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Abstract—Potent new inhibitors of NADH:ubiquinone oxidoreductase (complex I) have been designed, with the help of molecular
modelling, by hybridisation of known complex I inhibitors with inhibitors of cytochrome c oxidoreductase. The most interesting
compound was the chromone 7 which was a selective inhibitor of complex I (IC50 15 nM) and showed acaricidal activity against
spider mites.
# 2003 Elsevier Ltd. All rights reserved.
The enzyme complexes NADH:ubiquinone oxido-
reductase (E.C. 1.6.99.3; complex I) and cytochrome c
oxidoreductase (E.C. 1.10.2.2; complex III or bc1 com-
plex) are the first and third electron transfer complexes
of the mitochondrial respiratory chain. Complex I cat-
alyses the transfer of two electrons from NADH to
ubiquinone (coenzyme Q) to give the corresponding
ubihydroquinone. The bc1 complex transfers electrons
from the ubihydroquinone to cytochrome c via the
Rieske iron–sulfur protein and cytochrome c1. These
redox processes result in translocation of protons across
the inner mitochondrial membrane, thereby establishing
an electrochemical (proton) gradient which drives the
synthesis of ATP.1

Several commercial acaricides, including fenazaquine
(1),2,3 pyridaben (2)3,4 and tebufenpyrad (3)4 are potent
inhibitors of complex I which are believed to bind at, or
very close to, a ubiquinone binding site.1 The naturally
occurring chromone stigmatellin (4) and its synthetic
analogue 5 are potent inhibitors of the bc1 complex
which bind at a ubihydroquinone site.5,6 These two bc1
complex inhibitors share the same heterocyclic moiety
but have quite different side chains. In contrast, the
complex I inhibitors 1–3 contain quite different hetero-
cyles but all contain the same 4-t-butylphenyl moiety in
their side chain. This communication describes the
results of our efforts to design new acaricidal complex I
inhibitors via hybridisation of the complex I inhibitors
1–3 with the bc1 inhibitors 4 and 5 (Fig. 1).

We postulated that the heterocyclic ring systems in
structures 1–5 were mimicking a quinone or hydro-
quinone nucleus and that the lipophilic side chain toge-
ther with the ring substituents were determining the
specificity for either complex I or the bc1 complex. With
the help of molecular modelling, we sought to design
new acaricidal complex I inhibitors by changing the ring
substituents and lipophilic side chains of the bc1 inhi-
biting chromones 4 and 5 to make them more closely
resemble those found in the complex I inhibiting struc-
tures 1–3. As a result of these efforts, the 2-benzylmer-
captochromones 6 and 7 were proposed as potential
synthetic targets. They both contained a lipophilic t-
butylphenyl side chain of the type found in compounds
1–3 and an unsubstituted fused phenyl ring as found in
fenazaquin (1). In addition, the relationship between the
lipophilic side chain and the heterocyclic ring carbonyl
group closely resembled that seen in pyridaben (2).
Using the published X-ray crystal structure of tebu-
fenpyrad (3)7 as a starting point, molecular modelling
studies suggested that the t-butyl carbon atoms and the
heterocyclic ring nitrogens (in 1 and 3)/carbonyl-oxy-
gens (in 2, 6 and 7) of structures 1, 2, 3, 6 and 7 could be
sensibly overlaid. Initial studies were performed using
simple stick models and this work was subsequently
semiquantified using computational methods.8 Thus,
the t-butyl tertiary-carbons and ring nitrogens/carbonyl
oxygens of structures 1, 2 and 7 were superimposed over
the equivalent centres in the X-ray crystal structure of 3.
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All structures were then conformationally minimised
within the imposed constraints that the t-butyl tertiary-
carbons and the ring nitrogens/carbonyl-oxygens,
respectively, were confined to stay within 0.15 Å of each
other. The resulting overlaid structures are shown in
Figure 2 and considering the relatively few constraints
that were imposed, the degree of overlap was considered
very encouraging. In particular, all four heterocyclic
rings ended up in a very similar plane and the side
chains connecting the heterocyclic and t-butylphenyl
moieties were all well aligned. The minimised structure
for tebufenpyrad (3) remained very close to the pub-
lished X-ray crystal structure.7

