

Available online at www.sciencedirect.com

Inorganica Chimica Acta 346 (2003) 12-18

www.elsevier.com/locate/ica

Synthesis and characterization of μ₄-S-containing double- and triplebutterfly iron carbonyl complexes. Crystal structures of (μ-EtS)[μ-PhC(O)S][Fe₂(CO)₆]₃(μ₄-S)₂ and (μ-t-BuS)₂[Fe₂(CO)₆]₃(μ₄-S)₂

Li-Cheng Song^{a,*}, Qing-Mei Hu^a, Bao-Wei Sun^a, Ming-Yi Tang^a, Guo-Liang Lu^{a,b}

^a Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China ^b State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China

Received 6 May 2002; accepted 11 October 2002

Abstract

The [MgBr]⁺ salts of the μ_4 -S-containing double-butterfly anions { $(\mu$ -RS)(μ -CO)[Fe₂(CO)₆]₂(μ_4 -S)}⁻ (1, R = Ph, p-MeC₆H₄) react in situ with CS₂ followed by treatment of the corresponding intermediate [MgBr]⁺ salts of anions { $(\mu$ -RS)(μ -S= CS)[Fe₂(CO)₆]₂(μ_4 -S)}⁻ (m₁) with ClCH₂CO₂Et to give μ_4 -S-containing double-butterfly iron carbonyl complexes (μ -RS)(μ -EtO₂CCH₂SC=S)[Fe₂(CO)₆]₂(μ_4 -S) (2a, R = Ph; 2b, R = p-MeC₆H₄), whereas the in situ reaction of the [MgX]⁺ (X = I, Br) salts of anions 1 (R = Me, Et) with μ -S₂Fe₂(CO)₆ followed by treatment of the corresponding intermediate salts of anions {(μ -RS)(μ -S)[Fe₂(CO)₆]₃(μ_4 -S)₂⁻ (m₂) with PhC(O)Cl produces μ_4 -S-containing unsymmetrical triple-butterfly iron carbonyl complexes (μ -RS)[μ -PhC(O)S][Fe₂(CO)₆]₃(μ_4 -S)₂ (3a, R = Me; 3b, R = Et). More interestingly, the symmetrical μ_4 -S-containing triple-butterfly complexes (μ -RE)₂[Fe₂(CO)₆]₃(μ_4 -S)₂ (5a, RE = EtS; 5b, RE = t-BuS; 5c, RE = PhSe; 5d, RE = p-MeC₆H₄Se) can be synthesized by reaction of an excess of the [Et₃NH]⁺ salts of the μ -CO-containing single-butterfly anions [(μ -RE)(μ -CO)Fe₂(CO)₆]⁻ (4) with μ -S₂Fe₂(CO)₆ and subsequent treatment of the resulting mixture with SO₂Cl₂. While the function of an excessive 4 for production of **5a**-d is proposed, products **2a,b**, **3a,b** and **5a**-d have been characterized by elemental analysis, and IR and ¹H NMR spectroscopy, as well as for **3b** and **5b** by X-ray diffraction techniques.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: µ-CO butterfly anions; µ4-S butterfly complexes; Reactions; Synthesis; Crystal structures

1. Introduction

It is known that very few μ_4 -S-containing butterfly iron carbonyl complexes of the type [(μ -RS)Fe₂(CO)₆]₂(μ_4 -S) had been prepared [1–4] before 1988, when we reported a general and convenient procedure for synthesis of such μ_4 -S-containing double-butterfly complexes [(μ -RS)Fe₂(CO)₆]₂(μ_4 -S) (R = Me, Et, PhCH₂, p-MeC₆H₄, PhC=C) in high yield (61–91%) [5]. In view of the novelty and diversity of structures and reactivities concerning μ_4 -S iron carbonyl complexes, we have been interested in studying μ_4 -Sforming reactions and the reactions involving μ_4 -Scontaining reactive intermediates, which has so far led us to obtain a variety of double-, triple- and even multiple-butterfly iron carbonyl complexes [6-10]. This paper will describe the synthesis of double- and triplebutterfly complexes $(\mu$ -RS) $(\mu$ -EtO₂CCH₂SC=S) $[Fe_2(CO)_6]_2(\mu_4-S)$ (2a, R = Ph; 2b, R = p-MeC_6H_4), (μ -RS)[μ -PhC(O)S][Fe₂(CO)₆]₃(μ ₄-S)₂ (3a, R = Me; 3b, R = Et) and $(\mu - RE)_2 [Fe_2(CO)_6]_3(\mu_4 - S)_2$ (5a, RE = EtS; RE = t-BuS; **5c**, RE = PhSe; **5d**, RE = p-5b, MeC₆H₄Se), and the structural characterization of these new μ_4 -S-containing complexes by elemental analysis, spectroscopy, and particularly for 3b and 5b by X-ray diffraction analysis.

