Synthese und Strukturen von [ReNBr₂(Me₂PhP)₃] und (Me₂PhPH)[fac-Re(NBBr₃)Br₃(Me₂PhP)₂]

B. Schmidt-Brücken^a und U. Abram^{b, *}

^a Dresden, Institut für Radiochemie des Forschungszentrums Rossendorf

Bei der Redaktion eingegangen am 19. März 2001.

Professor Eberhard Hoyer zum 70. Geburtstag gewidmet

Syntheses and Structures of [ReNBr₂(Me₂PhP)₃] and (Me₂PhPH)[fac-Re(NBBr₃)Br₃(Me₂PhP)₂]

Abstract. [ReNBr₂(Me₂PhP)₃] (1) has been prepared by the reaction of [ReNCl₂(Me₂PhP)₃] with Me₃SiBr in dichloromethane. The bromo complex reacts with BBr₃ under formation of [Re(NBBr₃)Br₂(Me₂PhP)₃] (2) or (Me₂PhPH)-[fac-Re(NBBr₃)Br₃(Me₂PhP)₂] (3) depending on the experimental conditions. The formation of the nitrido bridge leads to a significant decrease of the structural *trans* influence of

the nitrido ligand which is evident by the shortening of the Re-(*trans*)Br bond from 2.795(1) Å in [ReNBr₂(Me₂PhP)₃] to 2.620(1) Å in [*fac*-Re(NBBr₃)Br₃(Me₂PhP)₂]⁻ and 2.598(1) Å in [Re(NBBr₃)Br₂(Me₂PhP)₃], respectively.

Molekülverbindungen des Rheniums bestimmt wurden [7]. Die drei Me₂PhP-Liganden befinden sich in meridionaler

Die Umsetzung von 1 mit einem 5fachen Überschuß an

Keywords: Rhenium; Nitrido complexes; Boron

Anordnung.

Im Rahmen unserer Untersuchungen zur Reaktivität von Nitridokomplexen haben wir eine Reihe von Rheniumkomplexen mit Borverbindungen umgesetzt. Dabei konnte ein bevorzugter Angriff der Lewis-aciden Borane am Nitridoliganden beobachtet werden [1]. Bei Verwendung von BBr₃ traten jedoch auch Ligandenaustauschreaktionen auf, von denen vor allen die Halogenoliganden betroffen waren, oder es entstanden durch die intermediäre Bildung unterkoordinierter Metallzentren Mehrkernkomplexe mit Re≡N-Re-Bindungen [2].

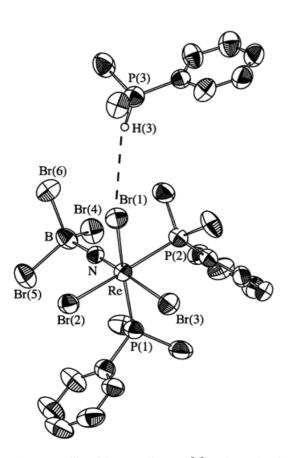
Um Halogenaustauschreaktionen am Übergangsmetall und die damit verbundene Bildung von Komplexen mit gemischter Cl/Br-Koordinationssphäre bei der Ausbildung von Nitridobrücken [1, 3] zu vermeiden, synthetisierten wir [ReNBr₂(Me₂PhP)₃] (1). Dies gelingt durch die Reaktion von [ReNCl₂(Me₂PhP)₃] mit HBr oder mit Me₃SiBr [4]. [ReNBr₂(Me₂PhP)₃] ist eine gelbe, luftstabile Verbindung, die, in Analogie zum Chlorokomplex, gut in organischen Lösungsmitteln wie CHCl₃ oder Aceton löslich ist. Die Absorptionsbande der Re≡N-Streckschwingung liegt bei 1061 cm⁻¹ und ist damit gegenüber der von [ReNCl₂(Me₂PhP)₃] nicht verschoben.

Die Strukturanalyse [5, 6] von 1 zeigt, daß die Bindung zum Bromoliganden in *trans*-Stellung zum starken σ -Donor "N³⁻" deutlich aufgeweitet ist (Abb. 1). Mit 2,795(1) Å gehört der gemessene Re–Br-Abstand zu den längsten, die für

BBr₃ führt bei Zimmertemperatur in glatter Reaktion zum violetten [Re(NBBr₃)Br₂(Me₂PhP)₃] (2), während beim Er-

Br(2) P(2) P(2) P(1)

Abb. 1 Ellipsoid-Darstellung [6] der Struktur von $[ReNBr_2(Me_2PhP)_3]$. Ausgewählte Bindungswinkel/°: N-Re-Br(2) 172,5(2); N-Re-P(1) 94,5(3); N-Re-P(2) 91,0(2); N-Re-P(3) 94,03(8); N-Re-Br(1) 103,6(2).


