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Rhodium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes
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The transition metal-catalyzed anti-Markovnikov hydroamination Table 1. Ligand Effects on the Reaction of Styrene with

of olefins was namédas one of 10 challenges for homogeneous II\?AOIrpth?j"Ee in éhf Presence of Catalysts Containing DPEphos and
. . . . . Relate Iganas
catalysis because terminal amines are common commodity chemi- 9

calg and subunits of pharmaceuticdldlearly 10 years later, the
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reaction remains unknown, except for additions of amines to

Michael acceptors such as acrylates and acrylonitfilemthanide PP s aniphos L L
complexes catalyze the intramolecular hydroamination of terminal
. i i ieldb i ieldb

alkenes$~7 Early metals catalyze additions to allerffeand pal- entry ligand amine yield® (%) enamine yield" (%)
ladium complexes catalyze additions to vinylarehbst all these 1 DPEphos (eq 1) 62 20
reactions give Markovnikov regioselectivity:1®> Anti-Markovni- g BEEE 18 7f
kov, rhodium-catalyzed oxidative aminations of olefins to form 4 DPPE 0 0
enamines have been reported recently by Béfiét vinylpyri- 5 DPPPerft 1 1
dine!” is the only olefin that gives amine as the major product. We 6 Xantphos 1) trace 9
report the transition metal-catalyzed anti-Markovnikov hydroami- ! DBFphos 2) 3 40

p Yy Yy 8 BIPHEphos ) 0 0

nation of unactivated vinylarenes. The reaction occurs regio-

specifically between a variety of vinylarenes and secondary amines 2 Reaction were run for 48 h at PC. Morpholine:styrene:[Rh(cogBF:

in the presence of a rhodium complex of DPEphos. I(i?atrc])?u:nle:ﬁ:gg&?é?c? g(iZz fgirg(%li Oégo[pﬁggnﬁ;nﬁh%#gliz%?s(rgﬁ
Dur_lng studle_s on the palladium-catalyzed Markovnlkov addition phenylphoéphino{buta'né.”l.,5—Bis(dKi)pher)1lyKI)ph0£phino)pentané.

of amines to vinylareneswe found that rhodium complexes of

DPEphos generated high amine:enamine ratios and the same anti7able 2. Anti-Markovnikov Hydroamination of Vinylarenes with

Markovnikov regiochemistry as the oxidative aminations. Table 1 Secondary Amines?

summarizes the selectivity of catalysts containing ligands related N [RhEod)DPEPos)IBFs ™\

to DPEphos for the reaction of morpholine with styrene. Only HNRR' + n—()/\ " tolens, 70 °C . AT

DPEphos showed high conversion with amine as the major product.

Even closely related analogues such as Xantphos and DBFphos enty amine vinylarene time (h) yield® (%) amine/enaminet

5 mol% NRR'

generated little or no hydroamination product. 1 1a 2a 48 71 75:25
2 la 2b 48 72 79:21
N /—\ 5% [Rh(COD)(DPEphos)]BF4 fo) 3 la 2c 48 71 85:15
©/\ *HN 0 ,(\) “) 4 la 2d 48 70 78:22
©/\/ 5e la 2e 72 48 60:40
DPEphos = 0 6°f la 2f 72 41 57:43
Phop PPh 79 1b 2a 72 57 63:37
2 2 8 1b 2d 48 66 77:23
99 1c 2a 72 58 86:14
After optimization of the reaction conditions, the addition of 10 1d 2a 72 53 96:4
morpholine to styrene occurred at 70 in toluene solution in the 11eh le 2a 72 5K 76:24
f5 mol % [Rh(COD)(DPEphos)JAb produce the anti- -5 o 2 a8 62 72:28
presence of 5 mo o[ _ ( : )( p (_)S)]B produce the anti- 13 19 2b 72 50! 54-46
Markovnikov hydroamination product in 71% vyield (eq 1). The 14i 1g 2d 72 74 82:19
enamine from oxidative amination was formed as a minor product 15 1g 29 48 79 90:10
along with equimolar amounts of ethylarene. The reaction rate was —\ ' _ AN
faster with higher concentrations of styrene, but the selectivity for ~ HNRR'=HN X 1e:2.5Mezmorpholine  vinylarene= Ry
hydroamination vs oxidative amination product was lower (vide 1a:X=0 11 :H[\ll\/:[) g:gRRi;iM 2e:R=4Cl
infra). Thus, we adopted for further studies reaction conditions for X e 20 RoAMEO oy Sumipyedine
each substrate that provided an appropriate balance of rate and 1d:x=N-co,Bu '9:"""e2 2d:R=234-MeO
selectivity. a Amine:vinylarene:Rh catalyst 1:4:0.05 (1 mmol of amine) in 1 mL of

