Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Design, synthesis, and biological evaluation of a novel series of quercetin diacylglucosides as potent anti-MRSA and anti-VRE agents

Abugafar M. L. Hossion^{a,*}, Nao Otsuka^b, Rafiya K. Kandahary^a, Tomofusa Tsuchiya^b, Wakano Ogawa^b, Akimasa Iwado^a, Yoshito Zamami^a, Kenji Sasaki^{a,*}

^a Department of Molecular Design for Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan

^b Department of Molecular Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan

ARTICLE INFO

Article history: Received 5 January 2010 Revised 10 February 2010 Accepted 13 February 2010 Available online 19 February 2010

Keywords: Antibacterials Multi-drug resistance Quercetin-3-glucoside

ABSTRACT

A series of novel quercetin diacylglucosides were designed and first synthesized by Steglich esterification on the basis of MRSA strains inhibiting natural compound **A**. The in vitro inhibition of different multidrug resistant bacterial strains and *Escherichia coli* DNA gyrase B was investigated. In the series, compound **10h** was up to 128-fold more potent against vancomycin-resistant enterococci and more effective than **A**, which represents a promising new candidate as a potent anti-MRSA and anti-VRE agent.

© 2010 Published by Elsevier Ltd.

The increasing emergence of multi-drug resistant Gram-positive bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and recently found vancomycin-intermediate resistant S. aureus (VISA) become a serious global clinical problem for the treatment of various nosocomial and community-acquired infections.¹ In order to overcome these bacterial resistance problems, numerous efforts have focused on discovering novel anti-MRSA, anti-VRE, and anti-VISA agents in recent decades.² Thus, newly disclosed antibacterial agents such as tetracycline, linezolid, quinupristindalforpristin, tigecycline, trimethoprim-sulfamethoxazole, and daptomycin, have all been used alone or in combination with other agents for the treatment of some MRSA, VRE or VISA infections. Notwithstanding, the limitations of these drugs have been well documented in the literature³ and there remains a concern for the critically ill, high-risk patient population. In view of increasing resistance of Gram-positive bacteria to currently available antibacterial agents, new and potent anti-MRSA, VRE, and VISA agents are highly desired.

Flavonoids are bioactive polyphenolic compounds. They have significant inhibitions towards the growth of both Gram-positive and Gram-negative bacterial strains⁴ and are prospective drug candidiates.⁵ A novel kaempferol diacylrhamnoside **A**^{6–9} (Fig. 1) has recently been isolated and reported as a potent anti-MRSA agent.^{8,9} To assist the development of novel anti-MRSA agents, as well as to investigate structure–activity relationship for the related series of compound **A**, a new series of 2-(3',4'-dihydroxyphenyl)-5,7-dihydroxy-3- β -D-glucosyl-4*H*-chromen-4-one 2",3"-diesters **10a–h** commonly known as quercetin diacylglucosides was designed and synthesized for the first time. Meanwhile, the replacements of kaempferol by quercetin and 2,4-di-O-(4-hydroxycinnamoyl)-

Figure 1. Kaempferol diacylrhamnoside A and quercetin diacylglucoside 10h.

^{*} Corresponding authors. Tel.: +81 (0) 86 251 7971; fax: +81 (0) 86 251 7926. E-mail addresses: chem.lokman@gmail.com (A.M.L. Hossion), ksasaki@pheasant.pharm.okayama-u.ac.jp (K. Sasaki).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2010 Published by Elsevier Ltd. doi:10.1016/j.bmcl.2010.02.060

Scheme 1. Reagents and conditions: (a) Ph₂CCl₂, 170 °C, 8–10 min; (b) 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide, anhydrous K₂CO₃, anhydrous acetone, 40 °C, 10 h; (c) BnBr, anhydrous K₂CO₃, anhydrous DMF, rt, 4 h; (d) (i) MeONa, MeOH–THF, rt, 1.5 h, (ii) Dowex 50 (H⁺) resin; (e) anhydrous acetone, concd H₂SO₄, anhydrous CuSO₄, rt, 24 h; (f) aliphatic or aromatic carboxylic acids, DMAP, DCC, anhydrous CH₂Cl₂, 0 °C–rt, 6–8 h; (g) 0.5 M HCl, MeOH–THF, 50–60 °C, 2–3 h; (h) Pd/C (10%), H₂, MeOH–EtOAc, rt, 8–10 h.