Based upon the results of the molecular modelling
studies described above, the chromones 6 and 7 were
synthesised by adapting the methodology described by
Bantick and Suschitzky9 as summarised in Scheme 1.
Biochemical testing on submitochondrial membranes
prepared from house fly flight muscles10 showed that
compounds 6 and 7 inhibited the NADH-dependent
reduction of cytochrome c (IC50 500 and 8 nM, respec-
tively) but had no effect on succinate-dependent cyto-
chrome c reduction. These results indicated that the new
chromones were binding to complex I and not to the bc1
complex. Under the same assay conditions, the Stigma-
tellin analogue 511 was (as expected5) a potent inhibitor
of the bc1 complex (IC50 2 nM) but had no effect on
Figure 1. Inhibitors of the electron transfer complex I and the bc1 complex. The heterocyclic ring nitrogens (in 1 and 3) and carbonyl-oxygens (in 2,
6 and 7) used in the molecular modelling overlay are marked with an asterisk (*).
Scheme 1. Reagents and conditions: (a) 3 equiv t-BuOK, 1.1 equiv CS2, toluene, rt, 4 days then AcOH to pH 5; 30–67%; (b) 1.5 equiv 4-t-
BuC6H4(CH2)nOH, 1.5 equiv EtO2CN¼NCO2Et, 1.5 equiv PPh3, THF, rt, 24 h; 30–64%; (c) from compound 6 (R=H): 1 equiv NCS, AIBN, CCl4,
�, 5 h; 44%; (d) from compound 7 (R=Me): 3 equiv MCPBA, CH2Cl2, rt, 16 h; 92%.
Figure 2. Diagram showing the superimposed structures 1, 2, 3 and 7.
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complex I activity. Further testing showed that com-
pound 7 inhibited purified soluble house fly complex I10

with an apparent IC50 of 15 nM (Fig. 3), whereas com-
pound 6 was much less active (IC50=118 nM). The
enzymatic results were further substantiated by equili-
brium binding data:10 Compound 7 inhibited the
specific binding of the radiolabelled complex I inhibitor
3H-AE F11920912 in a concentration-dependent manner
(Fig. 3) with an IC50 of 38 nM and an apparent Ki of
25 nM. Taken together, the biochemical results indicate
that the chromone 7 occupies the same, or a closely
overlapping, binding site to the known complex I inhi-
bitors 1–3 and 3H-AE F119209. Biological testing of
compound 7 showed that it possessed acaricidal activity
against spider mites (LD50 ca. 50 ppm) whereas chro-
mones 5 and 6 were inactive.13

In order to probe the structure–activity requirements of
this new lead, a number of other chromone analogues of
compound 7 were prepared according to Schemes 1 and
29 and tested for biochemical10 and biological13 activity.
The results (Table 1) showed that the 3-chloro com-
pound 8 maintained biochemical and some biological
activity, whereas the 3-ethyl substituted compound 9
was inactive. Oxidation of the sulfur (compound 10) led
to a 20-fold drop in inhibitory potency and loss of bio-
logical activity. Replacement of the sulfur by NH
(compound 11) gave a reasonable inhibitor (IC50

20 nM) which was, however, biologically inactive. The
effect of elongating the connecting chain between the
chromone and t-butylphenyl moieties was also investi-
gated. Inhibitory potency and significant biological
activity were maintained in the sulfur analogue 12 but
the NH analogue 13 was inactive. Overall, there is a
reasonably good correlation between in vitro and in
vivo activity, whereby compounds with IC50 values of
�10 nM were biologically active.

In conclusion, we have succeeded in designing and syn-
thesising potent new inhibitors of complex 1, starting
out from known bc1 inhibitors.14 The most interesting
compound, chromone 7, is a selective inhibitor of com-
plex I (IC50 15 nM) and exhibits acaricidal activity
against spider mites.
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