^b Berlin, Institut für Chemie der Freien Universität

^{*} Prof. Dr. Ulrich Abram Freie Universität Berlin Institut für Chemie/Radiochemie Fabeckstraße 34–36 D-14195 Berlin E-mail: abram@chemie.fu-berlin.de

hitzen des Reaktionsansatzes oder bei größerem BBr₃-Überschuß Folgereaktionen zu beobachten sind, an denen auch das Lösungsmittel CH₂Cl₂ beteiligt ist. Aus solchen Lösungen konnten wir (Me₂PhPH)[fac-Re(NBBr₃)Br₃(Me₂PhP)₂] (3) isolieren. Im weiteren Verlauf der Reaktion ist die Bildung von [ReNBr₄]⁻ sowie von Verbindungen mit Nitridobrücke und äquatorialer Br₄-Koordinationssphäre EPRspektroskopisch nachweisbar [8].

(Me₂PhPH)[fac-Re(NBBr₃)Br₃(Me₂PhP)₂], das neben [Re(NBBr₃)Br₂(Me₂PhP)₃] in geringen Mengen auch bei der Reaktion von [ReNBr₂(Me₂PhP)₃] mit Bis(dibromoborylcy-clopentadienyl)eisen(II) entsteht [9], kristallisiert nach dem Überschichten der Reaktionsmischung mit n-Hexan in Form blauer Plättchen. Die IR-Bande der Rhenium-Stickstoff-Mehrfachbindung hat sich infolge der gebildeten Nitridobrücke um ca. 100 cm⁻¹ nach höheren Wellenzahlen verschoben. Ähnliche Befunde wurden bereits für eine große Zahl von Verbindungen mit Re≡N-B-Brücken berichtet [1] und können durch Schwingungskopplungen erklärt werden.

Abb. 2 zeigt eine Ellipsoiddarstellung [6] der Struktur von $(Me_2PhPH)[fac-Re(NBBr_3)Br_3(Me_2PhP)_2]$, in die auch eine schwache Wasserstoffbrückenbindung zwischen Br(1) und dem Kation (Abstand H(3)-Br(1): 2,72(9) Å; Winkel $Br(1)N(3)\cdots P(3)$ 161(6)°) eingezeichnet ist. Wie in der Struktur von 2, die bereits in [10] ausführlich beschrieben wurde, ist die gebildete Nitridobrücke fast linear und die in

Abb. 2 Ellipsoid-Darstellung [6] der Struktur von (Me₂PhPH)[fac-Re(NBBr₃)Br₃(Me₂PhP)₂]. Ausgewählte Bindungswinkel/°: N-Re-Br(3) 173,0(3); N-Re-P(1) 91,6(3); N-Re-P(2) 92,2(3); N-Re-Br(1) 99,2(3); N-Re-Br(2) 96,0(3); Re-N-B 172,9(8).

trans-Stellung zum Nitridoliganden befindliche Re-Br-Bindung deutlich kürzer als in 1. Die Länge der Re≡N-Bindung wird dagegen von der Brückenbildung kaum beeinflußt. Eine Zusammenstellung wichtiger Bindungslängen (in Å) in [ReNBr₂(Me₂PhP)₃] und den daraus abgeleiteten Verbindungen mit Re≡N-BBr₃-Brücken ist in den Formelbildern 1 bis 3 gegeben.

Wir danken der Deutschen Forschungsgemeinschaft für ihre Unterstützung, der Hermann Starck A.G. für die Spende von Rheniummetall und Herrn *Prof. Dr. J. Strähle*, Tübingen, für die Möglichkeit zur Kristallstrukturmessung.

