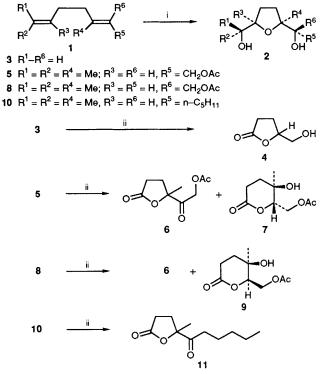
Downloaded by UNIVERSITY OF NEBRASKA on 03/04/2013 12:16:46. Published on 01 January 1992 on http://pubs.rsc.org | doi:10.1039/C39920000626

Heterogeneous Permanganate Oxidation of 1,5-Dienes: A Novel Synthesis of 5-Substituted Butanolides

Sundarababu Baskaran, 4 b Imadul Islam, b Padma S. Vankar b and Srinivasan Chandrasekaran* a

^a Department of Organic Chemistry, Indian Institute of Science, Bangalore-560 012, India

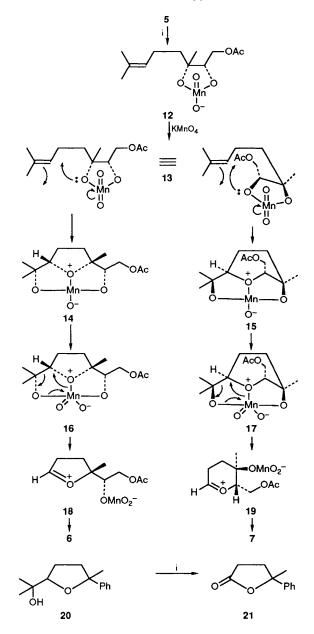

^b Department of Chemistry, Indian Institute of Technology, Kanpur-208 016, India

In the presence of a catalytic amount of water, 1,5-dienes undergo novel and unusual oxidation with potassium permanganate-copper sulfate in dichloromethane to give substituted butanolides in good yields under very mild conditions.

Klein and Rojahn¹ have reported that the oxidation of 1,5-dienes **1** with potassium permanganate under homogeneous conditions affords 2,5-bis(hydroxymethyl)tetrahydrofurans **2**, with relative stereochemistry as shown in Scheme 1. Independently, Walba² and Baldwin³ confirmed the stereospecificity of this transformation. Recently, a high degree of enantioselectivity has been achieved in the homogeneous permanganate oxidation of 1,5-dienes to give 2,5-bis(hydroxymethyl)tetrahydrofurans.⁴

Although $KMnO_4$ -CuSO₄·5H₂O has been used for the selective oxidation of secondary alcohols to ketones⁵ and diols to lactones,⁶ it has been reported to be inert towards alkenes.⁷ We showed earlier that $KMnO_4$ -CuSO₄·5H₂O, in the presence of a catalytic amount of water and *tert*-butyl alcohol, can be effectively used for the direct conversion of alkenes to α -diketones and α -hydroxy ketones.⁸ With this reagent system, a facile oxidative cyclization of γ -hydroxy alkenes to γ -lactones has also been achieved.⁹ In the present study, heterogeneous permanganate oxidation of 1,5-dienes was found to lead to the formation of the corresponding butanolides in good yields (Scheme 1).†‡ The parent hexa-1,5-diene **3**, when treated with a well ground mixture of KMnO₄-CuSO₄·5H₂O and a catalytic amount of water in dichloro-

All new compounds had satisfactory IR, NMR, mass spectral and analytical data; yields quoted in the text are isolated yields. methane (6 h), gave the α -hydroxymethyl- γ -lactone **4**¹⁰ in 20% yield.§ Under similar conditions, geranyl acetate **5** yielded the keto- γ -lactone **6** as the major product (62%) and the δ -lactone **7** as a minor product (8%) after 8 h, with the relative stereochemistry as indicated. On the other hand,



Scheme 1 Reagents and conditions: i, KMnO₄, homogeneous reaction; ii, KMnO₄-CuSO₄·5H₂O, cat. H₂O, CH₂Cl₂

§ In the absence of water, the reaction does not take place.

 $[\]dagger$ In contrast to homogeneous permanganate oxidation of 1,5-dienes, we did not observe the formation of 2,5-bis(hydroxymethyl)tetra-hydrofurans **2**.