 α -L-rhamnose by 2,3-disubstituted β -D-glucopyranose have considerably enhanced the inhibition towards the growth of bacterial strains.

Scheme 1 depicts a convenient route for the synthesis of compounds 8, 9, and 10a-h. Quercetin 1 was reacted with α,α-dichlorodiphenylmethane to protect the 3'- and 4'-hydroxyl groups. Then, the 3',4'-protected compound was regioselectively glucosylated with one equiv. of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of 1 equiv of K₂CO₃ in dry DMF to give the compound $\mathbf{\hat{2}}^{10}$ as the major product (61%). Since the higher reactivity at position 3 of starting compound allows the selective glucosylation, trace amounts of 3,7-di-glucosylated guercetin was detected and ignored. The free hydroxyl groups of compound 2 were then protected with excess benzyl bromide in the presence of anhydrous K₂CO₃ in dry DMF to give compound **3**. The removal of acetyl group of **3** with MeONa in MeOH followed by treatment with Dowex 50 (H⁺) ion exchange resin gave compound **4**. Reaction of **4** with acetone in the presence of anhydrous copper sulfate and a catalytic amount of sulfuric acid gave a key intermediate 5. The 2",3"-dihydroxy groups of compound **5** were esterified by Steglich esterification¹¹ with different aliphatic or aromatic carboxylic acids in the presence of DMAP and DCC to obtain compounds 6a-h. The isopropylidene protecting group of 6a-h was removed by hydrolysis with 0.5 M hydrochloric acid in a mixture of MeOH and THF to give compounds 7a-h. Finally, the benzyl and diphenylbenzo protecting groups of 7a-h, 3, and 4 were removed in one step by catalytic hydrogenation with 10% Pd/C in MeOH-EtOAc under hydrogen atmosphere to give the compounds 10a-h, 8, and 9. During this treatment, the carbon-carbon double bond adjacent to carbonyl group in the R¹ of compounds **7e-h** were selectively hydrogenated and were converted into compounds 10e-h. The structure of all compounds were confirmed by ¹H NMR, ¹³C NMR, FAB-MS, and/ or elemental analysis.

Synthesized compounds 8, 9, 10a-h, and guercetin were screened for their potential antibacterial activity in vitro against eight selected multi-drug resistant Gram-positive and two Gramnegative bacterial strains, including MRSA, MSSA, VRE, VISA, Pseodomonas aeruginosa and E. coli strains (Table 1). Norfloxacin, vancomycin, and novobiocin were used as reference strains standards. Encouraged by promising inhibition by quercetin of E. coli DNA gyrase B,¹³ compounds **9** and **10a-h** bearing quercetin moiety also were investigated for in vitro inhibitions towards same enzyme DNA gyrase B from E. coli (Table 1). Furthermore, AutoDock modeling¹⁴ was performed (Table 1) to explore the probable binding conformation inside the ATP binding site of 24 kDa fragment of the DNA gyrase B subunit from E. coli (PDB accession code 1AJ6). Most of the tested compounds showed pronounced inhibitions of E. coli DNA gyrase B. Among those, compound **10h** showed the most pronounced inhibition (IC50: 0.19 µM) that was increased concentration-dependently as shown in Figure 2. Docking simulation also supports the inhibition and the superposition on native ligand (novobiocin)¹⁵ as shown in Figure 3 where the carbonyl group of 3-(4-fluorophenyl)propanoyloxy at 3"-position and the hydroxyl group at 4"-position of compound 10h could form Hbonds with ASN46 and SER121 of ATP binding site in the 24 kDa of E. coli DNA gyrase B, respectively. On the contrary, screened compounds did not show reasonable inhibitions towards the growth of Gram-negative bacterial strains, which may be caused by difficulty in outer-membrane permeability of Gram-negative organisms. Compounds bearing 3-(4-substitutedphenyl)propanoyloxy groups (e.g., 10e-h) and (4-fluorophenyl)acetyloxy groups (e.g., **10d**) at 2",3"-positions tend to show comparatively enhanced activity against the growth of Gram-positive bacterial strains. Among these compounds, 3-(4-fluorophenyl) propanoyloxy derivative **10h** has the most pronounced inhibition $(0.25-1 \,\mu\text{g/mL})$ towards the growth of VRE, VISA, MRSA or MSSA strains and was

