · OEt2 at -78 °C, it afforded the corresponding deoxygenated pentasubstituted pyrrolidine **8a** (65%) exclusively. No other stereoisomer such as **9a** was observed in this reaction and accompanying formation of small amounts of ketone **6a** (7%) resulted from equilibrium of **5a** and *N*-Boc deprotected lactam of **4a** (8%) were isolated.

With the above results in hand, we examined further the reactions employing several types of substituted lactams under the same conditions. The results are summarized in Table 1.¹³ The reaction proceeded with exclusive stereoselectivity to yield substituted pyrrolidine derivatives with R configuration in each case¹⁴ irrespective of the types of R₁-alkylsubstituent. In this reaction *it is worth noting that no other diastereomeric compound was isolated and consequently it involves no separation of stereoisomers through the entire sequence until 1,2,3,4,5-pentasubstituted pyrrolidine 8 was synthesized from 1.*

 Table 1
 Reductive Deoygenation of the Alkylated Products to 4^a)

Entry	R ₁	R2	Yield ^{b)} of 6 (%)	Yield ^{b)} of 8 (%)	[a] _D ,deg ^C) (Temp./°C, c)
1	C4H9	C4H9	7 (6a)	65 (8a)	-20.0 (23, 1.24)
2	C4H9	C9H19	21 ^{e)} (6b)	52 (8b)	-17.2 (25, 1.70)
3	C4H9	PhCH ₂	5 (6c)	52 (8 c)	-2.40 (26, 0.99)
4	C9H19	C4H9	7 (6d)	72 (8d)	-16.7 (23, 2.10)
5	C9H19	C9H19	13 ^{e)} (6e)	62 (8e)	-16.6 (26, 1.82)
6	C9H19	PhCH ₂	2 (6f)	59 (8f)	-5.70 (24, 1.21)
7	PhCH ₂	C4H9	6 (6g)	63 (8g)	-24.2 (24, 1.38)
8	PhCH ₂	C4H9 ^d)	^{f)} (6g)	74 (8g)	-24.5 (26, 0.56)
9	PhCH ₂	C9H19	8 (6h)	44 (8h)	-22.5 (23, 1.25)
10	PhCH ₂	PhCH ₂	^{f)} (6i)	33 (8i)	-8.50 (26, 0.84)

a) 3 equiv. of Et3SiH and 6 equiv. of $BF3 \cdot OEt2$ were used. b) Isolated yield. c) Measured in CHCl3. d) BuLi was used. e) Yield after reduction to alcohol with NaBH4. f) Ketone form was not observed.

Although the reasons why such a highly diastereofacially selective reaction was accomplished are not clarified accurately at present, it would proceed through the attack of Et3SiH to the N-acyliminium ion intermediate.⁵ Additional studies on the mechanistic origin of this asymmetric induction are in progress.

Further, this strategy provides a new synthetic opportunity for the synthesis of biologically active natural pyrrolidine alkaloids.