[‡] Typically, in the oxidation of geranyl acetate **5** with KMnO₄-CuSO₄·5H₂O, to a stirred finely ground mixture KMnO₄ (8 g) and CuSO₄·5H₂O (4 g) to which water (400 µl) had been added, suspended in CH₂Cl₂ (15 ml), was added geranyl acetate **5** (2 mmol) in CH₂Cl₂ (5 ml). The mixture became warm (5 min) and then cooled. It was stirred for 8 h at room temperature (28 °C) and filtered through Celite, and the filtrant washed thoroughly with CH₂Cl₂. The solvent was evaporated off and the residue chromatographed on silica gel using ethyl acetate-light petroleum (b.p. 60–80 °C) (1:3) as eluent, furnishing the keto-Y-lactone **6** (62%) and δ-lactone **7** (8%).

Scheme 2 Possible mechanism; i, $KMnO_4$ -CuSO₄·5H₂O, cat. H₂O, CH₂Cl₂

neryl acetate **8** on treatment with this reagent system for 8 h afforded the keto- γ -lactone **6** as the major product (59%) along with the δ -lactone **9** (10%), which is a diastereoisomer of **7**. The diene **10**, under similar conditions, yielded the keto- γ -lactone **11** as the only product (47%) after 7 h.

Although several mechanisms have been postulated^{2,3,11} for the homogeneous permanganate oxidation of 1,5-dienes, there is experimental evidence that this reaction takes place *via* the sequential oxidation of double bonds.¹¹ A plausible mechanism has been delineated by invoking Baldwin's³ and Wolfe's¹¹ proposals for the formation of $6 (5 \rightarrow [12] \rightarrow [13] \rightarrow$ $[14] \rightarrow [16] \rightarrow [18] \rightarrow 6)$ and $7 (5 \rightarrow [12] \rightarrow [13] \rightarrow [15] \rightarrow [17] \rightarrow [19] \rightarrow 7)$ in the heterogeneous permanganate oxidation of geranyl acetate 5 (Scheme 2). The possible involvement of hydroxymethyltetrahydrofuran derivative in this reaction was tested¹² by carrying out the reaction on compound 20,¹³ which underwent a facile oxidative cleavage to the corresponding lactone 21¹³ in good yield (72%).

Although the mechanism of this novel transformation is speculative at this stage, it is evident that the oxidation of 1,5-dienes with permanganate, under heterogeneous conditions to form 5-substituted butanolides, should be useful in organic synthesis.

We thank CSIR, New Delhi, for financial support.

Received, 5th November 1991; Com. 1/05629H

References

- 1 E. Klein and W. Rojahn, Tetrahedron, 1965, 21, 2353.
- 2 D. M. Walba, M. D. Wand and M. C. Wilkes, J. Am. Chem. Soc., 1979, 101, 4396.
- 3 J. E. Baldwin, M. J. Crossley and E. M. Lehtonen, J. Chem. Soc., Chem. Commun., 1979, 918.
- 4 D. M. Walba, C. A. Przybyla and C. B. Walker, Jr., J. Am. Chem. Soc., 1990, 112, 5624.
- 5 F. M. Menger and C. Lee, J. Org. Chem., 1979, 44, 3446; N. A. Noureldin and D. G. Lee, J. Org. Chem., 1982, 47, 2790.
- 6 C. W. Jefford and Y. Wang, J. Chem. Soc., Chem. Commun., 1988, 634.
- 7 D. G. Lee and N. A. Noureldin, J. Am. Chem. Soc., 1983, 105, 3188.
- 8 S. Baskaran, J. Das and S. Chandrasekaran, J. Org. Chem., 1989, 54, 5182.
- 9 S. Baskaran, I. Islam, P. S. Vankar and S. Chandrasekaran, J. Chem. Soc., Chem. Commun., 1990, 1670.
- 10 U. Ravid, R. M. Silverstein and L. R. Smith, *Tetrahedron*, 1978, 1449.
- 11 S. Wolfe and C. F. Ingold, J. Am. Chem. Soc., 1981, 103, 940.
- 12 A. J. Dixon, R. J. K. Taylor and R. F. Newton, J. Chem. Soc.,
- Perkin Trans. 1, 1981, 1407.
 13 S. Baskaran and S. Chandrasekaran, Tetrahedron Lett., 1990, 2775.