^{*} Corresponding author. E-mail address: lcsong@public.tpt.tj.cn (L.-C. Song).

2. Results and discussion

2.1. Synthesis and characterization of $(\mu$ -RS) $(\mu$ -EtO₂CCH₂SC=S)[Fe₂(CO)₆]₂ $(\mu_4$ -S) (**2***a*,*b*)

Interestingly, we have found that the μ -CO-containing double-butterfly anions {(μ -RS)(μ -CO)[Fe₂-(CO)₆]₂(μ ₄-S)}⁻ (1, R = Ph, p-MeC₆H₄) (prepared as their [MgBr]⁺ salts from a sequential reaction of μ -S₂Fe₂(CO)₆, Grignard reagents RMgBr and Fe₃(CO)₁₂) reacted in situ with CS₂ followed by treatment of the corresponding intermediate [MgBr]⁺ salts of anions {(μ -RS)(μ -S=CS)[Fe₂(CO)₆]₂(μ ₄-S)}⁻ (**m**₁) [9] with ClCH₂CO₂Et to afford the S-functionalized doublebutterfly iron carbonyl complexes **2a**,**b** (Scheme 1).

Complexes **2a,b** are new and were characterized by elemental analysis and spectroscopy. For example, while the ¹H NMR spectra of **2a,b** displayed the corresponding resonance signals for their R and CH₂CO₂Et groups, the IR spectra showed one absorption band at 1739 and 1740 cm⁻¹ for their ester carbonyls and one absorption band at 1020 and 1010 cm⁻¹ for their coordinated C=S double bonds [11].

2.2. Synthesis and characterization of $(\mu$ -RS)[μ -PhC(O)S][Fe₂(CO)₆]₃(μ ₄-S)₂ (**3***a*,*b*). Crystal structure of **3***b*

We have further found that the $[MgX]^+$ (X = Br, I) salts of anions (1, R = Me, Et) reacted in situ with μ -S₂Fe₂(CO)₆ followed by treatment of the corresponding intermediate $[MgX]^+$ salts of anions {(μ -RS)(μ -S)[Fe₂(CO)₆]₃(μ ₄-S)₂}⁻ (**m**₂) [9] with PhC(O)Cl to give the S-functionalized triple-butterfly iron carbonyl complexes **3a,b** (Scheme 2).

Products **3a,b** are also new and were characterized by elemental analysis, spectroscopy and crystal X-ray diffraction analysis. For example, the IR spectra of **3a,b** showed one absorption band at 1687 and 1684 cm⁻¹ for their carbonyls in benzoyl groups, whereas the ¹H NMR spectra of **3a,b** exhibited one signal or one set of signals for their Me, Et and Ph groups. In principle, the R and PhC(O) groups in **3a,b** should be attached to the bridged S atoms by an equatorial type of bond, in


```
Scheme 1.
```

order to avoid the sterically strong repulsions between these groups and the structural moieties axially bonded to their neighboring bridged S atoms [6,7]. Fortunately, this has been confirmed by crystal X-ray diffraction analysis of **3b**. The molecular structure of **3b** is shown in Fig. 1, whereas its selected bond lengths and angles are given in Table 1. Fig. 1 shows that 3b contains three butterfly cores Fe(3)Fe(4)S(1)S(3), Fe(1)Fe(2)S(1)S(2) and Fe(5)Fe(6)S(2)S(4) joined together by two μ_4 -S atoms of S(1) and S(2). While each of the Fe atoms from Fe(1) to Fe(6) is bound to three terminal carbonyls, the PhCO and Et groups are indeed bonded to the bridged S atoms of S(3) and S(4) by an equatorial type of bond, respectively. It is worthy of note that in the three butterfly cores the geometric parameters of the middle butterfly core are somewhat different from those of the two side butterfly cores. For example, the bond length of Fe(3)-Fe(4) (2.5156(11) Å) or Fe(5)-Fe(6) (2.5166(13) Å) is shorter than that of Fe(1)-Fe(2) (2.5699(12) Å), and the dihedral angle between Fe(3)-Fe(4)-S(1) and Fe(3)-Fe(4)-S(3) (84.54°) or Fe(5)-Fe(6)-S(2) and Fe(5)-Fe(6)-S(4) (83.77°) is larger than that between Fe(1)-Fe(2)-S(1) and Fe(1)-Fe(2)-S(2) (72.59°).

