

Photochemistry | Very Important Paper |

Photochemical Transformation of O-(β-Arylethyl) Arylimidates into 2,4-Diaryl-5-iodoxazoles with 1,3-Diiodo-5,5-dimethylhydantoin

Aya Saito^[a] and Hideo Togo*^[a]

Abstract: Treatment of O-(β -arylethyl) arylimidates with 1,3-diiodo-5,5-dimethylhydantoin (DIH) under irradiation with a tungsten lamp in 1,2-dichloroethane gave the corresponding 2,4diaryl-5-iodoxazoles and 2,4-diaryloxazoles in good to moderate yields, respectively, depending on the aryl group. It was proposed that the reactions proceeded through the formation of *N*-iodoimidates by the reaction of *O*-(β -arylethyl) arylimidates with DIH, followed by the formation of iminyl radicals via homolytic N–I bond cleavage, the 1,5-H shift by the iminyl radicals, the C–I bond formation of the formed carbon-centered radicals with iodine, the nucleophilic cyclization by the imino groups to form 2,4-diaryloxazolines, the oxidation of the formed 2,4-diaryloxazolines to 2,4-diaryloxazoles, and the iodination of the formed 2,4-diaryloxazoles to 2,4-diaryl-5-iodoxazoles with DIH.

Introduction

Oxazoles are one of the most important heteroaromatics because an oxazole unit is contained in many natural products, such as plants and marine products, and some of those natural products show potent biological activities.^[1] In particular, 2aryloxazoles have attracted much attention due to their potent biological activities, such as antibacterial and antifungal activities, as shown in Figure 1.^[1a,1b]

Figure 1. Biologically active 2-aryloxazoles.

Synthetic studies of the oxazole unit have been carried out extensively.^[2] As typical conventional methods for the preparation of oxazoles, the Robinson-Gabriel synthesis with α -(acylamino)ketones and the Van Leusen reaction with aldehydes and α -(tosyl)methyl isocyanide for the formation of 2-unsubstituted oxazoles, the Fisher oxazole synthesis with cyanohydrins and aldehydes, and the Bredereck reaction with α -haloketones and

 [a] A. Saito, Prof. Dr. H. Togo
 Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 Japan
 Fax: 81-43-290-2792
 E-mail: togo@faculty.chiba-u.jp
 http://reaction-2.chem.chiba-u.jp/index.html
 Supporting information and ORCID(s) from the author(s) for this article are
 available on the WWW under https://doi.org/10.1002/ejoc.202000383. amides for the formation of 2-substituted oxazoles are known. Recent reports for the preparation of oxazoles with transition metals are as follows:^[3] the preparation of 2,4,5-triaryloxazoles with O-aroyl cyanohydrins in the presence of Pd(TFA)₂ and bpy;^[3a] the preparation of 4,5-disubstituted 2-(trifluoromethyl)oxazoles with oximes, arenethiol, trifluoroacetic anhydride, NIS, and $K_2S_2O_8$ in the presence of $Cu(OTf)_2$,^[3b] the preparation of 4-substituted 2,5-diaryloxazoles with trans-2-aryl-3-nitrocyclopropane-1,1-dicarboxylates and aromatic nitriles in the presence of $SnCl_4$,^[3c] the preparation of 2,5-diaryloxazoles with Naroyl enamines in the presence of CuCl₂ and N-methylimidazole,^[3d] the preparation of 2-aryl-5-methyloxazoles with aroyl chlorides and propargylamines via propargyl amides in the presence of FeCl₃^[3e] the preparation of 2-aryloxazole-4carboxylates with aromatic amides and α -bromoketones in the presence of AgSbF₆,^[3f] and others.^[3g,3h] Moreover, recent reports for the preparation of oxazoles under transition-metalfree conditions are as follow:^[4] the preparation of 2,5-diaryloxazoles with α -bromoacetophenones and benzylamines in the presence of Eosin Y under blue LED irradiation;^[4a] the preparation of 4,5-disubstituted 2-methyloxazoles with N-acetyl enamines, fluorobenziodoxole, and BF₃·Et₂O;^[4b] the electrochemical preparation of 2-aryl-5-(fluoromethyl)oxazoles with Npropargylamides in the presence of *p*-iodotoluene,^[4c] the preparation of 2,4,5-triaryloxazoles with 2H-azirines and aromatic aldehydes in the presence of 9-mesityl-10-methylacridinium perchlorate under blue LED irradiation;^[4d] the preparation of 2,4disubstituted 5-arvloxazoles with alkyl arvl ketones, I₂, Oxone[®], and CF₃SO₃H in nitriles;^[4e] the preparation of 2,5-diaryloxazoles with α -bromoacetophenones, benzylamines, I₂, and K₂CO₃;^[4f] the preparation of 2,4,5-trisubstituted oxazoles with N-acyl enamines, PhI(OAc)₂, and BF₃·Et₂O;^[4g] the preparation of 4-substituted 2,5-diaryloxazoles with vinyliminophosphoranes and aroyl chlorides;^[4h] and others.^[4i,4j]

On the other hand, the synthetic uses of imino-nitrogencentered radical (iminyl radicals) for the preparation of nitrogencontaining heterocycles, such as dihydropyrroles and phenanthridines, have attracted much attention recently.^[5] Recent synthetic studies of iminyl radicals for the preparation of nitrogen-containing heterocycles are as follows:^[6] the preparation of pyrrolines (dihydropyrroles) from O-methyl oximes of aryl 3butenyl ketones and Sml₂;^[6a] the preparation of pyrrolines from O-benzovl oximes of arvl 3-butenvl ketones and diethyl phosphite in the presence of AgNO₃;^[6b] the preparation of cyclopenta[b]quinoxalines from O-aroyl oximes of cyclobutanones and aromatic isocyanides in the presence of fac-lr(ppy)₃ under irradiation with LED lamp;^[6c] the preparation of dihydronaphthalenones from O-benzoyl oximes of aryl isopentyl ketones in the presence of Fe(acac)₃,^[6d] the preparation of spiropyrrolines from O-aroyl oximes of alkyl o-biaryl ketones in the presence of DBU under irradiation with a visible light;^[6e] the preparation of 5-alkoxy-2-aryl-4-iodopyrrolines from O-alkyl imidates, Nal, and Phl(OAc)₂ under blue LED irradiation;^[6f] and the preparation of quinazolinones from N-(3-butenyl),N-cyanobenzamides, arenesulfinic acids, and tBuOOH in the presence of Na2Eosin Y under green LED irradiation, or N-(3-butenyl),N-cyanobenzamides and arenesulfonyl chlorides in the presence of Ru(bpy)₃Cl₂ under blue LED irradiation.[6g] Those reactions proceed through the formation of iminyl radicals at first, followed by the cyclization onto olefinic groups by iminyl radicals, the cyclization onto aromatic rings by iminyl radicals, or the 1,5-H shift by iminyl radicals and then cyclization. As regards synthetic studies of iminyl radicals for the preparation of nitrogen-containing heteroaromatics, we also reported the preparation of 6-aryl- or 6-alkylphenanthridines from the reactions of o-cyanobiaryls and aryllithiums or alkyllithiums, followed by the reaction with water and then with l₂ at 60 °C;^[7a] the preparation of 6-arylphenanthridines from the reaction of aryl o-biaryl ketones, TMS₂NH, and Sc(OTf)₃, followed by the reaction with I_2 at 60 °C;^[7b] and the preparation of 2-arylquinolines from the reactions of β -arylpropionitriles and aryllithiums, followed by the reaction with water and then with NIS (N-iodosuccinimide) under irradiation with a tungsten lamp.^[7c] All those reactions proceed through the formation of N-iodoimines, their homolytic N-I bond cleavage to form iminyl radicals, and their cyclization on the aromatic rings.

Recently, Nagib et al. reported interesting methods for the preparation of β -amino alcohols through the reactions of (trichloromethyl)imidates prepared from alcohols and trichloroacetonitrile, with Nal and Phl(OAc)₂ under visible-light irradiation, *via* the formation of iminyl radicals, their 1,5-H shift, their cyclization to form oxazolines, and their hydrolysis,^[8a] and the preparation of γ -functionalized β -amino alcohols from alcohols through the reactions of (trichloromethyl)imidates with Nal and Phl(OAc)₂ under visible light irradiation via the formation of amidyl radicals, their 1,5-H shift, formation of olefinic group, iodocyclization, and their hydrolysis.^[8b] He et al. also reported the preparation of β -amino alcohols from (trichloromethyl)imidates, and 2-aryloxazolines from arylimidates with NIS or with NIS and Ag₂O at 110 °C.^[8c]

As part of our synthetic studies of nitrogen-containing heteroaromatics using iminyl radicals,^[7] we would like to report

herein the preparation of 2,4-diaryl-5-iodoxazoles from O- $(\beta$ -arylethyl) arylimidates with DIH (1,3-diiodo-5,5-dimethyl-hydantoin) under irradiation with a tungsten lamp.