Table 1

Antibacterial activity (MICs) against multi-drug resistant Gram-positive and Gram-negative bacterial strains and DNA gyrase inhibition (IC₅₀) against DNA gyrase supercoiling kit from *E. coli* and the best docking results on the inhibitions constants (K_i)

Compound	MIC ^a (µg/mL, Gram-positive)							IC ₅₀ ^j (μM, <i>E. coli</i> DNA gyrase B inhibitions)	K_{i}^{k} (μ M, inhibitions constants)	MIC ^a (µg/mL, Gram-negative)		
		VRE	VISA	MRSA		MSSA			PA01 ¹	K-12 ^m		
	FN-1 ^b	NCTC 12201 ^c	Mu50 ^d	OM481 ^e	OM584 ^f	N315 ^g	COL ^h	209P ⁱ				
8	64	64	128	128	128	128	>128	128	nt	nc	>128	>128
9	>128	>128	>128	>128	>128	>128	>128	>128	0.10	$0.05 imes 10^{-3}$	64	32
10a	16	16	16	32	32	8	>128	8	1.10	6.61	>128	>128
10b	8	8	16	32	32	8	16	8	0.34	2.87	>128	>128
10c	8	8	2	16	16	2	16	2	0.21	1.48	>128	>128
10d	8	8	2	8	8	2	8	2	0.28	2.64	>128	>128
10e	8	8	4	4	4	4	8	4	1.21	40.08	>128	>128
10f	8	8	4	8	4	2	8	2	1.23	46.96	>128	>128
10g	2	4	1	2	2	1	4	1	0.46	2.77	>128	>128
10h	1	1	1	2	2	0.25	1	0.25	0.19	1.93	>128	>128
Quercetin	>128	>128	>128	>128	>128	>128	>128	>128	0.14	$0.18 imes 10^{-3}$	>128	64
Norfloxacin	nt	nt	nt	64	128	2	1	0.5	0.09	$0.09 imes 10^{-3}$	nt	0.25
Vancomycin	>128	>128	8	0.25	0.25	0.25	0.25	0.25	nt	nc	>128	nt
Novobiocin	nt	nt	nt	0.25	0.25	0.125	0.25	0.125	0.05	nc	16	8
Α	8	4	nt	1	2	1	1	0.5	nt	nc	>128	nt

nt, not tested; nc, not calculated.

Microdilution method,¹² MIC determined after 24 h.

h Vancomycin-resistant enterococci FN-1.

Vancomycin-resistant enterococci NCTC 12201.

- d Vancomycin intermediate-resistant Staphylococcus aureus Mu50.
- Methicillin-resistant S. aureus OM481.
- Methicillin-resistant S. aureus OM584.
- Methicillin-resistant S aureus N315
- Methicillin-resistant S. aureus COL.
- Methicillin sensitive S. aureus 209P.
- IC₅₀ the concentration of the drugs that inhibits 50% of supercoiling activity.
- K_i values were calculated by computer aided AutoDock 4.0 soft.
- Pseodomonas aeruginosa PA01.

^m Escherichia coli K-12.

up to 128 times more potent than vancomvcin as well as eight times more potent than A. On the other hand, compounds bearing comparatively shorter 4-substituted benzovloxy groups (e.g., 10a- \mathbf{c}) on the same positions have reduced activity against the same bacterial strains. Moreover, most recently Tsuchiya and co-workers reported, the site of action of compound $A^{8,9}$ might be at DNA topoisomerase IV and/or DNA gyrase, and the primary target would be DNA topoisomerase IV. Correspondingly, the site of action of compounds **10a-h** would be similar to compound **A** in *S. aureus* (e.g., Gram-positive). Therefore, it seems that compounds 10a-h have divergent modes of action in Gram-negative and Gram-positive organisms.