References and notes

- (a) Elbein, A. D. (Inhibitors of the Biosynthesis and Processing of N-linked Oligosaccharide Chains.) 1. Annu. Rev. Biochem. 1987, 56, 497. (b) Fellows, L. E.; Kite, G. C.; Nash, R. J.; Simmonds, M. S. J.; Scofield, A. M. In Plant Nitrogen Metabolism; Poulton, J. E., Romero, J. T., Conn, E. E., Eds.;
- (a) Pak, C. S.; Lee, G. H. J. Org. Chem. 1991, 56, 1128. (b) Shimazaki, M.; Okazaki, F.; Nakajima, F. Heterocycles 1993, 36, 1823. (c) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485. (d) Overhand, M.; Hecht, S. M. J. Org. Chem. 1994, 59, 4721. (e) Deng, W.; Overman, L. E. 2. J. Am. Chem. Soc. 1994, 116, 11241.
- (a) Takano, S.; Iwabuchi, Y.; Ogasawara, K. Heterocycles 1989, 29, 1861. (b) Ballini, R.; Marcantoni, 3. E.; Petrini, M.; ibid. 1992, 57, 1316. (c) Yoda, H.; Nakajima, T.; Yamazaki, H.; Takabe, K. ibid. in press and references cited therein.
- (a) Iida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 52, 1956. (b) Wang, C.-L. J.; Calabrese, J. C. *ibid.* 1991, 56, 4341.
 (a) For reviews, see: Shono, T. Tetrahedron 1984, 40, 811.; Zaugg, H. E. Synthesis 1984, 85 and 4.
- 5. 181.; Wistrand, L.-G. Janssen Chim. Acta 1986, 4, 34. (b) Melching, K. H.; Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. Tetrahedron Lett. 1986, 27, 4799. (c) Shono, T.; Fujita, T.; Matsumura, Y. Chem. Lett. 1991, 81. (d) Ludwig, C.; Wistrand, L.-G. Acta Chim. Scan. 1994, 48, 367 and references cited therein. (e) Katoh, T.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; Terashima, S. Tetrahedron 1994, 50, 6221.
- Yoda, H.; Kitayama, H.; Yamada, W.; Katagiri, T.; Tababe, K. Tetrahedron: Asymm. 1993, 4, 1451. Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K. Tetrahedron: Asymm. 1993, 4, 1455. 6.
- 7.
- (a) Lay, L.; Nicotra, F.; Paganini, A.; Pangrazio, C.; Panza, L. Tetrahedron Lett. 1993, 34, 4555. (b) 8. Hashimoto, M.; Terashima, S. Chem. Lett. 1994, 1001.
- (a) Ohta, T.; Hosoi, A.; Kimura, T.; Nozoe, S. Chem. Lett. 1987, 2091. (b) Ginovannini, A.; Savoia, 9. (a) You, J., Shirakawa, K.; Takabe, K. Tetrahedron Lett. 1991, 32, 3401. (b) Yoda, H.; Shirakawa, K.; Takabe, K. Chem. Lett. 1991, 32, 3401. (b) Yoda, H.; Shirakawa, K.; Takabe, K. Tetrahedron Lett. 1991, 32, 3401. (b) Yoda, H.; Shirakawa, K.; Takabe, K. Tetrahedron Lett. 1991, 32, 3401. (b) Yoda, H.; Shirakawa, K.; Takabe, K. Tetrahedron Lett. 1991, 32, 3401. (b) Yoda, H.; Shirakawa, K.; Takabe, K. Tetrahedron Lett. 1991, 32, 3401. (b) Yoda, H.; Shirakawa, K.; Takabe, K. Chem. Lett. 1991, 489.
- 10.
- Ikota, N. Tetrahedron Lett. 1992, 33, 2553. 11.
- ¹H and ¹³C NMR data (CDCl₃) for 8a and 9a. 8a: ¹H NMR δ 0.89 (6H, br t, J = 4.4 Hz), 1.07-2.00 12 (12H, m), 1.48 (9H, s), 3.61-4.20 (4H, m), 4.50 (2H, s), 4.62 (2H, d, J = 2.0 Hz), 7.29 (5H, s), 7.31 (5H, s). ¹³C NMR & 13.9, 22.4, 22.7, 28.1, 28.3, 28.4, 29.7, 34.0, 58.3, 61.2, 71.6, 72.2, 79.0, 83.6, 84.7, 127.5, 127.6, 127.9, 128.2, 128.3, 137.7, 138.1, 155.1. **9a**: ¹H NMR δ 0.86 (6H, br t, J = 5.6 Hz), 1.07-2.03 (12H, m), 1.46 (9H, s), 3.79-4.21 (2H, m), 4.07 (2H, dt, J = 1.5, 5.8 Hz), 4.65 (4H, s), 7.31 (10H, s). ¹³C NMR δ 14.0, 23.1, 28.5, 28.9, 29.7, 55.8, 73.1, 79.3, 81.6, 127.4, 127.5, 127.7, 127.9, 128.3, 138.3, 154.2
- 13. Observed chemical shifts (¹H and ¹³C NMR) of the other deoxygenated products (8b-8i) were almost identical with those of 8a as indicated in reference 12.
- 14. Corresponding other S isomers (9b, 9d, 9e, 9g, and 9h) were also elaborated from 4 through the successive reactions of reduction and mesylation, followed by cyclization according to Scheme 2.

(Received in Japan 29 August 1995)