Results and Discussion

First, treatment of triflate salt **1Aa** (1.0 mmol) with NaH (1.5 equiv.) in THF (4.0 mL) gave free *O*-(β -phenylethyl) *p*-tolylimidate (1st step). After removal of the solvent, treatment of generated *O*-(β -phenylethyl) *p*-tolylimidate with NIS (4.0 equiv., 5.0 equiv., and 6.0 equiv.) in the presence of K₂CO₃ (3.0 equiv.) in 1,2-dichloroethane (DCE, 5.0 mL) under irradiation with a 300 W tungsten lamp for 6 h in the range of 35–38 °C (2nd step) gave 5-iodo-4-phenyl-2-*p*-tolyloxazole **4Aa** in 68 %, 54 %, and 65 % yields, together with 4-phenyl-2-*p*-tolyloxazoline **2Aa** in 15 %, 35 %, and 27 % yields, respectively, as shown in Table 1 (entries 1–3). Under the same procedure and conditions, treatment of *O*-(β -phenylethyl) *p*-tolylimidate with 1,3-diiodo-5,5-dimethylhydantoin (DIH, 2.0 equiv., 2.5 equiv., and 3.0 equiv.), which has two N–I groups, gave **4Aa** in 42 %, 61 %, and 79 %

Table 1. Optimization for reaction conditions of 5-iodo-2-*p*-tolyl-4-phenylox-azole **4Aa**.

[a] Yield of compound **2Aa**. [b] Yield of compound **3Aa**. [c] Reaction was carried out without K_2CO_3 . [d] In 2nd step, THF was used instead of DCE. [e] Yield of recovered *O*-(β -phenylethyl) *p*-tolylimidate. [f] In 2nd step, BHT (1.5 equiv.) was added. [g] In 2nd step, TEMPO (1.5 equiv.) was added.

yields, together with **2Aa** in 34 %, 17 %, and 17 % yields, and **3Aa** in 14 %, 0 %, and 0 % yields, respectively (entries 4–6). Thus, DIH was a better choice than NIS for the formation of 5-iodo-4-phenyl-2-*p*-tolyloxazole **4Aa** in 79 % yield (entry 6). Moreover, when the reaction time in the 2nd step was prolonged to 8 h under the same conditions, the yield of 5-iodo-4-phenyl-2-*p*-tolyloxazole **4Aa** was improved to 87 % (entry 7). On the other hand, when the reaction was carried out without K₂CO₃ under the same conditions in the 2nd step, the yield of **4Aa** was dramatically decreased to 19 %, and **2Aa** was formed as well in 16 % yield (entry 8). When THF was used instead of DCE in the 2nd reaction step, **4Aa** was not obtained at all, and **2Aa** and **3Aa** were generated in 74 % and 20 % yields, respectively (entry 9).

Instead of a 300 W tungsten lamp, when the reaction of *O*- $(\beta$ -phenylethyl) *p*-tolylimidate with DIH was carried out under irradiation with a 40 W tungsten lamp and a white LED lamp (13.6 W) in the 2nd step, the yields of **4Aa** were 20 % and 0 %, and those of **2Aa** were in 56 % and 14 %, respectively (entries 10, 11). Furthermore, when the 2nd reaction step was conducted under warming conditions at 70 °C instead of irradiation with a 300 W tungsten lamp, 5-iodooxazole **4Aa** was not formed at all (entry 12). When molecular iodine (3.0 equiv.) instead of DIH was used in the 2nd reaction step, 5-iodoxazole **4Aa** was obtained in only 6 % yield, together with oxazoline **2Aa** and starting *O*-(β -phenylethyl) *p*-tolylimidate in 26 % and 54 % yields, respectively (entry 13).

From those results, treatment of O-(β -phenylethyl) *p*-tolylimidate (1.0 mmol) with DIH (3.0 equiv.) and K₂CO₃ (3.0 equiv.) in DCE (5.0 mL) under irradiation with a 300 W tungsten lamp for 8 h in the 2nd reaction step gave 5-iodo-4-phenyl-2-p-tolyloxazole 4Aa in the best yield (entry 7). As a gram-sale experiment, treatment of salt 1Aa (5.0 mmol) under the same procedure and conditions as those of entry 7 gave 5-iodo-4-phenyl-2-ptolyloxazole 4Aa in 70 % yield, as shown in Scheme 1. To understand the reaction mechanism, the reactions of O-(\beta-phenylethyl) *p*-tolylimidate with DIH and K_2CO_3 in DCE in the 2nd step were carried out in the presence of 2,6-di-tert-butyl-p-cresol (BHT, 1.5 equiv.) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO, 1.5 equiv.) under the same conditions as those of entry 7. However, 5-iodo-4-phenyl-2-p-tolyloxazole 4Aa and related compounds 2Aa and 3Aa were not formed at all in both reactions (entries 14, 15). Thus, the results suggest that the 2nd step is a radical-mediated reaction.

Based on those results, triflate salts **1Ab–1Ad**, **1Ba–1Bd**, and **1Ca–1Cd** of *O*-(β -arylethyl) *p*-tolylimidates, *O*-(β -arylethyl) phenylimidates, and *O*-(β -arylethyl) 3,5-dimethylphenylimidates (1.0 mmol) bearing phenyl (**a**), *p*-tolyl (**b**), *p*-fluorophenyl (**c**), and *p*-chlorophenyl (**d**) groups were treated with NaH (1.5 equiv.) in THF (5.0 mL) at room temperature for 15 min. (1st step), followed by removal of the solvent and subsequent treatment with DIH (3.0 equiv.) and K₂CO₃ (3.0 equiv.) in DCE (5.0 mL) under irradiation with a 300 W tungsten lamp for 8 h (2nd step) to give 4-aryl-5-iodo-2-*p*-tolyloxazoles **4Ab–4Ad**, 4-aryl-5-iodo-2-phenyloxazoles **4Ba–4Bd**, and 4-aryl-2-(3',5'-dimethylphenyl)-5-iodoxazoles **4Ca–4Cd** in good to moderate yields, respectively, except **4Ba**, together with small amounts of

oxazolines **2** and oxazoles **3** depending on the substituent, as shown in Scheme 1. Treatment of triflate salts **1Da**–**1Dd** and **1Ea**–**1Ed** of *O*-(β -arylethyl) *p*-methoxyphenylimidates and *O*-(β arylethyl) naphthalen-2-ylimidates bearing phenyl (**a**), *p*-tolyl (**b**), *p*-fluorophenyl (**c**), and *p*-chlorophenyl (**d**) groups under the same procedure and conditions gave also 4-aryl-5-iodo-2*p*-methoxyphenyloxazoles **4Da**–**4Dd** and 4-aryl-5-iodo-2-(naphthalen-2'-yl)oxazoles **4Ea**–**4Ed** in moderate to good yields, respectively, together with oxazolines **2** depending on the substituent of the aromatics.