- [1] U. Abram, A. Hagenbach, A. Voigt, R. Kirmse, Z. Anorg. Allg. Chem. 2001, 627, 955 und dort zitierte Literatur.
- [2] U. Abram, Z. Anorg. Allg. Chem. 2000, 626, 318 und dort zitierte Literatur.
- [3] A. Hagenbach, J. Strähle, Z. Anorg. Allg. Chem. 1999, 625, 1181.
- [4] a) 69 mg (0,1 mmol) [ReNCl₂(Me₂PhP)₃] werden in 20 ml Methanol gelöst und mit 1 ml 48%iger HBr versetzt. Die Lösung wird 1 Stunde am Rückfluß erhitzt und anschließend auf die Hälfte des Volumens reduziert. Das dabei ausgefallene braune Pulver wird abfiltriert, mehrfach mit Wasser und Diethylether gewaschen und aus Dichlormethan/n-Hexan umkristallisiert. Ausbeute: 43 mg (55% d. Th.).
 - b) 69 mg (0,1 mmol) [ReNCl₂(Me₂PhP)₃] werden in 10 ml Dichlormethan gelöst und mit 0,03 ml (0,25 mmol) Me₃SiBr versetzt. Die Lösung wird für 30 min. am Rückfluß erhitzt. Anschließend werden das gebildete Me₃SiCl und überschüssiges Me₃SiBr abdestilliert und die Lösung mit n-Hexan vermischt. Bei langsamen Einengen fällt das Produkt in kristalliner Form an. Ausbeute: 49 mg (63% d. Th.).
 - Dunkelgelbe Kristalle. Elementaranalyse: ber. (für ReC₂₄H₃₃Br₂NP₃): C 37,2; H 4,3; N 1,8; gef.: C 37,5; H 4,2; N 1,7%. IR ($\nu_{\text{max}}/\text{cm}^{-1}$): Re \equiv N 1061. FAB⁺-MS (m/z,% B, Zuordnung): 774 (3%, M⁺), 694 (94%, [ReNBr(Me₂PhP)₃]⁺), 637 (73%, [ReNBr₂(Me₂PhP)₂]⁺), 556 (100%, [ReNBr(Me₂PhP)₂]⁺), 499 (18%, [ReNBr₂-(Me₂PhP)]⁺).
- [5] Kristallstrukturmessungen an einem Vierkreisdiffraktometer vom Typ CAD4. Kristalldaten von **1** (298 K): Raumgruppe Pbca, Z = 8, a = 16,687(2) Å, b = 17,144(2) Å, c = 19,214(2) Å, D(ber.) = 1,872 g/cm³, ω -Scans, 7187 gemessene Reflexe (davon 5977 symmetrieunabhängige und 3265 mit I > 2σ (I)), μ (MoK α) = 7,517 mm⁻¹, empirische Absorptionskorrektur (*DELABS* [6], T_{min} = 0,533, T_{max} = 1,000), Strukturlösung mit der Patterson-Methode (SHELXS97 [6]), Vollmatrixverfeinerung an F² (SHELXL97 [6]), H-Atomlagen berech-

- R1 = 0.0445, 280 Parameter, wR2 = 0.0717, GooF = 0,969. Kristalldaten von 3 (213 K): Raumgruppe $P\overline{1}$, Z = 2, a = 10,219(1) Å, b = 10,229(1) Å, c = 10,229(1) Å16,286(1) Å, $\alpha = 92,96(1)^{\circ}$, $\beta = 99,72(1)^{\circ}$, $\gamma = 93,81(1)^{\circ}$, D(ber.) = $2,183 \text{ g/cm}^3$, ω -Scans, 6525 gemessene Reflexe (davon 5411 symmetrieunabhängige und 4946 mit $I > 2\sigma(I)$), $\mu(CuK\alpha) = 16,886 \text{ mm}^{-1}$, empirische Absorptionskorrektur (Psi Scans, $T_{min} = 0.3362$, $T_{max} = 0.9696$), Strukturlösung mit der Patterson-Methode (SHELXS97 [6]), Vollmatrixverfeinerung an F² (SHELXL97 [6]), H-Atomlagen berechnet (H(3) aus der Differenzfouriersynthese), 329 Parameter, R1 = 0,0653, wR2 = 0,01760, GooF = 1,048. Weitere Daten der Strukturanalyse sind beim Cambridge Crystallographic Data Centre unter den Hinterlegungsnummern CCDC 160360 (1) und CCDC 160361 (3) zugänglich.
- [6] A. L. Spek, HELENA, PLATON Programme zur Auswertung kristallographischer Daten, Universität

- Utrecht, 1996; G. M. Sheldrick, SHELXS97 und SHELXL97 Programme zur Lösung und Verfeinerung von Kristallstrukturen, Universität Göttingen, 1997; L. Zsolnai, ZORTEP Programm zur grafischen Darstellung von Kristallstrukturen, Universität Heidelberg, 1998
- [7] Kristallstrukturdatenbank, Cambridge Crystallographic Data Centre, Cambridge, 2000.
- [8] Die EPR-Spektroskopie erlaubt sehr sichere Aussagen zur Bildung von Nitridobrücken vom Typ Re≡N-X, zur zweifelsfreien Bestimmung der Zusammensetzung von X sind jedoch ergänzende Informationen nötig, vgl. auch [1] oder U. Abram, A. Voigt, R. Kirmse, *Inorg. Chem. Communications*, **1998**, *1*, 213.
- [9] B. Schmidt-Brücken, Dissertation, Univ. Tübingen, 2000.
- [10] U. Abram, B. Schmidt-Brücken, S. Ritter, *Polyhedron*, 1999, 18, 831.