2.3. Synthesis and characterization of $(\mu - RE)_2[Fe_2(CO)_6]_3(\mu_4-S)_2$ (5*a*-*d*). Crystal structure of 5*b*

More interestingly, the $[Et_3NH]^+$ salts of the μ -COcontaining single-butterfly anions $[(\mu-RE)(\mu-CO)-Fe_2(CO)_6]^-$ (4, RE = EtS, t-BuS, PhSe, p-MeC₆H₄Se) (prepared from corresponding REH, Fe₃(CO)₁₂ and Et₃N) [6,12] could react in situ with approximately 0.5 equiv. (or more less amount) of μ -S₂Fe₂(CO)₆ at room temperature followed by treatment with 0.5 equiv. (or more less amount) of SO₂Cl₂ from -78 °C to room temperature [8] to give symmetrically R-substituted triple-butterfly iron carbonyl complexes **5a-d** (Scheme 3).

In fact, this type of novel tandem reaction leading to complexes $(\mu$ -RE)₂[Fe₂(CO)₆]₃(μ ₄-S)₂ (**5b**, RE = t-BuS; **5d**, RE = p-MeC₆H₄Se) was briefly described in our communication [8]. In this paper, we wish to report the experimental details and give more detailed discussion concerning the synthesis and structural characterization of **5a**-**d** all obtained from this type of reaction.

Complexes 5a-d have been characterized by elemental analysis and spectroscopy. For instance, while the IR spectra of 5a-d showed several absorption bands in the range 2088–1922 cm⁻¹ for their terminal carbonyls, their ¹H NMR spectra displayed resonance signals for their respective R groups. In addition, it is worth pointing out that the two R groups in 5a-d, similar to R and PhC(O) groups in 3a,b, should be attached to the bridged S and/or Se atoms by an equatorial type of

Scheme 2.

bond. This is consistent with the ¹H NMR spectra of Et, t-Bu, Ph and p-MeC₆H₄ in **5a**–**d** showing one signal or one set of signals, and this has been further confirmed by the X-ray diffraction analysis of **5b**.

Fig. 2 shows the molecular structure of **5b** and Table 2 lists its selected bond lengths and angles. As seen in Fig. 2, 5b comprises the three butterfly-shaped Fe_2S_2 subcluster cores Fe(1)Fe(2)S(1)S(2), Fe(3)Fe(3a)S(2)S(2a), and Fe(1a)Fe(2a)S(1a)S(2a). In addition, each Fe atom has three terminal CO ligands, and the two t-Bu groups are indeed bonded to S(1) and S(1a) atoms by an equatorial bond. This molecule is chiral, which has a C_2 axis passing through the two midpoints of Fe(3)-Fe(3a)and $S(2) \cdots S(2a)$. It is noteworthy that the geometric parameters of the middle subcluster core are somewhat different from those of the two identical side subcluster cores. For example, the dihedral angle between Fe(3)-Fe(3a)-S(2) and Fe(3)-Fe(3a)-S(2a) (73.7°) is less than that between Fe(1)-Fe(2)-S(1) and Fe(1)-Fe(2)-S(2)Fe(1a)-Fe(2a)-S(1a) and Fe(1a)-Fe(2a)-S(2a)or (86.1°) , and the bond length of Fe(3)-Fe(3a) (2.563(2)) Å) is longer than that of Fe(1)-Fe(2) or Fe(1a)-Fe(2a)