Here, 5-iodo-2-p-methoxyphenyl-4-p-tolyloxazole **4Db** was formed in 40 % yield together with p-iodoanisole in 41 % yield, which would be generated through the electrophilic ipso-substitution of the *p*-methoxyphenylimidate group by an iodonium species in the reaction of $O-\beta-(p-tolyl)$ ethyl p-methoxyphenylimidate with DIH. In addition, 4-p-fluorophenyl-5-iodo-2-pmethoxyphenyloxazole 4Dc was produced in 54 % yield together with p-methoxybenzonitrile in 16 % yield, the latter of which would be formed via a radical β -cleavage reaction of the formed iminyl radical. Treatment of triflate salt 1Fa of O-(β-phenylethyl) benzothiophen-2-ylimidate under the same procedure and conditions gave 2-(benzothiophen-2'-yl)-5-iodo-4-phenyloxazole 4Fa in 56 % yield, together with oxazoline 2Fa in 36 % yield, whereas the same treatment of triflate salt of O-(β-phenylethyl) benzofuran-2-ylimidate under the same procedure and conditions gave 2-(benzofuran-2'-yl)-5-iodo-4phenyloxazole in low yield (ca. 10 %). The same treatment of O-(β-p-nitrophenylethyl) arylimidate salts 1Ae, 1Be, 1Ce, 1Ee, and 1Ge gave 2-aryl-4-p-nitrophenyloxazoles 3Ae, 3Be, 3Ce, 3Ee, and 3Ge in good to moderate yields, together with their oxazolines 2 in 12 %, 19 %, 24 %, 33 %, and 33 % yields, respectively. Thus, the results suggest that the iodination of formed 2-aryl-4-p-nitrophenyloxazoles at 5-position does not proceed smoothly because of the electron-withdrawing *p*-nitrophenyl group at 4-position. On the other hand, when $O(\beta$ -arylethyl) pchlorophenylimidates derived from 1Ga, 1Gb, and 1Gc bearing an electron-withdrawing group, i.e., a p-chlorophenyl group, at 2-position were treated with DIH under the same irradiation conditions in the range of 35-38 °C, p-chlorobenzonitrile was obtained in 64 %, 72 %, and 74 % yields, respectively, probably via the radical β -elimination of the formed iminyl radicals, without the formation of oxazolines and oxazoles. However, when the same irradiation reactions of O-(β -arylethyl) p-chlorophenylimidates were carried out at 10 °C, corresponding oxazolines 2Ga, 2Gb, and 2Gc were obtained in 77 %, 75 %, and 74 % yields, together with their 5-iodoxazoles in low yields, respectively, although the reaction mixtures were further warmed at 40 °C for 5 h after the irradiation. Treatment of $O-\beta$ -(p-nitrophenyl)ethyl p-methoxyphenylimidate salt 1De that has an electron-withdrawing group, i.e., a p-nitrophenyl group, under the same procedure and conditions gave also oxazolines 2De in 66 % yield, together with 5-iodooxazole 4De in low yield. Moreover, treatment of O-propyl p-tolylimidate salt 1Af and O-butyl p-tolylimidate salt 1Ag under the same procedure and conditions also gave 4-methyl-2-p-tolyloxazoline 2Af and 4ethyl-2-p-tolyloxazoline 2Ag in 63 % and 68 % yields, respectively, although the reaction mixtures were further warmed at

 $\begin{array}{l} \mathsf{Ar}=\rho-\mathsf{MeC}_{6}\mathsf{H}_{4^{-}}\left(\mathbf{A}\right), \quad \mathsf{C}_{6}\mathsf{H}_{5^{-}}\left(\mathbf{B}\right), \quad 3,5-\mathsf{Me}_{2}\mathsf{C}_{6}\mathsf{H}_{2^{-}}\left(\mathbf{C}\right), \quad \rho-\mathsf{MeOC}_{6}\mathsf{H}_{4^{-}}\left(\mathbf{D}\right), \quad \mathsf{Naphthalen-2-yl-}\left(\mathbf{E}\right), \quad \mathsf{Benzothiophen-2-yl-}\left(\mathbf{F}\right), \quad \rho-\mathsf{ClC}_{6}\mathsf{H}_{4^{-}}\left(\mathbf{G}\right), \quad \mathsf{R}=\mathsf{C}_{6}\mathsf{H}_{5^{-}}\left(\mathbf{a}\right), \quad \rho-\mathsf{MeC}_{6}\mathsf{H}_{4^{-}}\left(\mathbf{b}\right), \quad \rho-\mathsf{FC}_{6}\mathsf{H}_{4^{-}}\left(\mathbf{c}\right), \quad \rho-\mathsf{ClC}_{6}\mathsf{H}_{4^{-}}\left(\mathbf{c}\right), \quad \rho-\mathsf{O}_{2}\mathsf{NC}_{6}\mathsf{H}_{4^{-}}\left(\mathbf{e}\right), \quad \mathsf{Me-}\left(\mathbf{f}\right), \quad \mathsf{Et-}\left(\mathbf{g}\right) \end{array}$

Scheme 1. Transformation of arylimidates 1 to 5-iodooxazoles 4.

40 °C for 24 h after the irradiation. Thus, oxidation of formed oxazolines **2** bearing electron-withdrawing groups, such as a p-nitrophenyl group, and an alkyl group at 4-position to the

corresponding oxazoles **3** did not proceed smoothly under the present reaction conditions. Moreover, when the triflate salt of O-(β -phenylethyl) p-(trifluoromethyl)phenylimidate was treated

under the same procedure and conditions, the reaction did not proceed at all, i.e., N-iodonation did not occur due to the presence of a powerful electron-withdrawing group, such as a p-(trifluoromethyl)phenyl group. Taken together, treatment of O- $(\beta$ -arylethyl) arylimidates bearing *p*-tolyl (**A**), phenyl (**B**), 3,5dimethylphenyl(**C**),*p*-methoxyphenyl(**D**),naphthalen-2-yl(**E**),and benzothiophen-2-yl (F) groups in the arylimidate part, and bearing phenyl (a), p-tolyl (b), p-fluorophenyl (c), and p-chlorophenyl (**d**) groups in the β -arylethyl part, gave mainly the corresponding 2,4-diaryl-5-iodoxazoles. On the other hand, treatment of O-(β -arylethyl) arylimidates bearing a *p*-chlorophenyl group in the arylimidate part, and bearing an alkyl group instead of a β -arylethyl group gave oxazolines **2**. Thus, the oxidation of formed oxazolines 2 to oxazoles 3 and the iodination of oxazoles 3 to 5-iodoxazoles 4 bearing electron-withdrawing aryl groups or alkyl groups with DIH did not proceed smoothly.

Once 2,4-diaryl-5-iodoxazoles were obtained, they could be smoothly converted into various 2,4-diaryloxazole derivatives. Warming treatment of 5-iodo-4-phenyl-2-*p*-tolyloxazole **4Aa** with Zn in ethanol gave 4-phenyl-2-*p*-tolyloxazole **3Aa** in 96 % yield, as shown in Scheme 2. Treatment of **4Aa** with PhB(OH)₂ and K₂CO₃ in a mixture of DMF and water, with styrene and

 K_2CO_3 in DMF, and with ethynylbenzene and Cu in Et₃N in the presence of PdCl₂(Ph₃P)₂ under warming conditions gave 4,5diphenyl-2-*p*-tolyloxazole **5Aa**, 4-phenyl-5-styryl-2-*p*-tolyloxazole **6Aa**, and 4-phenyl-5-phenylethynyl-2-*p*-tolyloxazole **7Aa** in good yields, respectively. 4-Phenyl-5-*p*-toluenesulfenyl-2-*p*tolyloxazole **8Aa** could be also obtained by the treatment of **4Aa** with *p*-toluenethiol and K₂CO₃ in the presence of Cul in *i*PrOH in moderate yield.

A plausible reaction mechanism is shown in Scheme 3. O-(β -Arylethyl) arylimidate generated from the reaction of triflate salt 1 and NaH reacts with DIH to form N-iodoimidate In-1. Once N-iodoimidate In-1 is formed, homolytic bond cleavage of its N-I bond occurs to produce iminyl radical In-2 and an iodine atom. The 1,5-hydrogen atom shift (1,5-H shift)^[9] from benzylic hydrogen atom via a six-membered transition state by iminyl radical In-2 occurs to form benzylic carbon-centred radical In-**3**, which smoothly reacts with molecular iodine to form β -iodoethyl arylimidate In-4. Intramolecular nucleophilic cyclization of In-4 occurs in the 5-exo-tet mode to give 2,4-diaryloxazoline 2. 2,4-Diaryloxazoline 2 further reacts with DIH to generate 2,4diaryloxazole 3 through intermediates In-5, In-6, and In-7. lodination of oxazole 3 finally occurs to form 2,4-diaryl-5-iodooxazole 4, without electron-withdrawing groups, such as pchlorophenyl and p-nitrophenyl groups at 2- or 4-position, or bearing an alkyl group at 4-position. Practically, the treatment of 4-phenyl-2-p-tolyloxazoline 2Aa and 4-phenyl-2-p-tolyloxazole 3Aa with DIH (2.0 equiv.) and K₂CO₃ (1.5 equiv.) in DCE (5.0 mL) for 8 h under irradiation with a tungsten lamp gave

Scheme 3. Plausible reaction mechanism.

5-iodo-4-phenyl-2-*p*-tolyloxazole **4Aa** in 53 % and 55 % yields, respectively.