For an antibacterial agent to be effective, it must penetrate the bacterial cell to reach its target. The biological evaluation revealed that the size and lipophilicity of the substituent on quercetin-3-β-D-glucoside should be considered the key factors in determining its antibacterial activity. Physical properties including relative hydrophobicity and molecular mass are important for penetration into the bacterial cell and have a different role in Gram-negative and Gram-positive bacteria. Thus, increasing molecular mass and bulkiness of substituent at 2",3"-positions hinder penetration of quercetin diacylglucosides into Gram-negative organisms through the porin channels.¹⁶ The accumulation of compound in Gram-positive bacteria (e.g., S. aureus) is thought to take place by simple diffusion across the cytoplasmic membrane.¹⁷ Accordingly, screened compounds **10a-h** having high molecular mass and bulky side chains at 2",3"-positions were accumulated in Gram-positive organisms more favorably than Gram-negative organisms. Furthermore, halogen such as fluorine is very useful to modulate the electronic effects on phenyl rings of compounds 10c, 10d, 10h and may also influence the steric characteristics and the hydrophilic-hydrophobic balance of the molecules.

In conclusion, we have discovered a novel series of quercetin diacylglucosides that have remarkable and acute antibacterial properties. A range of diverse substituents at 2".3"-positions of quercetin-3-B-p-glucoside modulate antibacterial activity, and makes it worthy for consideration to be developed as a drug candidate for nosocomial infections caused by multi-drug resistant Gram-positive pathogens. Compound 10h appears to be an attractive candidate for further investigations to provide a new antibacterial agent for use against nosocomial multi-drug resistant

Figure 2. DNA supercoiling assay by gyrase from E. coli strains JMtacA and JMtacB (Hallett et al., 1990) of compound 10h. o.c., open-circular DNA; lin., linear DNA; s.c., supercoiled DNA.

Figure 3. (A) Superposition of native ligand (yellow color) and 10h (Blue color) in the complex with 24 kDa fragment of the DNA gyrase B by using the AutoDock 4.0 software tool. (B) AutoDock-modeled binding of **10h** inside ATP binding site of DNA gyrase B. H-Bonds are displayed as sphere.

Gram-positive infections, in particular VRE and VISA infections. Further studies on antibacterial properties of series related to guercetin diacylglucosides are currently in progress to obtain more potent inhibitions towards the growth of Gram-positive bacterial strains.

Acknowledgements

We thank Professor Adrian L. Schwan of University of Guelph for discussion and critical reading of the manuscript, and are grateful to the SC-NMR Laboratory of Okayama University for NMR experiments.

Supplementary data

Supplementary data (experimental details, spectroscopic data, FAB-MS, elemental analysis, biological procedures and molecular modeling) associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2010.02.060.

References and notes

- 1. (a) Center for Disease Control and Prevention, Public Health Dispatch. Vancomvcin-Resistant Staphylococcus aureus-Pennsylvania. Morbidity Mortality Weekly Report 2002, 51 (40), 902.; (b) Levy, S. B.; Marshall, B. Nat. Med. 2004, 10, S122; (c) Barrett, J. F. Expert Opin. Ther. Targets 2005, 9, 253; (d) Bryskier, A. Expert Rev. Anti Infect. Ther. 2005, 3, 505.
- (a) Loffler, C. A.; MacDougall, C. Expert Rev. Anti Infect. Ther. 2007, 5, 961; (b) 2. Mitchell, M. O. Anti Infect. Agents Med. Chem. 2007, 6, 243; (c) Arias, C. A.; Murray, B. E. N. Eng. J. Med. 2009, 360, 439.
- (a) Speer, B. S.; Shoemaker, N. B.; Salyers, A. A. Clin. Microbiol. Rev. 1992, 5, 387; 3 (b) Elsner, H.-A.; Krüger, W.; Laufs, R.; Mack, D. Eur. J. Clin. Microbiol. Infect. Dis.