Table 1 Selected bond lengths (Å) and angles (°) for 3b

Bond lengths			
Fe(1)-Fe(2)	2.5699(12)	Fe(1) - S(2)	2.2560(16)
Fe(1) - S(1)	2.2668(16)	Fe(2) - S(2)	2.2623(16)
Fe(2) - S(1)	2.2639(15)	Fe(3) - S(3)	2.2619(17)
Fe(3) - S(1)	2.2725(16)	Fe(3)-Fe(4)	2.5156(11)
Fe(4) - S(1)	2.2835(15)	Fe(5) - S(2)	2.2654(15)
Fe(5) - S(4)	2.2700(19)	Fe(5)-Fe(6)	2.5166(13)
Fe(6)-S(4)	2.262(2)	Fe(6)-S(2)	2.2772(17)
Bond angles			
S(2) - Fe(1) - S(1)	83.15(6)	S(2) - Fe(5) - S(4)	76.59(6)
S(2) - Fe(5) - Fe(6)	56.58(5)	S(2) - Fe(1) - Fe(2)	55.45(5)
S(2) - Fe(2) - S(1)	83.07(6)	S(1) - Fe(2) - Fe(1)	55.50(4)
S(3) - Fe(3) - S(1)	76.48(6)	S(1) - Fe(3) - Fe(4)	56.69(4)
S(4) - Fe(6) - Fe(5)	56.43(5)	Fe(2)-S(1)-Fe(1)	69.11(5)
Fe(2) - S(1) - Fe(3)	128.42(7)	Fe(1) - S(1) - Fe(3)	129.83(7)
Fe(1)-S(2)-Fe(2)	69.33(5)	Fe(1)-S(2)-Fe(5)	141.11(7)

(2.504(1) Å). In fact, this triple-butterfly cluster is very similar to cluster **3b** described above.

Finally, it should be noted that although the reaction mechanism for the formation of 5a-d is not completely

understood as yet, we might propose a possible pathway, on the basis of the well-known properties of both anions $[(\mu-RS)(\mu-S)Fe_2(CO)_6]^-$ and $[(\mu-RE)(\mu-CO)-Fe_2(CO)_6]^-$ (4) [6,13], to account for the production of **5a**-**d**.

This pathway, as shown in Scheme 4, actually includes three major steps: (i) the negatively charged Fe atom of anions 4 attacks the S atom of μ -S₂Fe₂(CO)₆, followed by loss of the μ -CO ligand from intermediates m_3 to give the S-centered intermediate anions m_4 ; (ii) the attack of the negatively charged S atom of m₄ at the S atom of SO_2Cl_2 gives rise to intermediates m_5 ; (iii) the bridged S atom attached to the SO₂Cl group in m₅ is attacked by the negatively charged Fe atom of the excess amount of anions 4, followed by loss of the SO₂Cl group and μ -CO ligand to produce **5a**-**d**. Up to now, we have proved that when the ratio of the starting materials (anions 4: μ -S₂Fe₂(CO)₆-SO₂Cl₂ is approximately 1:1:1 or less anions 4) is used in this type of reaction, products 5a-d cannot be obtained. This has not only indicated the function of an excess of anions 4 played in the formation of 5a-d, but also gives an additional evidence for the suggested pathway described above.

3. Experimental

All reactions were carried out under an atmosphere of prepurified nitrogen using standard Schlenk and vacuum-line techniques. Tetrahydrofuran (THF) was dis-

Table 2 Selected bond lengths (Å) and angles (°) for **5b**

Bond lengths			
Fe(1)-Fe(2)	2.504(1)	Fe(1) - S(2)	2.277(2)
Fe(1) - S(1)	2.275(2)	Fe(2) - S(1)	2.260(2)
Fe(2) - S(2)	2.270(2)	Fe(3) - S(2)	2.253(2)
Fe(3)-S(2a)	2.256(1)	Fe(3)-Fe(3a)	2.563(2)
Fe(3a)-S(2)	2.256(1)	S(1)-C(11)	1.879(11)
Bond angles			
Fe(2) - S(2) - Fe(3)	130.3(1)	Fe(2)-S(1)-Fe(1)	67.0(1)
S(2) - Fe(1) - S(1)	74.9(1)	Fe(1)-Fe(2)-S(2)	56.7(1)
S(1)-Fe(2)-S(2)	75.3(1)	S(2) - Fe(1) - Fe(2)	56.5(1)
S(2)-Fe(3)-Fe(3a)	55.4(1)	S(1) - Fe(2) - Fe(1)	56.8(1)
S(2) - Fe(3) - S(2a)	82.3(1)	Fe(3a)-Fe(3)-S(2a)	55.3(1)
Fe(1)-S(2)-Fe(2)	66.8(1)	Fe(1)-S(2)-Fe(3)	139.8(1)

tilled from Na/benzophenone ketyl under nitrogen. $Fe_3(CO)_{12}$ [14], μ -S₂Fe₂(CO)₆ [15] and Grignard reagents RMgX [16] were prepared according to literature procedures, whereas the others used in this paper were of commercial origin and used without further purification. Preparative TLC was carried out on glass plates ($26 \times 20 \times 0.25$ cm) coated with silica gel H (10–40 µm). IR spectra were recorded on a Bruker Vector 22 infrared spectrophotometer. ¹H NMR spectra were recorded on a Bruker AC-P200 NMR spectrometer. C/H analyses were performed on an Elementar Vario EL analyzer. M.p.s were determined on a Yanaco MP-500 apparatus and were uncorrected.