Finally, quite recently, Nagib et al. reported the preparation of 2,4-diaryloxazoles from *O*-(β -arylethyl) arylimidates with Csl and PhI(OAc)₂ in toluene under 23 W fluorescent lighting, that was exceedingly related to the present study.^[10]

Conclusions

O-(β -Arylethyl) arylimidates, which can be prepared easily as solids of triflate salts by the reaction of aromatic nitriles and β -arylethyl alclohols in the presence of TfOH, react with DIH under irradiation with a tungsten lamp to form the corresponding 2,4-diaryl-5-iodoxazoles in good to moderate yields, through the formation of N-iodoimidates, the homolytic bond cleavage of their N-I bonds, the 1,5-H shift by iminyl radicals, the nucleophilic cyclization in the 5-exo-tet mode to form oxazolines, the oxidation of the oxazolines to oxazoles, and the iodination of the oxazoles at 5-position. Thus, the present method is a multi-step one-pot transition-metal-free reaction for the preparation of 2,4-diaryl-5-iodoxazoles and 2.4-diaryloxazoles from O-(β -arylethyl) arylimidates. It should be note that electron-withdrawing aryl groups, such as the p-nitrophenyl group, in the imidates retarded the reaction. We believe the present method would be useful because it provides a straightforward procedure for the preparation of 2,4-diaryloxazoles from O-(β -arylethyl) arylimidates under transition-metal-free conditions.

Experimental Section

General. ¹H NMR spectra were measured on 400 MHz spectrometers. Chemical shifts were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; sext = sextet; m = multiplet; br = broad), coupling constant (Hz), integration, and assignment. ¹³C NMR spectra were measured on 100 MHz spectrometers. Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (CDCl₃ at 77.0 ppm, or [D₆]DMSO at 39.5 ppm). Characteristic peaks in the infrared (IR) spectra were recorded in wave number, cm⁻¹ on a JASCO FT/IR-4100 spectrometer. Melting points were determined using a Yamato Melting Point Apparatus Model MP-21. High-resolution mass spectra (HRMS) were recorded by Thermo Fisher Scientific Exactive Orbitrap mass spectrometers. Melting points were uncorrected. Thinlayer chromatography (TLC) was performed using 0.25 mm silica gel plates (60F254). The products were purified by column chromatography on neutral silica gel 60N (63-200 mesh).

Typical Procedure for Preparation of O-(β-arylethyl) Arylimidate-TfOH Salts 1: Triflate salts **1** were prepared based on the literature^[8a] with aromatic nitriles and β-arylethanols with TfOH. To a solution of 2-phenylethyl alcohol (20.0 mmol, 2443.0 mg) and *p*tolunitrile (24.0 mmol, 2812.0 mg) in CH₂Cl₂ (40.0 mL) was added TfOH (24.0 mmol, 2.1 mL) at room temperature. The obtained mixture was stirred for 24 h at 60 °C under argon atmosphere, and then evaporated under reduced pressure. Diethyl ether was added to the mixture at 0 °C until precipitation occurred. The salt was filtered, and washed with diethyl ether to give *O*-(β-phenylethyl) *p*tolylimidate-TfOH salt (**1Aa**, 444.8 mg, 57 %). **O**-(β-Phenylethyl) *p*-tolylimidate-TfOH salt (1Aa): white solid; mp: 172–173 °C; IR (neat): $\tilde{v} = 3065$, 1610, 1449, 1238, 1026, 736, 630 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.44$ (s, 3H), 3.26 (t, 2H, J = 5.9 Hz), 4.88 (t, 2H, J = 6.1 Hz), 7.27–7.37 (m, 7H), 7.87 (d, 2H, J = 8.3 Hz), 10.1 (s, 1H), 10.6 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 21.8$, 39.5, 73.6, 121.2 (q, $J_{C-F} = 322.3$ Hz), 123.4, 127.4, 129.1 (2C), 129.4 (2C), 129.6 (2C), 130.4 (2C), 137.1, 147.2, 171.7; HRMS (ESI): Calcd for C₁₆H₁₈ON [M]⁺ = 240.1383, Found = 240.1378.

O-[β-(*p*-Toyl)ethyl] *p*-tolylimidate-TfOH salt (1Ab): white solid; mp: 164–166 °C; IR (neat): $\tilde{v} = 3073$, 1609, 1449, 1224, 1024, 742, 628 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.33$ (s, 3H), 2.44 (s, 3H), 3.21 (t, 2H, J = 5.9 Hz), 4.86 (t, 2H, J = 6.1 Hz), 7.14 (d, 2H, J = 7.9 Hz), 7.19 (d, 2H, J = 8.2 Hz), 7.33 (d, 2H, J = 7.9 Hz), 7.88 (d, 2H, J = 8.4 Hz), 10.1 (s, 1H), 10.6 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 20.7$, 21.4, 33.3, 73.4, 120.9 (q, $J_{C-F} = 322.3$ Hz), 123.0, 129.0 (2C), 129.1 (2C), 129.3 (2C), 130.0 (2C), 133.6, 136.1, 146.8, 171.3; HRMS (ESI): Calcd for C₁₇H₂₀ON [M]⁺ = 254.1539, Found = 254.1532.

O-[β-(*p***-Fluorophenyl)ethyl]** *p*-tolylimidate-TfOH salt (1Ac): white solid; mp: 167–169 °C; IR (neat): $\tilde{v} = 3056$, 1610, 1467, 1223, 1024, 828, 630 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.45$ (s, 3H), 3.24 (t, 2H, J = 5.9 Hz), 4.86 (t, 2H, J = 6.1 Hz), 7.04 (t, 2H, J = 8.6 Hz), 7.25–7.29 (m, 2H), 7.34 (d, 2H, J = 8.2 Hz), 7.87 (d, 2H, J = 8.4 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.3$, 39.1, 73.1, 115.3 (d, 2C, $J_{C-F} = 20.7$ Hz), 120.8 (q, $J_{C-F} = 321.3$ Hz), 123.0, 129.0 (2C), 130.0 (2C), 131.1 (d, 2C, $J_{C-F} = 7.5$ Hz), 132.9, 146.7, 161.4 (d, $J_{C-F} = 242.4$ Hz), 171.2; HRMS (ESI): Calcd for C₁₆H₁₇ONF [M]⁺ = 258.1289, Found = 258.1280.

O-[β-(p-Chlorophenyl)ethyl] *p*-tolylimidate-TfOH salt (1Ad): white solid; mp: 166–168 °C; IR (neat): $\tilde{v} = 3071$, 1609, 1449, 1224, 1024, 628 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.45$ (s, 3H), 3.23(t, 2H, J = 5.9 Hz), 4.86 (t, 2H, J = 6.1 Hz), 7.24 (d, 2H, J = 8.4 Hz), 7.31–7.35 (m, 4H), 7.86 (d, 2H, J = 8.4 Hz); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 21.4$, 39.1, 72.9, 120.9 (q, $J_{C-F} = 322.3$ Hz), 123.0, 128.6 (2C), 129.0 (2C), 130.0 (2C), 131.1 (2C), 131.8, 135.9, 146.8, 171.3; HRMS (ESI): Calcd for C₁₆H₁₇ON³⁵CI [M]⁺ = 274.0993, Found = 274.0984.

O-[β-(*p***-Nitrophenyl)ethyl]** *p***-tolylimidate-TfOH salt (1Ae)**: white solid; mp: 164–165 °C; IR (neat): $\tilde{v} = 3054$, 1607, 1520, 1235, 1023, 630 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): $\delta = 2.45$ (s, 3H), 3.39 (t, 2H, J = 5.9 Hz), 4.94 (t, 2H, J = 6.1 Hz), 7.35 (d, 2H, J = 8.2 Hz), 7.50 (d, 2H, J = 8.6 Hz), 7.86 (d, 2H, J = 8.6 Hz), 8.22 (d, 2H, J = 8.8 Hz), 10.1 (s, 1H), 10.7 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 21.3$, 39.1, 72.4, 120.8 (q, $J_{C-F} = 322.3$ Hz), 122.9, 123.6 (2C), 129.0 (2C), 130.0 (2C), 130.6 (2C), 145.3, 146.6, 146.8, 171.2; HRMS (ESI): Calcd for C₁₆H₁₇O₃N₂ [M]⁺ = 285.1234, Found = 285.1230.

O-Propyl *p***-tolylimidate-TfOH salt (1Af)**: white solid; mp: 108– 110 °C; IR (neat): $\ddot{v} = 3079$, 1611, 1461, 1222, 1163, 1024, 628 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.13$ (t, 3H, J = 7.4 Hz), 2.00 (sext, 2H, J = 7.4 Hz), 2.46 (s, 3H), 4.61 (t, 2H, J = 6.3 Hz), 7.37 (d, 2H, J =8.1 Hz), 8.00 (d, 2H, J = 8.5 Hz); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta =$ 10.0, 21.2, 21.4, 74.5, 120.9 (q, $J_{C-F} = 322.3$ Hz), 123.2, 129.1 (2C), 130.0 (2C), 146.7, 171.5; HRMS (ESI): Calcd for C₁₁H₁₆ON [M]⁺ = 178.1226, Found = 178.1225.