As summarized in Table 2, reactions of electron-poor and toluene.P Isolated yield by silica gel column chromatographelectivity
. . . . . . Iculated f th Id.e 1 | % Rh catalyst
electron-rich vinylarenes with various cyclic secondary amines and \f]vs:d%?g gqi?v L?Tinyleaiﬁea&%&g&g OCF’h rg_% m°|_ of foa;uaezz V‘(,V:SS
the acyclic dimethylamine forme6phenethylamines in the pres-  used. Dimethylamine 2.0 M in THF solution (0.5 mL) and 0.5 mL toluene
ence of 5 mol % [Rh(COD)(DPEphos)]gRsolated yields were ~ was ?Ze;é Not_tolufene \évast addeéjga;s,éerTeﬁmert_ratio ofdsttartin_g &:jmti)neGC
0, . : : : was .20, ratio or products was lo. € ratio was determine: y
abov_e 70% for reaCtlons_ of morp_hc’“ne_wnh these vinylarenes area.' Diastereomer ratio of starting amine was 7:93, ratio of products was
(entries -4), and the amine:enamine ratio was between 3:1 and 17:83. The ratio was determined by GC area.
5.6:1. Reactions of piperidine adiphenylpiperazine also gave
mainly the products from hydroamination (entries-9), while Reactions of substituted cyclic amines, such as 2,5-dimethylmor-

reactions oN-Boc piperazine gave exclusively the amine product. pholine and perhydroisoquinoline with vinylarenes occurred in
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Scheme 1 Scheme 3
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: toluene 0.2 ml (\O R Rh ~—= Rh .R === Rh .R
0.2 mmol F’h—\\_ //\ 70°C,48h "_* 'Y\N N
¥ N O o~ NS 008 % ° 1 ~r "n Rl R J_—
0.2mmol \— HN  reductive  reductive elimination B-hydrogen
Ar ‘= elimination or elimination only
Scheme 2 favored B-hydrogen elimination
A > mote NR ~NR
X Rh(cod)L]BF N2 Y N2 ] . ;
PP [L=(DF’E)pI!1054 Ph 5 Ph 6 rationalizes the effect of the second styrene. A metallacyclic

N O+ AR ﬁ-amino cx-alylalk | complex could form by either attack on
ArTX toluene 0.2 ml NR > NR ) y! p y
N 4 70°C, 48 h AN A T2

02mmol A CF,CoH 8 coc_)rdir_1ated o_lefin or insertion into a species for_med byHN_
ontry 3 (mmol) 4 (mmol) 5.6 Ty activation. This metallacycle wou_ld favor_formatlon of amine
because thg-hydrogen would be inaccessible to the metal, but
; 8:‘; 8:3 ?ggg 47;53 the alkyl and hydride could be mutually cis. Coordination of a
3 0.0 0.8 - 38:62 second vinylareri could then open the metallacycle to allow

pB-hydrogen elimination, or insertion of the vinylarene could
generate a dialkyl complex that must undefgbydrogen elimina-

moderate yields, but with high selectivity for amine over enamine N Coordination of the electron-poor vinylarene is likely to be
(entries 11 and 12). Dimethylamine was the most reactive acyclic favored! Reaction solutions containing electron-poor vinylarene
amine. Reactions of this substrate gave high yields of hydroami- would, therefqre, create more enamine fihydrogen elimination .
nation products with electron-rich or -neutral styrenes and, in than those with only electron-rich vinylarene. We cannot explain
contrast to previous results with other catalysts, gave good yields & this time the low selectivity from reactions of pyrrolidine, but
of amine from reaction with 2-vinylpyridin&. Primary aliphatic further investigation of the reaction mechanism, studies toward
and aromatic amines did not react, and pyrrolidine gave poor synthesis of aminoalkyl intermediates, and an understanding of the
selectivity for the amine product. ' role of DPEphos on selectivity are in progress.
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