3.1. Preparation of $(\mu$ -PhS) $(\mu$ -EtO₂CCH₂SC= S)[Fe₂(CO)₆]₂ $(\mu$ -S) (2a)

A 100 ml two-necked flask equipped with a stir-bar, a N_2 inlet tube, and a serum cap was charged with 0.172 g (0.5 mmol) of μ -S₂Fe₂(CO)₆ and 20 ml of THF. The resulting red solution was stirred and cooled to -78 °C using a dry ice/C₃H₆O bath. To this solution was

injected a given amount of Grignard reagent PhMgBr in Et₂O by a syringe until the solution turned to emerald green. To this solution was added 0.252 g (0.5 mmol) of $Fe_3(CO)_{12}$ and then the mixture was warmed to room temperature (r.t.). The mixture was stirred at this temperature for 1 h to give a solution of the [MgBr]⁺ salt of anion $\{(\mu-PhS)(\mu-CO)[Fe_2(CO)_6]_2(\mu_4-S)\}^-$. To this solution was added 0.10 ml (1.8 mmol) of CS₂ and the mixture was stirred at r.t. for 1 h to give a redbrown solution. To this solution was added 0.1 ml (0.9 mmol) of ClCH₂CO₂Et and the mixture was stirred at this temperature for 12 h. Solvent was removed under reduced pressure and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 2:5) as eluent. From the main orange-red band 0.200 g (46%) of 2a was obtained as a red solid. M.p. 35-36 °C. Anal. Found: C, 31.98; H, 1.61. Calc. for C₂₃H₁₂Fe₄O₁₄S₄: C, 31.97; H, 1.40%. IR (KBr disk, cm⁻¹): $v_{(C=O)}$ 2083(s), 2059(vs), 2036(vs), 1997(vs); $v_{(C=O)}$ 1739(s); $v_{(C=S)}$ 1020(s). ¹H NMR (C₃H₆O-d₆, δ , ppm): 1.23 (t, J = 7.6Hz, 3H, CH₃), 4.05–4.39 (m, 4H, 2CH₂), 7.20–7.59 (m, 5H, C₆H₅).

3.2. Preparation of $(\mu$ -p-MeC₆H₄S) $(\mu$ -EtO₂CCH₂SC= S)[Fe₂(CO)₆]₂ $(\mu_4$ -S) (**2b**)

The same procedure as that for **2a** was followed, but the [MgBr]⁺ salt of anion {(μ -p-MeC₆H₄S)(μ -CO)[Fe₂-(CO)₆]₂(μ ₄-S)}⁻ prepared from p-MeC₆H₄MgBr, μ -S₂Fe₂(CO)₆ and Fe₃(CO)₁₂ was used instead of the [MgBr]⁺ salt of anion {(μ -PhS)(μ -CO)[Fe₂(CO)₆]₂(μ ₄-S)}⁻. From the main orange–red band 0.178 g (41%) of **2b** was obtained as a red solid. M.p. 61–63 °C. *Anal.* Found: C, 33.10; H, 1.61. Calc. for C₂₄H₁₄Fe₄O₁₄S₄: C, 32.83; H, 1.61%. IR (KBr disk, cm⁻¹): ν _(C=O) 2090(s), 2065(vs), 2042(vs), 1993(vs); ν _(C=O)) 1740(s); ν _(C=S) 1010(s). ¹H NMR (C₃H₆O-d₆, δ , ppm): 1.24 (br.s, 3H, CH₃), 2.28 (s, 3H, ArCH₃), 4.05–4.40 (m, 4H, 2CH₂), 7.07–7.50 (m, 4H, C₆H₄).