O-Butyl *p*-tolylimidate-TfOH salt (1Ag): white solid; mp: 114–115 °C; IR (neat): $\tilde{v} = 3032$, 1608, 1454, 1224, 1160, 1028, 631 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.02$ (t, 3H, J = 7.5 Hz), 1.56 (sext, 2H, J = 7.7 Hz), 1.95 (quin, 2H, J = 7.0 Hz), 2.46 (s, 3H), 4.65 (t, 2H, J = 6.1 Hz), 7.37 (d, 2H, J = 8.4 Hz), 7.99 (d, 2H, J = 8.4 Hz), 10.1 (s, 1H), 10.7 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 13.5$, 18.5, 21.4, 29.5, 72.9, 120.9 (q, $J_{C-F} = 322.3$ Hz), 123.2, 129.0 (2C), 130.0 (2C), 146.7, 171.5; HRMS (ESI): Calcd for C₁₂H₁₈ON [M]⁺ = 192.1383, Found = 192.1378.

O-(β-Phenylethyl) phenylimidate-TfOH salt (1Ba): white solid; mp: 124–126 °C; IR (neat): $\tilde{v} = 3081$, 1602, 1456, 1238, 1023, 698 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.27$ (t, 2H, J = 5.9 Hz), 4.92 (t, 2H, J = 6.1 Hz), 7.28–7.38 (m, 5H), 7.54 (t, 2H, J = 8.2 Hz), 7.72 (t, 1H, J = 7.7 Hz), 7.97 (dd, 2H, J = 8.6, 1.1 Hz); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 33.7$, 73.5, 121.0 (q, $J_{C-F} = 322.3$ Hz), 126.1, 127.1, 128.8 (2C), 129.1 (2C), 129.3 (2C), 129.4 (2C), 135.6, 136.8, 171.6; HRMS (ESI): Calcd for C₁₅H₁₆ON [M]⁺ = 226.1226, Found = 226.1223.

O-[β-(*p*-Tolyl)ethyl] phenylimidate-TfOH salt (1Bb): white solid; mp: 125–127 °C; IR (neat): $\tilde{v} = 3102$, 1602, 1381, 1243, 1025, 628 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): $\delta = 2.33$ (s, 3H), 3.23 (t, 2H, J = 6.1 Hz), 4.88 (t, 2H, J = 6.1 Hz), 7.16 (d, 2H, J = 7.9 Hz), 7.20 (d, 2H, J = 8.3 Hz), 7.55 (t, 2H, J = 7.9 Hz), 7.73 (t, 1H, J = 7.6 Hz), 7.98 (dd, 2H, J = 8.6, 1.4 Hz), 10.3 (s, 1H), 10.8 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 20.7$, 33.2, 73.5, 120.8 (q, $J_{C-F} = 322.3$ Hz), 126.0, 129.0 (2C), 129.1 (2C), 129.2 (2C), 129.4 (2C), 133.5, 135.6, 136.0, 171.5; HRMS (ESI): Calcd for C₁₆H₁₈ON [M]⁺ = 240.1383, Found = 240.1378.

O-[β-(*p*-Fluorophenyl)ethyl] phenylimidate-TfOH salt (1Bc): white solid; mp: 100–102 °C; IR (neat): $\tilde{v} = 3080$, 1601, 1511, 1223, 1024, 626 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.25$ (t, 2H, J = 6.1 Hz), 4.88 (t, 2H, J = 6.1 Hz), 7.04 (t, 2H, J = 8.6 Hz), 7.28–7.30 (m, 2H), 7.55 (t, 2H, J = 7.7 Hz), 7.74 (t, 1H, J = 7.5 Hz), 7.97 (d, 2H, J = 7.5 Hz); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 32.8$, 73.4, 115.4 (d, $J_{C-F} = 20.7$ Hz), 120.9 (q, $J_{C-F} = 322.3$ Hz), 126.0, 129.1 (2C), 129.4 (2C), 131.2 (d, $J_{C-F} = 8.5$ Hz), 132.9 (d, $J_{C-F} = 2.8$ Hz), 135.6, 161.5 (d, $J_{C-F} = 246.4$ Hz), 171.6; HRMS (ESI): Calcd for C₁₅H₁₅ONF [M]⁺ = 244.1132, Found = 244.1127.

O-[β-(p-Chlorophenyl)ethyl] phenylimidate-TfOH salt (1Bd): white solid; mp: 130–132 °C; IR (neat): $\tilde{v} = 3091$, 1602, 1382, 1242, 1025, 627 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3$. 25 (t, 2H, J = 5.9 Hz), 4.89 (t, 2H, 5.9 Hz), 7.24–7.28 (m, 2H), 7.33 (d, 2H, J = 8.6 Hz), 7.56 (t, 2H, J = 7.7 Hz), 7.74 (t, 1H, J = 7.5 Hz), 7.97 (dd, 2H, J = 8.6, 1.4 Hz); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 32.9$, 73.1, 120.9 (q, $J_{C-F} = 322.3$ Hz), 126.0, 128.6 (2C), 129.0 (2C), 129.4 (2C), 131.1 (2C), 131.8, 135.6, 135.8, 171.5; HRMS (ESI): Calcd for C₁₅H₁₅ON³⁵Cl [M]⁺ = 260.0837, Found = 260.0833.

O-[β-(*p***-Nitrophenyl)ethyl] phenylimidate-TfOH salt (1Be)**: white solid; mp: 134–136 °C; IR (neat): $\tilde{v} = 3064$, 1600, 1523, 1240, 1023, 697 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.41$ (t, 2H, J = 6.1 Hz), 4.97 (t, 2H, J = 6.3 Hz), 7.52 (d, 2H, J = 8.4 Hz), 7.58 (t, 2H, J = 7.9 Hz), 7.77 (t, 1H, J = 7.9 Hz), 7.97 (d, 2H, J = 7.9 Hz), 8.24 (d, 2H, J = 8.4 Hz), 10.4 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO: $\delta = 33.3$, 72.6, 120.9 (q, $J_{C-F} = 322.3$ Hz), 123.7 (2C), 125.9, 129.0 (2C), 129.4 (2C), 130.6 (2C), 135.6, 145.3, 146.6, 171.5; HRMS (ESI): Calcd for C₁₅H₁₅O₃N₂ [M]⁺ = 285.1234, Found = 285.1230.

O-(β-Phenylethyl) 3,5-dimethylphenylimidate-TfOH salt (1Ca): white solid; mp: 127–129 °C; IR (neat): $\tilde{v} = 3049$, 1600, 1241, 1026, 630 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.36$ (s, 6H), 3.26 (t, 2H, J = 5.9 Hz), 4.88 (t, 2H, J = 5.9 Hz), 7.27–7.37 (m, 6H), 7.54 (s, 2H), 10.1 (s, 1H), 10.7 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 20.9$ (2C), 34.2, 73.9, 120.1 (q, $J_{C-F} = 319.5$ Hz), 124.6, 126.7 (2C), 127.1, 128.7 (2C), 128.9 (2C), 136.1, 137.8, 139.4 (2C), 172.7; HRMS (ESI): Calcd for C₁₇H₂₀ON [M]⁺ = 254.1539, Found = 254.1538.

O-[β-(p-Tolyl)ethyl] 3,5-dimethylphenylimidate-TfOH salt (1Cb): white solid; mp: 151–153 °C; IR (neat): $\tilde{v} = 3039$, 1601, 1226, 1158, 1025, 631 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.34$ (s, 3H), 2.36 (s, 6H), 3.22 (t, 2H, J = 6.1 Hz), 4.85 (t, 2H, J = 6.1 Hz), 7.16 (d, 2H, J = 7.9 Hz), 7.20 (d, 2H, J = 8.2 Hz), 7.33 (s, 1H), 7.54 (s, 2H), 10.1 (s, 1H), 10.6 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 20.9$ (2C), 21.0, 33.9, 74.2, 120.1 (q, $J_{C-F} = 318.5$ Hz), 124.6, 126.8 (2C), 128.8 (2C), 129.4 (2C), 133.0, 136.8, 137.8, 139.4 (2C), 172.8; HRMS (ESI): Calcd for $C_{18}H_{22}ON\ [M]^+=268.1696,$ Found = 268.1692.

