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The tellurosilyliron complex Cp�(CO)2FeSiMe2TePh (1)
was synthesized by treatment of Cp�(CO)2FeSiMe2Cl with
LiTePh. Irradiation of complex 1 and acetone in toluene led
to dissociation of a CO ligand and insertion of acetone into
the silicon–tellurium bond to afford the five-membered metalla-
cycle Cp�(CO)Fe{�2(Si,Te)-Me2SiOCMe2TePh}.

Over the past few decades, a considerable number of stud-
ies have been made on the synthesis and properties of transition
metal silyl complexes, which could participate in various trans-
formation reactions of organosilicon compounds.1 Although a
large number of silyl complexes with alkyl and/or aryl substitu-
ents have been explored, little is known about the reactivity of
heteroatom-substituted silyl complexes. Pannell and we report-
ed that a coordinatively unsaturated disilanyl complex under-
goes 1,3-migration of a terminal silyl group to generate a silyl-
(silylene) complex.2,3 In particular, the photoreaction of disila-
nyl(carbonyl)metal complexes having an intramolecular donor
such as alkoxy or amino group gives donor-bridged bis(silylene)
complexes almost quantitatively (Scheme 1).4 Our recent inter-
est has been focusing on the syntheses and reactivities of
LnMSiMe2ERm compounds, in which the heteroatom (E) at
the �-position possesses a lone electron pair and could be coor-
dinated to an unsaturated metal center generated in the course of
the reactions.5 We report here the synthesis and photochemistry
of a tellurosilyliron(II) complex Cp�(CO)2FeSiMe2TePh (1).

A THF solution of Cp�(CO)2FeSiMe2Cl was treated with
LiTePh, which was freshly prepared by the reaction of Ph2Te2
and LiBEt3H in THF (Eq 1). Workup of the mixture and crys-
tallization from toluene/hexane at�30 �C afforded yellow crys-
tals of 1 in 69% isolated yield.6 The structure of 1 was deter-
mined by the X-ray diffraction study (Figure 1).7 Complex 1
adopts a normal piano-stool geometry; the iron center possesses
a pentamethylcyclopentadienyl ligand, two carbonyl ligands,
and a tellurosilyl ligand. The Fe–Si bond (2.311(2) �A) is signif-
icantly shorter than the typical iron-silicon bond (2.32–2.37 �A)
in LnFeSiR3 (R = alkyl, aryl),1 but is comparable to those of
the silyliron complexes with electron-withdrawing groups or
heteroatoms on the silicon atom (2.21–2.31 �A).1 The shortening

is attributable to the back-donation from the iron d� orbital to
the �� orbital of the silicon–tellurium bond.5,8 Consistently,
the bond length of Si–Te (2.568(2) �A) is close to the longer limit
of the normal silicon–tellurium single bonds (2.47–2.57 �A).9

Various spectroscopic data also support the structure of 1.
The 29Si{1H} NMR spectrum shows a signal (� 47.4) in the nor-
mal region of silyliron complexes.1

UV (� > 300 nm) irradiation of 1 in benzene-d6 gave a
complex mixture of Cp�(CO)2FeTePh (2),10 [Cp�Fe(CO)2]2,
and unidentified products, all of them being in low yields. For-
mation of 2 and [Cp�Fe(CO)2]2 could be explained by assuming
the initial generation of three-membered metallacycle Cp�(CO)-
Fe{�2(Si,Te)-Me2SiTePh} (3). Intermediate 3 then releases the
silylene moiety [:SiMe2], and the following coordination of CO
affords 2. Intermediate 3 can also release the tellurosilyl ligand
SiMe2TePh to give a [Cp

�(CO)Fe] fragment, which is smoothly
converted to [Cp�Fe(CO)2]2 through the coordination of CO
and dimerization. In addition, Tilley et al. reported the synthesis
and structure of thiasilairidacylcle [Cp�(PMe3)Ir{�2(Si; S)-
Si(StBu)2S

tBu}](OTf) by the reaction of Cp�(PMe3)Ir(Me)OTf
with HSi(StBu)3.

11 This fact also supports the intermediate for-
mation of the tellurasilametallacycle 3.

To trap the intermediate 3, the photolysis of 1 was per-
formed in the presence of acetone. Thus, irradiation of 1 in
the presence of a large exess of acetone for 5min afforded
the insertion product 4 (Eq 2). Crystallization of the residue
from hexane afforded brown crystals of 4 in 26% isolated
yield.12 The low yield is due to the sensitivity of 4 to irradiation.
In fact, monitoring the reaction by 1H NMR spectroscopy
showed decrease of the peak of 4 on prolonged irradiation.

Scheme 1.

Figure 1. ORTEP drawing of 1. Selected interatomic distances ( �A)
and bond angles (�): Fe–Si 2.311(2), Te–Si 2.568(2), Te–C15
2.123(9), Si–Fe–C11 82.9(2), Si–Fe–C12 85.5(3), C11–Fe–C12
98.9(4), Fe–Si–Te 110.42(8), Si–Te–C15 94.8(2), Fe� � �Te 4.009(2).
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The X-ray crystal structure analysis of 4 (Figure 2)7 re-
vealed that the Fe–Si bond (2.296(1) �A) is slightly shorter than
the normal iron–silicon single bonds (2.31–2.46 �A)1 and is close
to the values for base-stabilized silylene complexes (2.21–
2.29 �A).1 The Fe–Te bond (2.4407(9) �A) is considerably shorter
than the previously reported Fe–Te bonds in telluroether com-
plexes (2.53–2.59 �A).13 The bond lengths of Si–O1 and Te–
C11 are 1.708(4) �A and 2.280(5) �A, respectively, and are both
longer than the normal distances of the corresponding
single bonds [Si–O (ca. 1.63 �A),14 Te–C (2.07–2.17 �A)13]. Fur-
thermore, the bond distance of O1–C11 (1.387(6) �A) is signifi-
cantly shorter than the normal C–O single bond (ca. 1.42 �A).14

These structural features suggest the significant contribution
of the acetone-stabilized benzenetellurolato(silylene) form A
in Figure 3.

The NMR spectroscopic features of 4 are consistent with
the crystal structure. The signals of four Me groups on the
five-membered metallacycle appear inequivalently at 0.67,
0.93, 1.08, and 1.93 ppm. The 29Si{1H} NMR spectrum shows
a signal at 95.3 ppm. The chemical shift is characteristic of
the base-stabilized silylene complexes,1 supporting the contri-
bution of A.

The formation of 4 can be considered to proceed through
the insertion of the C=O bond of acetone into the Si–Te bond
in tellurasilametallacycle 3. Since the precursor 1 does not react
with acetone at room temperature, this highly enhanced reactiv-
ity of 3 is attributable to the ring strain of the three-membered
ring15 and/or to a significant contribution of its open-form, tel-
lurolato(silylene) complex B (Scheme 2). The lone pair of ace-

tone readily coordinates to the positively charged silylene sili-
con atom,16 and then the lone pair of the intramolecular
tellurolato ligand nucleophillically attacks the carbonyl carbon
atom of acetone to form 4.
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Figure 2. ORTEP drawing of 4. Selected bond lengths ( �A) and an-
gles (�): Fe–Si 2.296(1), Fe–Te 2.4407(9), Fe–C22 1.727(4), O2–
C22 1.158(5), Te–C11 2.280(5), O1–C11 1.387(6), Si–O1
1.708(4), Te–Fe–Si 82.34(4), Fe–Te–C11 98.0(1), Fe–Si–O1
108.3(1), Te–C11–O1 105.9(3), Si–O1–C11 125.4(3).

Figure 3.

Scheme 2.
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