3.3. Preparation of (μ-MeS)[μ-PhC(O)S][Fe₂(CO)₆]₃ (μ₄-S)₂ (**3a**)

To the $[MgI]^+$ salt of anion {(μ -MeS)(μ -CO)[Fe₂-(CO)₆]₂(μ ₄-S)}⁻ prepared from MeMgI, μ -S₂Fe₂(CO)₆ and Fe₃(CO)₁₂ was added 0.172 g (0.5 mmol) of μ -S₂Fe₂(CO)₆. The mixture was stirred for 2 h at r.t. and then 0.16 ml (1.3 mmol) of PhC(O)Cl was added. The new mixture was stirred at this temperature for 10 h. Solvent was removed under reduced pressure and the residue was subjected to TLC separation using petroleum ether as eluent. From the main red band 0.161 g (30%) of **3a** was obtained as a brown–red solid. M.p. 143 °C (dec.). *Anal.* Found: C, 28.52; H, 0.92. Calc. for C₂₆H₈Fe₆O₁₉S₄: C, 28.71; H, 0.74%. IR (KBr disk, cm⁻¹): ν _(C=O) 2060(s), 2043(vs), 2007(s); ν _(C=O) 1687(m). ¹H NMR (C₃H₆O-d₆, δ , ppm): 2.36 (s, 3H, CH₃), 7.34– 8.20 (m, 5H, C₆H₅).

3.4. Preparation of $(\mu$ -EtS)[μ -PhC(O)S][Fe₂(CO)₆]₃(μ ₄-S)₂ (**3b**)

The same procedure as that for **3a** was followed, but the [MgBr]⁺ salt of anion (μ -EtS)(μ -CO)[Fe₂(CO)₆]₂(μ ₄-S)⁻ prepared from EtMgBr, μ -S₂Fe₂(CO)₆ and Fe₃(CO)₁₂ was used instead of the [MgI]⁺ salt of anion (μ -MeS)(μ -CO)[Fe₂(CO)₆]₂(μ ₄-S)⁻. From the main red band 0.082 g (15%) of **3b** was obtained as a black solid. M.p. 144 °C (dec.). *Anal.* Found: C, 29.26; H, 1.22. Calc. for C₂₇H₁₀Fe₆O₁₉S₄: C, 29.44; H, 0.92%. IR (KBr disk, cm⁻¹): ν _(C=O) 2058(s), 2044(vs), 1993(s); ν _(C=O) 1684(m). ¹H NMR (C₃H₆O-d₆, δ , ppm): 1.43 (t, *J* = 7.4 Hz, 3H, CH₃), 2.64 (q, *J* = 7.4 Hz, 2H, CH₂), 7.57–8.16 (m, 5H, C₆H₅).

3.5. Preparation of $(\mu$ -EtS)₂[Fe₂(CO)₆]₃ $(\mu_4$ -S)₂ (5a)

A 100 ml two-necked flask with a stir-bar, a N₂ inlet tube, and a serum cap was charged with 0.504 g (1.0 mmol) of $Fe_3(CO)_{12}$, 10 ml of THF, 0.08 ml (1.1 mmol) of EtSH and 0.17 ml (1.2 mmol) of Et₃N. The mixture was stirred at 25–30 °C for 0.5 h to give a yellow-brown solution containing approximately 1.0 mmol of the $[Et_3NH]^+$ salt of anion $[(\mu-EtS)(\mu-CO)Fe_2(CO)_6]^-$. To this solution was added 0.172 g (0.5 mmol) of μ - $S_2Fe_2(CO)_6$ and the mixture was stirred at r.t. for 2 h to give a brown-green solution. When this solution was cooled to -78 °C, 0.05 ml (0.5 mmol) of SO₂Cl₂ was added and the solution turned to red immediately. The mixture was warmed to r.t. and stirred for an additional 2 h. Volatiles were removed in vacuo, and the residue was subjected to TLC. Petroleum ether/CH₂Cl₂ (v/v = 20:1) eluted one major band, from which 0.158 g (31%)of 5a was obtained as a red solid. M.p. 142 °C (dec.). Found: C, 25.78; H, 0.97. Calc. for Anal. C₂₂H₁₀Fe₆O₁₈S₄: C, 25.75; H, 0.98%. IR (KBr disk, cm⁻¹): $v_{(C=0)}$ 2088(s), 2068(vs), 2035(vs), 2011(s), 1983(s). ¹H NMR (CDCl₃, δ , ppm): 1.41 (t, J = 6.4Hz, 6H, 2CH₃), 2.50 (q, J = 6.4 Hz, 4H, 2CH₂).