O-[β-(*p*-Fluorophenyl)ethyl] **3**,5-dimethylphenylimidate-TfOH salt (1*Cc*): white solid; mp: 128–130 °C; IR (neat): $\tilde{v} = 3048$, 1602, 1508, 1223, 1027, 835, 631 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.37$ (s, 6H), 3.24 (t, 2H, J = 6.1 Hz), 4.85 (t, 2H, J = 6.1 Hz), 7.04 (t, 2H, J = 8.8 Hz), 7.27–7.30 (m, 2H), 7.34 (s, 1H), 7.55 (s, 2H), 10.1 (s, 1H), 10.7 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 20.9$ (2C), 33.4, 73.8, 115.6 (d, $J_{C-F} = 20.1$ Hz), 120.1 (q, $J_{C-F} = 318.5$ Hz), 124.5, 126.7 (2C), 130.5 (d, $J_{C-F} = 245.2$ Hz), 131.7 (d, $J_{C-F} = 3.8$ Hz), 137.8, 139.4 (2C), 162.0 (d, $J_{C-F} = 245.2$ Hz), 172.7; HRMS (ESI): Calcd for C₁₇H₁₉ONF [M]⁺ = 272.1445, Found = 272.1441.

O-[β-(p-Chlorophenyl)ethyl] 3,5-dimethylphenylimidate-TfOH salt (1Cd): white solid; mp: 140–141 °C; IR (neat): $\tilde{v} = 3039$, 1600, 1226, 1024, 628 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.37$ (s, 6H), 3.24 (t, 2H, J = 6.1 Hz), 4.86 (t, 2H, J = 6.1 Hz), 7.25 (d, 2H, J = 6.3 Hz), 7.33 (d, 2H, J = 8.6 Hz), 7.34 (s, 1H), 7.54 (s, 2H), 10.1 (s, 1H), 10.7 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 20.9$ (2C), 33.5, 73.6, 120.1 (q, $J_{C-F} = 319.5$ Hz), 124.5, 126.7 (2C), 128.8 (2C), 130.3 (2C), 133.0, 134.5, 137.9, 139.5 (2C), 172.7; HRMS (ESI): Calcd for C₁₇H₁₉ONCI [M]⁺ = 288.1150, Found = 288.1146.

O-[β-(*p***-Nitrophenyl)ethyl] 3,5-dimethylphenylimidate-TfOH salt (1Ce)**: white solid; mp: 169–170 °C; IR (neat): $\tilde{v} = 3078$, 1606, 1517, 1246, 1028, 634 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.37$ (s, 6H), 3.39 (t, 2H, J = 6.1 Hz), 4.93 (t, 2H, J = 6.1 Hz), 7.36 (s, 1H), 7.51 (d, 2H, J = 8.8 Hz), 7.55 (s, 2H), 8.23 (d, 2H, J = 8.8 Hz), 10.2 (s, 1H), 10.7 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 20.7$ (2C), 39.1, 72.5, 120.8 (q, $J_{C-F} = 322.3$ Hz), 123.6 (2C), 125.8, 126.5 (2C), 130.6 (2C), 137.0, 138.9 (2C), 145.2, 146.6, 171.6; HRMS (ESI): Calcd for C₁₇H₁₉O₃N₂ [M]⁺ = 299.1390, Found = 299.1385.

O-(β-Phenylethyl) *p*-methoxyphenylimidate-TfOH salt (1Da): yellow solid; mp: 155–157 °C; IR (neat): $\tilde{v} = 3067, 1601, 1456, 1241, 1225, 1021, 750 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): <math>\delta = 3.25$ (t, 2H, J = 6.1 Hz), 3.89 (s, 3H), 4.86 (t, 2H, J = 6.1 Hz), 6.99 (d, 2H, J = 9.0 Hz), 7.27–7.37 (m, 5H), 7.96 (d, 2H, J = 9.2 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 34.3, 55.8, 73.7, 114.8$ (2C), 116.3, 120.2 (q, $J_{C-F} = 318.5$ Hz), 127.1, 128.8 (2C), 128.9 (2C), 131.7 (2C), 136.2, 165.9, 171.5; HRMS (ESI): Calcd for C₁₆H₁₈O₂N [M]⁺ = 256.1332, Found = 256.1330.

O-[β-(*p***-Tolyl)ethyl]** *p***-methoxyphenylimidate-TfOH salt (1Db):** yellow solid; mp: 135–137 °C; IR (neat): $\tilde{v} = 2987$, 1605, 1463, 1233, 1160, 1020, 632 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.33$ (s, 3H), 3.21 (t, 2H, J = 5.9 Hz), 3.90 (s, 3H), 4.83 (t, 2H, J = 5.9 Hz), 7.00 (d, 2H, J = 9.1 Hz), 7.12–7.20 (m, 4H), 7.97 (d, 2H, J = 9.1 Hz), 9.91 (s, 1H), 10.4 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.0$, 33.9, 55.8, 73.9, 114.8 (2C), 116.4, 120.2 (q, $J_{C-F} = 318.5$ Hz), 128.7 (2C), 129.4 (2C), 131.7 (2C), 133.1, 136.7, 165.9, 171.5; HRMS (ESI): Calcd for C₁₇H₂₀O₂N [M]⁺ = 270.1489, Found = 270.1486.

O-[β-(*p*-Fluorophenyl)ethyl] *p*-methoxyphenylimidate-TfOH salt (1Dc): yellow solid; mp: 149–150 °C; IR (neat): $\tilde{v} = 2988$, 1602, 1466, 1235, 1024, 629 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.23$ (t, 2H, J = 5.9 Hz), 3.90 (s, 3H), 4.84 (t, 2H, J = 5.9 Hz), 7.00 (d, 2H, J = 9.3 Hz), 7.04 (t 2H, J = 8.6 Hz), 7.25–7.29 (m, 2H), 7.97 (d, 2H, J = 9.1 Hz), 9.91 (s, 1H), 10.5 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 32.8$, 56.0, 72.9, 114.9 (2C), 115.4 (d, $J_{C-F} = 20.7$ Hz), 117.3, 120.9 (q, $J_{C-F} = 322.3$ Hz), 131.1 (d, 2C, $J_{C-F} = 8.5$ Hz), 131.5 (2C), 133.0, 161.4 (d, $J_{C-F} = 242.4$ Hz), 165.2, 170.6; HRMS (ESI): Calcd for C₁₆H₁₇O₂NF [M]⁺ = 274.1238, Found = 274.1234.

O-[β-(*p*-Chlorophenyl)ethyl] *p*-methoxyphenylimidate-TfOH salt (1Dd): yellow solid; mp: 150–152 °C; IR (neat): \tilde{v} = 3086, 1601, 1441, 1240, 1023, 628 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ = 3.23 (t, 2H, J =

5.9 Hz), 3.90 (s, 3H), 4.84 (t, 2H, J = 6.1 Hz), 7.00 (d, 2H, J = 8.8 Hz), 7.24 (d, 2H, J = 8.6 Hz), 7.32 (d, 2H, J = 8.4 Hz), 7.96 (d, 2H, J = 9.1 Hz), 9.92 (s, 1H), 10.5 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 33.6$, 55.8, 73.3, 114.8 (2C), 116.2, 120.1 (q, $J_{C-F} = 318.5$ Hz), 128.9 (2C), 130.2 (2C), 131.6 (2C), 133.0, 134.6, 166.0, 171.5; HRMS (ESI): Calcd for $C_{16}H_{17}O_2N^{35}CI$ [M]⁺ = 290.0942, Found = 290.0939.

O-[β-(*p*-Nitrophenyl)ethyl] *p*-methoxyphenylimidate-TfOH salt (1De): yellow solid; mp: 149–151 °C; IR (neat): $\tilde{v} = 3057$, 1602, 1520, 1230, 1023, 631 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): $\delta = 3.38$ (t, 2H, J =5.9 Hz), 3.91 (s, 3H), 4.93 (t, 2H, J = 5.9 Hz), 7.01 (d, 2H, J = 8.8 Hz), 7.50 (d, 2H, J = 8.4 Hz), 7.96 (d, 2H, J = 8.8 Hz), 8.23 (d, 2H, J =8.4 Hz), 9.96 (s, 1H), 10.5 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta =$ 33.5, 56.1, 72.3, 115.0 (2C), 117.3, 120.9 (q, $J_{C-F} = 321.3$ Hz), 123.7 (2C), 130.6 (2C), 131.6 (2C), 145.4, 146.7, 165.3, 170.7; HRMS (ESI): Calcd for C₁₆H₁₇O₄N₂ [M]⁺ = 301.1183, Found = 301.1180.