1997, 16, 620; (c) Hachem, R. Y.; Hicks, K.; Huen, A.; Raad, I. Myelosupperssion and Serotonin Syndrome Associated with Concurrent Use of Linezolid and Selective Serotonin Reuptake Inhibitora in Bone Marrow Transplant Recipients. Clin. Infect. Dis. 2003, 37, e8.; (d) Baysallar, M.; Kilic, A.; Aydogan, H.; Cilli, F.; Doganci, L. Int. J. Antimicrob. Agents 2004, 23, 510; (e) Navon-Venezia, S.; Leavitt, A.; Carmeli, Y. J. Antimicrob. Chemother. 2007, 60, 449; (f) Hidron, A. I.; Schuetz, A. N.; Nolte, F. S.; Gould, C. V.; Osborn, M. K. J. Antimicrob. Chemother. 2008, 61, 1394.

- (a) Basile, A.; Giordano, S.; Lopez-saez, J. A.; Cobianchi, R. C. Phytochemistry 1999, 52, 1479; (b) Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Cobianchi, R. C.; Vuotto, M. L.; Ferrara, L. Fitoterapia 2000, 71, S110; (c) Brown, A. K.; Papaemmanouil, A.; Bhowruth, V.; Bhatt, A.; Dover, L. G.; Besra, G. S. Microbiology 2007, 153, 3314.
- Cazarolli, L. H.; Zanatta, L.; Alberton, E. H.; Figueiredo, M. S.; Folador, P.; 5. Damazio, R. G.; Pizzolatti, M. G.; Silva, F. R. Mini-Rev. Med. Chem. 2008, 8, 1429. 6 Bloor, S. J. Phytochemistry 1995, 38, 1033.
- Kawahara, N.; Satake, M.; Goda, Y. Chem. Pharm. Bull. 2002, 50, 1619.
- 8. Otsuka, N.; Liu, M.-H.; Shiota, S.; Ogawa, W.; Kuroda, T.; Hatano, T.; Tsuchiya, T. Biol. Pharm. Bull. 2008, 31, 1794.
- 9 Liu, M.-H.; Otsuka, N.; Noyori, K.; Shiota, S.; Ogawa, W.; Kuroda, T.; Hatano, T.; Tsuchiya, T. Biol. Pharm. Bull. 2009, 32, 489.
- Chen, L.; Li, J.; Luo, C.; Xu, W.; Chen, G.; Liew, O. W.; Zhu, W.; Puah, C. M.; Shen, 10. X.; Jiang, H. Bioorg. Med. Chem. 2006, 14, 8295.
- 11. Neises, B.; Steglich, W. Org. Synth. 1990, 7, 93.
- Clinical and Laboratory Standard Institute (CLSI). Methods for Dilution 12. Antibacterial Susceptibility Test for Bacteria That Grow Aerobically, 7th ed., vol. 27, Approved Standard (MA7-A7), Clinical and Laboratory Standard Institute, Wayne, 2007, p 113.
- Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Solmajer, T.; Jerrala, R. Biochem. 13. Biophys. Res. Commun. 2003, 306, 530.
- Rosenfeld, R. J.; Goodsell, D. S.; Musah, R. A.; Morris, G. M.; Goodin, D. B.; Olson, A. J. J. Comput. Aided Mol. Des. 2003, 17, 525.
- 15. Holdgate, G. A.; Tunnicliffe, A.; Ward, W. H. J.; Weston, S. A.; Rosenbrock, G.; Barth, P. T.; Taylor, I. W. F.; Pauptit, R. A.; Timms, D. Biochemistry 1997, 36, 9663
- 16. Piddock, L. J. V.; Jin, Y. F.; Griggs, D. J. J. Antimicrob. Chemother. 2001, 47, 261.
- 17. Bryan, L. E.; Bedard, J. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 232.