3.6. Preparation of $(\mu$ -t-BuS)₂[Fe₂(CO)₆]₃ $(\mu_4$ -S)₂ (5b)

The same procedure as that for **5a** was followed, but approximately 1.0 mmol of the $[Et_3NH]^+$ salt of anion $[(\mu-t-BuS)(\mu-CO)Fe_2(CO)_6]^-$ [prepared from 0.504 g (1.0 mmol) of Fe₃(CO)₁₂, 0.11 ml (1.0 mmol) of t-BuSH and 0.14 ml (1.0 mmol) of Et₃N] was employed in place of approximately 1.0 mmol of the $[Et_3NH]^+$ salt of anion $[(\mu-EtS)(\mu-CO)[Fe_2(CO)_6]^-$. 0.204 g (38%) of **5b** was obtained as a red solid. M.p. 180 °C (dec.). *Anal.* Found: C, 28.84; H, 1.71. Calc. for C₂₆H₁₈Fe₆O₁₈S₄: C, 28.87; H, 1.68%. IR (KBr disk, cm⁻¹): $v_{(C=O)}$ 2070(s), 2041(vs), 1989(vs), 1922(s). ¹H NMR (CDCl₃, δ , ppm): 1.48 (s, 18H, 2(CH₃)₃C).

3.7. Preparation of $(\mu$ -PhSe)₂[Fe₂(CO)₆]₃ $(\mu_4$ -S)₂ (5c)

The same procedure as that for **5a** was followed, but approximately 1.5 mmol of the $[Et_3NH]^+$ salt of anion $[(\mu-PhSe)(\mu-CO)Fe_2(CO)_6]^-$ [prepared from 0.756 g (1.5 mmol) of Fe₃(CO)₁₂, 0.16 ml (1.5 mmol) of PhSeH and 0.23 ml (1.6 mmol) of Et₃N] was employed in place of approximately 1.0 mmol of the $[Et_3NH]^+$ salt of anion $[(\mu-EtS)(\mu-CO)Fe_2(CO)_6]^-$. 0.072 g (12%) of **5c** was obtained as a red solid. M.p. 173 °C (dec.). *Anal.* Found: C, 29.53; H, 1.06. Calc. for C₃₀H₁₀Fe₆O₁₈S₂Se₂: C, 29.64; H, 0.83%. IR (KBr disk, cm⁻¹): $v_{(C=O)}$ 2088(s), 2069(vs), 2040(vs), 1996(s). ¹H NMR (CDCl₃, δ , ppm): 7.24–7.43 (m, 10H, 2C₆H₅).

3.8. Preparation of $(\mu$ -p-MeC₆H₄Se)₂[Fe₂(CO)₆]₃(μ ₄-S)₂ (5d)

The same procedure as that for **5a** was followed, but approximately 1.5 mmol of the $[Et_3NH]^+$ salt of anion $[(\mu-p-MeC_6H_4Se)(\mu-CO)[Fe_2(CO)_6]^-$ [prepared from 0.765 g (1.5 mmol) of Fe_3(CO)_{12}, 0.256 g (1.5 mmol) of p-MeC_6H_4SeH and 0.23 ml (1.6 mmol) of Et_3N] was employed in place of approximately 1.0 mmol of the $[Et_3NH]^+$ salt of anion $[(\mu-EtS)(\mu-CO)Fe_2(CO)_6]^-$. 0.145 g (23%) of **5d** was obtained as a red solid. M.p. 170 °C (dec.). *Anal.* Found: C, 30.56; H, 1.44. Calc. for $C_{32}H_{14}Fe_6O_{18}S_2Se_2$: C, 30.91; H, 1.14%. IR (KBr disk, cm⁻¹): $v_{(C=O)}$ 2085(m), 2069(s), 2055(s), 2038(vs), 2022(s), 2006(s), 1992(vs). ¹H NMR (CDCl₃, δ , ppm): 231 (s, 6H, 2CH₃), 7.17 (q, AA'BB', J = 8.3 Hz, 8H, $2C_6H_4$).