O-(β-Phenylethyl) naphthalen-2-ylimidate-TfOH salt (1Ea): yellow solid; mp: 163–165 °C; IR (neat): $\tilde{v} = 3061$, 1487, 1237, 1166, 1027, 633 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.33$ (t, 2H, J = 6.1 Hz), 4.97 (t, 2H, J = 6.1 Hz), 7.28–7.40 (m, 5H), 7.61 (t, 1H, J = 7.0 Hz), 7.69 (dd, 1H, J = 8.3, 1.4 Hz), 7.86–7.90 (m, 2H), 7.94 (d, 1H, J = 8.8 Hz), 8.03 (d, 1H, J = 8.1 Hz), 8.65 (s, 1H), 10.3 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 33.7$, 73.5, 120.9 (q, $J_{C-F} = 322.3$ Hz), 123.1, 123.4, 127.0, 128.0, 128.0, 128.7 (2C), 129.1, 129.3 (2C), 129.7, 130.1, 131.5, 131.6, 135.8, 136.7, 171.4; HRMS (ESI): Calcd for C₁₉H₁₈ON [M]⁺ = 276.1383, Found = 267.1379.

O-[β-(*p*-Tolyl)ethyl] naphthalen-2-ylimidate-TfOH salt (1Eb): yellow solid; mp: 159–160 °C; IR (neat): $\tilde{\nu} = 3092$, 1486, 1240, 1167, 1028, 634 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): $\delta = 2.34$ (s, 3H), 3.28 (t, 2H, J = 5.8 Hz), 4.94 (t, 2H, J = 5.8 Hz), 7.18 (d, 2H, J = 7.6 Hz), 7.24 (d, 2H, J = 8.3 Hz), 7.61 (t, 1H, J = 6.8 Hz), 7.69 (t, 1H, J = 6.8 Hz), 7.88–7.90 (m, 2H), 7.95 (d, 1H, J = 8.8 Hz), 8.04 (d, 1H, J = 7.9 Hz), 8.67 (s, 1H), 10.3 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 20.7$, 39.1, 73.6, 120.9 (q, $J_{C-F} = 322.3$ Hz), 123.1, 123.4, 128.0, 128.0, 129.2 (2C), 129.3 (2C), 129.7 (2C), 130.1, 131.5, 131.7, 133.6, 135.8, 136.1, 171.4; HRMS (ESI): Calcd for C₂₀H₂₀ON [M]⁺ = 290.1539, Found = 290.1537.

O-[β-(*p*-Fluorophenyl)ethyl] naphthalen-2-ylimidate-TfOH salt (1Ec): yellow solid; mp: 167–169 °C; IR (neat): $\tilde{v} = 3062$, 1487, 1238, 1166, 1026, 634 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.30$ (t, 2H, J = 5.9 Hz), 4.94 (t, 2H, J = 6.1 Hz), 7.07 (t, 2H, J = 8.6 Hz), 7.31–7.34 (m, 2H), 7.63 (t, 1H, J = 7.9 Hz), 7.70 (t, 1H, J = 7.3 Hz), 7.86 (dd, 1H, J = 8.7, 1.8 Hz), 7.90 (d, 1H, J = 8.2 Hz), 7.96 (d, 1H, J = 8.8 Hz), 8.03 (d, 1H, J = 7.9 Hz), 8.66 (s, 1H), 10.3 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 32.8$, 73.4, 115.4 (d, $J_{C-F} = 21.6$ Hz), 120.8 (q, $J_{C-F} = 322.3$ Hz), 123.1, 123.4, 128.0, 128.0, 129.2, 129.7, 130.1, 131.2 (d, $J_{C-F} = 8.5$ Hz), 131.5, 131.6, 132.9, 135.8, 161.4 (d, $J_{C-F} = 242.4$ Hz), 171.4; HRMS (ESI): Calcd for C₁₉H₁₇ONF [M]⁺ = 294.1289, Found = 294.1285.

O-[β-(*p*-Chlorophenyl)ethyl] naphthalen-2-ylimidate-TfOH salt (1Ed): yellow solid; mp: 167–169 °C; IR (neat): \tilde{v} = 3088, 1488, 1239, 1028, 632 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): δ = 3.29 (t, 2H, *J* = 6.1 Hz), 4.94 (t, 2H, *J* = 6.1 Hz), 7.29 (d, 2H, *J* = 8.6 Hz), 7.35 (d, 2H, *J* = 8.6 Hz), 7.61 (t, 1H, *J* = 7.0 Hz), 7.69 (t, 1H, *J* = 8.2 Hz), 7.85 (dd, 1H, *J* = 8.7, 1.8 Hz), 7.88 (d, 1H, *J* = 8.2 Hz), 7.94 (d, 1H, *J* = 8.6 Hz), 8.02 (d, 1H, *J* = 8.2 Hz), 8.64 (d, 1H, *J* = 1.6 Hz), 10.3 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): δ = 33.0, 73.2, 120.9 (q, *J*_{C-F} = 322.3 Hz), 123.1, 123.4, 127.9, 128.0, 128.6 (2C), 129.2, 129.7, 130.1, 131.2 (2C), 131.5, 131.6, 131.7, 135.8, 135.9, 171.4; HRMS (ESI): Calcd for C₁₉H₁₇ON³⁵CI [M]⁺ = 310.0993, Found = 310.0991.

O-[β-(*p*-Nitrophenyl)ethyl] naphthalen-2-ylimidate-TfOH salt (1Ee): yellow solid; mp: 152–154 °C; IR (neat): \tilde{v} = 3058, 1515, 1247,

1165, 1028, 634 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ = 3.45 (t, 2H, *J* = 5.9 Hz), 5.02 (t, 2H, *J* = 5.9 Hz), 7.55 (d, 2H, *J* = 8.6 Hz), 7.64 (t, 1H, *J* = 7.7 Hz), 7.72 (t, 1H, *J* = 7.7 Hz), 7.84 (dd, 1H, *J* = 8.8, 2.0 Hz), 7.90 (d, 1H, *J* = 8.6 Hz), 7.97 (d, 1H, *J* = 8.8 Hz), 8.03 (d, 1H, *J* = 8.2 Hz), 8.25 (d, 2H, *J* = 8.6 Hz), 8.66 (s, 1H), 10.4 (s, 1H), 11.0 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): δ = 33.4, 72.7, 120.9 (q, *J*_{C-F} = 321.3 Hz), 123.1, 123.4, 123.7 (2C), 128.0, 128.0, 129.2, 129.7, 130.1, 130.6 (2C), 131.5, 131.7, 135.9, 145.3, 146.7, 171.5; HRMS (ESI): Calcd for C₁₉H₁₇O₃N₂ [M]⁺ = 321.1234, Found = 321.1231.

O-(β-Phenylethyl) benzothiophen-2-ylimidate-TfOH salt (1Fa): yellow solid; mp: 163–165 °C; IR (neat): $\tilde{v} = 3003$, 1525, 1365, 1239, 1164, 1025, 632 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.26$ (t, 2H, J = 5.8 Hz), 4.90 (t, 2H, J = 5.8 Hz), 7.28–7.39 (m, 5H), 7.47 (td, 1H, J = 7.5, 1.1 Hz), 7.56 (td, 1H, J = 8.3, 1.1 Hz), 7.88 (dd, 1H, J = 8.3, 0.9 Hz), 8.00 (d, 1H, J = 7.9 Hz), 8.72 (s, 1H), 10.2 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, [D₆]DMSO): $\delta = 33.8$, 73.9, 121.0 (q, $J_{C-F} = 322.3$ Hz), 123.3, 126.1, 126.7, 127.1, 127.9, 128.8 (2C), 129.0, 129.4 (2C), 133.6, 136.7, 138.1, 142.3, 166.7; HRMS (ESI): Calcd for C₁₇H₁₆ONS [M]⁺ = 282.0947, Found = 282.0947.

O-(β-Phenylethyl) *p*-chlorophenylimidate-TfOH salt (1Ga): white solid; mp: 129–131 °C; IR (neat): $\tilde{v} = 3033$, 1595, 1447, 1227, 1024, 633 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.26$ (t, 2H, J = 5.9 Hz), 4.90 (t, 2H, J = 6.1 Hz),7.27–7.30 (m, 3H), 7.35 (t, 2H, J = 8.2 Hz), 7.50 (d, 2H, J = 8.6 Hz), 7.91(d, 2H, J = 8.8 Hz), 10.3 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 34.2$, 74.5, 120.0 (q, $J_{C-F} = 318.5$ Hz), 123.1, 127.3 (2C), 128.8 (3C), 129.8 (2C), 130.5 (2C), 135.8, 143.0, 171.6; HRMS (ESI): Calcd for C₁₅H₁₅ON³⁵Cl [M]⁺ = 260.0837, Found = 260.0838.

