
LETTER528

Transition Metal Complexes in Organic Synthesis, Part 71:1 First Total 
Synthesis of Furoclausine-A
First Total Synthesis of Furoclausine-AHans-Joachim Knölker,* Micha P. Krahl
Institut für Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
Fax +49(351)46337030; E-mail: hans-joachim.knoelker@chemie.tu-dresden.de
Received 28 October 2003

SYNLETT 2004, No. 3, pp 0528–053018.02.2004
Advanced online publication: 12.01.2004
DOI: 10.1055/s-2004-815417; Art ID: G29203ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: The first total synthesis of the furo[3,2-a]carbazole alka-
loid furoclausine-A is described using an iron-mediated construc-
tion of the carbazole framework and an acid-catalyzed annulation of
the furan ring as key steps.
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Until now only four members of the relatively young class
of furocarbazole alkaloids (1–4) have been discovered
(Figure 1).1–5 In 1990, Furukawa described the isolation
and structural elucidation of furostifoline (1) and eustifo-
line-D (2).6 Both alkaloids were obtained from the root
bark of Murraya euchrestifolia, a shrub growing in
Taiwan. Seven years later, Wu isolated furoclausine-A (3)
and furoclausine-B (4) from the acetone extract of the root
bark of Clausena excavata.7

Figure 1 Furocarbazole alkaloids

The extracts of the plant Clausena excavata are used in
traditional folk medicine in China for the treatment of var-
ious infections and poisonous snakebites (Figure 2). Be-
cause of their pharmacological potential the furocarbazole
alkaloids have attracted a lot of interest among synthetic
chemists.8–12 The first total synthesis of furostifoline (1)
was described by us in 1996, by an iron-mediated con-
struction of the carbazole framework.8 Two years later,
Hibino and Beccalli reported two further total syntheses
using an electrocyclic ring closure reaction as key step.9,10

In 1999, Timári developed a novel route to furostifoline

(1) based on a palladium-catalyzed cross-coupling and
subsequent regioselective insertion of a nitrene.11 More
recently, Yasuhara has described the fifth approach via an
oxidative photocyclization of 3-(indol-2-yl)-2-(isopro-
penyl)furan.12 Total syntheses of the other furocarbazole
alkaloids have not been reported yet.

Figure 2 Clausena excavata (courtesy of Professor Pei-Fen Lee,
National Taiwan University, Taipei, Nature Conservation Network)

In the present paper, we describe the first total synthesis
of furoclausine-A (3). Using the iron-mediated oxidative
coupling of arylamines and cyclohexadienes a wide range
of biologically active carbazole alkaloids has been synthe-
sized previously.13 However, this method was not utilized
for the total synthesis of a 7-oxygenated carbazole natural
product, as present in furoclausine-A (3). Such a substitu-
tion pattern requires a 2-methoxy-substituted tricarbon-
yl(h5-cyclohexadienyl)iron cation as a building block.
Our approach to furoclausine-A (3) envisaged the iron-
mediated formation of the carbazole skeleton followed by
an acid-catalyzed annulation of the furan ring as key steps.
The retrosynthetic analysis of furoclausine-A (3) based on
this strategy leads to 1-methoxycyclohexa-1,4-diene (5)
and the arylamine 6 as precursors (Scheme 1).

Alkylation of commercial 2-methyl-5-nitrophenol (7)
with 2-bromo-1,1-diethoxyethane to compound 8 and
subsequent catalytic hydrogenation using palladium on
activated carbon afforded the arylamine 6 (Scheme 2).

Tricarbonyl(h5-2-methoxycyclohexadienylium)iron tet-
rafluoroborate (9) is readily prepared on a large scale by
the azadiene-catalyzed complexation of 1-methoxycyclo-
hexa-1,4-diene (5),14 followed by hydride abstraction and
hydrolytic separation of the 1-methoxy and 2-methoxy re-
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gioisomers.15 Electrophilic substitution of the arylamine 6
by reaction with the iron complex salt 9 led regioselec-
tively to the iron complex 10.16 Oxidative cyclization of
complex 10 using iodine in pyridine provided the carba-
zole 11.16,17 The annulation of the furan ring, by heating
the carbazole 11 with catalytic amounts of amberlyst 15 in
chlorobenzene at 120 °C,18,19 afforded 8-methoxy-4-me-
thyl-10H-furo[3,2-a]carbazole (12).16 Oxidation of 12
with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
gave O-methylfuroclausine-A (13).16 Finally, cleavage of
the methyl ether using BBr3 provided furoclausine-A (3)
(Scheme 3).20

In conclusion, a convergent five-step synthesis leading to
furoclausine-A (3) in 9% overall yield has been devel-
oped. We obtained furoclausine-A (3) as crystals (decom-
position  110 °C),20 whereas the natural product was
described as an oil.7 All spectral data (UV, IR, 1H NMR,
13C NMR, and MS) of our synthetic furoclausine-A (3)20

are in good agreement with those reported for the natural
product.7 The method described above can be used to pro-
vide access to furoclausine-A and a variety of structural
analogues in sufficient quantities for biological screening.
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Scheme 3 Iron-mediated total synthesis of furoclausine-A (3)
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