3.9. Crystal X-ray structure determinations of **3b** and **5b**

Single-crystals of **3b** and **5b** suitable for X-ray diffraction analysis were grown by slow evaporation of their CH₂Cl₂/C₆H₁₄ solutions at about 4 °C. Each crystal was mounted on a Bruker SMART 1000 or Enraf–Nonius CAD-4 diffractometer with a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and

Table 3

Crystal data and structural refinements details for $\mathbf{3b}$ and $\mathbf{5b}$

	3b	5b
Empirical formula	C ₂₇ H ₁₀ Fe ₆ O ₁₉ S ₄	C ₂₆ H ₁₈ Fe ₆ O ₁₈ S ₄
Formula weight	1101.69	1081.76
Temperature (K)	293	299
Crystal system	triclinic	monoclinic
Space group	PĪ	C2/c (no. 15)
a (Å)	9.2239(9)	27.454(5)
b (Å)	14.5729(13)	9.303(2)
<i>c</i> (Å)	16.0294(15)	20.136(4)
α (°)	79.135(2)	90
β (°)	74.749(2)	128.16(3)
γ (°)	72.965(2)	90
V (Å ³)	1973.0(3)	4044(2)
Ζ	2	4
$D_{\text{calc}} (\text{g cm}^{-3})$	1.854	1.777
Absorption coefficient (mm^{-1})	2.433	2.3627
F(000)	1088	2152
Scan type	$\omega - 2\theta$	$\omega - 2\theta$
$2\theta_{\max}$ (°)	50.04	50.00
Reflections collected	8244	4002
Independent reflections	6917	3210
R _{int}	0.0309	0.068
Absorption correction	SADABS	DIFABS
R	0.0524	0.044
Rw	0.1312	0.051
Goodness-of-fit indicator	0.959	0.87
Largest difference peak and	0.641 and -	0.770 and $-$
hole (e Å ⁻³)	0.643	0.550

expanded by Fourier techniques. The final refinements were accomplished by the full-matrix least-squares method with anisotropic thermal parameters for non-hydrogen atoms. Hydrogen atoms were located by using the geometric method. The calculations were performed using SHELXTL-97 program for **3b** and using the SDP-PLUS program for **5b**. Details of the crystal data, data collections and structure refinements are summarized in Table 3.

4. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 183210 and 183688 for compounds **3b** and **5b**, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336-033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We are grateful to the National Natural Science Foundation of China and State Key Laboratory of Organometallic Chemistry for financial support.

References

- J.M. Coleman, A. Wojcicki, P.J. Pollick, L.F. Dahl, Inorg. Chem. 6 (1967) 1236.
- [2] S.C. Carleton, F.G. Kennedy, S.A.R. Knox, J. Chem. Soc., Dalton Trans. (1981) 2230.
- [3] C. Glidewell, A.R. Hyde, Inorg. Chim. Acta 87 (1984) L15.
- [4] J.A. de Beer, R.J. Haines, J. Organomet. Chem. 24 (1970) 757.
- [5] L.-C. Song, M. Kadiata, J.-T. Wang, R.-J. Wang, H.-G. Wang, J. Organomet. Chem. 340 (1988) 239.
- [6] L.-C. Song, C.-G. Yan, Q.-M. Hu, R.-J. Wang, T.C.W. Mak, X.-Y. Huang, Organometallics 15 (1996) 1535.
- [7] L.-C. Song, X.-D. Qin, Q.-M. Hu, X.-Y. Huang, Organometallics 17 (1998) 5437.
- [8] L.-C. Song, G.-L. Lu, Q.-M. Hu, H.-T. Fan, Y. Chen, J. Sun, Organometallics 18 (1999) 3258.
- [9] L.-C. Song, Q.-M. Hu, H.-T. Fan, B.-W. Sun, M.-Y. Tang, Y. Chen, Y. Sun, C.-X. Sun, Q.-J. Wu, Organometallics 19 (2000) 3909.
- [10] L.-C. Song, G.-L. Lu, Q.-M. Hu, J. Yang, J. Sun, J. Organomet. Chem. 623 (2001) 56.
- [11] H. Patin, G. Mignani, C. Mahé, J.-Y. Le Marouille, T.G. Southern, A. Benoit, D. Grandjean, J. Organomet. Chem. 197 (1980) 315.
- [12] D. Seyferth, G.B. Womack, J.C. Dewan, Organometallics 4 (1985) 398.
- [13] D. Seyferth, R.S. Henderson, L.-C. Song, G.B. Womack, J. Organomet. Chem. 292 (1985) 9.
- [14] R.B. King, Organometallic Syntheses; Transition-Metal Compounds, vol. 1, Academic Press, New York, 1965, p. 95.
- [15] D. Seyferth, R.S. Henderson, L.-C. Song, Organometallics 1 (1982) 125.
- [16] H. Gilman, E.A. Zoellner, J.B. Dickey, J. Am. Chem. Soc. 51 (1929) 1576.