O-[β-(*p***-Tolyl)ethyl]** *p*-chlorophenylimidate-TfOH salt (1Gb): white solid; mp: 145–147 °C; IR (neat): $\tilde{v} = 3033$, 1591, 1447, 1227, 1023, 649 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.33$ (s, 3H), 3.22 (t, 2H, J = 5.9 Hz), 4.87 (t, 2H, J = 5.9 Hz), 7.11–7.19 (m, 4H), 7.51 (d, 2H, J = 8.8 Hz), 7.93 (d, 2H, J = 8.8 Hz), 10.3 (s, 1H), 10.9 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.0$, 33.8, 74.7, 120.0 (q, $J_{C-F} = 319.5$ Hz), 123.2, 128.7 (2C), 129.5 (2C), 129.8 (2C), 130.5 (2C), 132.7, 136.9, 143.1, 171.7; HRMS (ESI): Calcd for C₁₆H₁₇ON³⁵CI [M]⁺ = 274.0993, Found = 274.0995.

O-[β-(*p*-Fluorophenyl)ethyl] *p*-chlorophenylimidate-TfOH salt (1Gc): white solid; mp: 129–130 °C; IR (neat): $\tilde{v} = 3033$, 1594, 1448, 1225, 1021, 628 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.24$ (t, 2H, J = 6.1 Hz), 4.87 (t, 2H, J = 6.1 Hz), 7.04 (tt, 2H, J = 8.6, 2.0 Hz), 7.24–7.29 (m, 2H), 7.53 (d, 2H, J = 8.6 Hz), 7.92 (d, 2H, J = 8.6 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 33.4$, 74.4, 115.7 (d, $J_{C-F} = 21.6$ Hz), 120.0 (q, $J_{C-F} = 318.5$ Hz), 123.1, 129.8 (2C), 130.4 (d, $J_{C-F} = 7.5$ Hz), 130.5 (2C), 131.4 (d, $J_{C-F} = 2.8$ Hz), 143.2, 162.0 (d, $J_{C-F} = 245.2$ Hz), 171.6; HRMS (ESI): Calcd for C₁₅H₁₄ON³⁵CIF [M]⁺ = 278.0742, Found = 278.0742.

O-[β-(*p***-Nitrophenyl)ethyl]** *p*-chlorophenylimidate-TfOH salt (1Ge): white solid; mp: 151–153 °C; IR (neat): $\tilde{v} = 3032$, 1592, 1524, 1227, 1021, 630 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.39$ (t, 2H, J = 5.9 Hz), 4.96 (t, 2H, J = 6.1 Hz), 7.94 (d, 2H, J = 8.6 Hz), 7.54 (d, 2H, J = 8.6 Hz), 7.92 (d, 2H, J = 8.6 Hz), 8.23 (d, 2H, J = 8.6 Hz), 1³C-NMR (100 MHz, CDCl₃): $\delta = 33.6$, 73.6, 120.9 (q, $J_{C-F} = 322.3$ Hz), 125.0, 127.0, 128.7 (2C), 129.2 (2C), 129.6 (2C), 130.9 (2C), 136.6, 140.7, 170.6; HRMS (ESI): Calcd for C₁₅H₁₄O₃N₂³⁵Cl [M]⁺ = 305.0687, Found = 305.0688.

Typical Procedure for Transformation of O-(β-Arylethyl) Arylimidate-TfOH Salts 1 into 2,4-Diaryl-5-iodoxazoles 4: To a solution of *O*-(β-phenylethyl) *p*-tolylimidate-TfOH salt **(1Aa**, 1.0 mmol, 389.4 mg) in THF (4.0 mL) was added NaH (1.5 mmol, 65.0 mg) at room temperature. The obtained mixture was stirred for 15 min. at

room temperature under argon atmosphere. After removal of the solvent, 1,2-dichloroethane (5.0 mL), K_2CO_3 (3.0 mmol, 414.6 mg), and DIH (3.0 mmol, 1140.0 mg) were added to the residue. The obtained mixture was stirred for 8 h in the range of 35–38 °C under irradiation with a 300 W tungsten lamp. Sat. Na₂SO₃ aq. solution (15.0 mL) was added to the reaction mixture and the product was extracted with CHCl₃ (15.0 mL × 3). The organic layer was dried with Na₂SO₄ and filtered. After removal of the solvent, the residue was purified by silica-gel column chromatography (eluent: *n*-hexane/EtOAc = 9:1) to give 5-iodo-4-phenyl-2-*p*-tolyloxazole (**4Aa**, 314.8 mg, 87 %).

5-Iodo-4-phenyl-2-*p***-tolyloxazole (4Aa)**: Yield: 314.8 mg (87 %); white solid; mp: 90–92 °C; IR (neat): $\tilde{v} = 2915$, 1558, 1500, 1093, 725, 689 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.42$ (s, 3H), 7.28 (d, 2H, J = 8.1 Hz), 7.38 (t, 1H, J = 7.4 Hz), 7.47 (t, 2H, J = 7.4 Hz), 7.98 (d, 2H, J = 8.3 Hz), 8.04 (d, 2H, J = 7.0 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.9$, 34.3, 74.0, 121.8, 127.2, 128.8 (2C), 128.9 (2C), 129.2 (2C), 130.2 (2C), 136.1, 147.8, 172.3; HRMS (ESI): Calcd for C₁₆H₁₃ONI [M + H]⁺ = 362.0036, Found = 362.0031.

5-Iodo-2,4-di-*p***-tolyloxazole (4Ab)**: Yield: 283.8 mg (76 %); white solid; mp: 125–126 °C; IR (neat): $\tilde{v} = 2973$, 1501, 1086, 960, 826, 728 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.40$ (s, 3H), 2.41 (s, 3H), 7.26–7.28 (m, 4H), 7.93 (d, 2H, J = 8.2 Hz), 7.97 (d, 2H, J = 8.2 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.4$, 21.6, 81.9, 124.1, 126.3 (2C), 126.8 (2C), 127.7, 129.1 (2C), 129.4 (2C), 138.3, 141.1, 145.0, 166.0; HRMS (ESI): Calcd for C₁₇H₁₅ONI [M + H]⁺ = 376.0193, Found = 376.0188.

4-*p*-**Fluorophenyl-5-iodo-2**-*p*-**tolyloxazole (4Ac)**: Yield: 304.2 mg (80 %); white solid; mp: 122–124 °C; IR (neat): $\tilde{v} = 2987$, 1500, 1222, 1087, 962, 827, 730 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.42$ (s, 3H), 7.15 (t, 2H, J = 8.6 Hz), 7.29 (d, 2H, J = 7.9 Hz), 7.97 (d, 2H, J = 8.4 Hz), 8.00–8.05 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.6$, 82.1, 115.4 (d, $J_{C-F} = 21.6$ Hz), 123.9, 126.3 (2C), 126.7, 128.8 (d, $J_{C-F} = 8.5$ Hz), 129.5 (2C), 141.3, 144.2, 162.8 (d, $J_{C-F} = 248.1$ Hz), 166.1; HRMS (ESI): Calcd for C₁₆H₁₂ONFI [M + H]⁺ = 379.9942, Found = 379.9938.

4-*p*-**Chlorophenyl-5-iodo-2**-*p*-**tolyloxazole (4Ad)**: Yield: 300.0 mg (76 %); white solid; mp: 136–138 °C; IR (neat): $\tilde{v} = 2987$, 1498, 1089, 961, 827, 729 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.42$ (s, 3H), 7.28 (d, 2H, J = 8.4 Hz), 7.43 (d, 2H, J = 8.6 Hz), 7.96 (d, 2H, J = 8.1 Hz), 8.00 (d, 2H, J = 8.4 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.6$, 82.6, 123.9, 126.3 (2C), 128.1 (2C), 128.6 (2C), 129.1, 129.5 (2C), 134.3, 141.3, 144.0, 166.2; HRMS (ESI): Calcd for C₁₆H₁₂ONCII [M + H]⁺ = 395.9647, Found = 395.9643.

2,4-Diphenyl-5-iodoxazole (4Ba): Yield: 134.7 mg (39 %); white solid; mp: 92–93 °C; IR (neat): $\tilde{v} = 3054$, 1557, 1447, 1287, 1090, 704cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.39$ (tt, 1H, J = 7.3, 1.4 Hz), 7.45–7.50 (m, 5H), 8.05 (d, 2H, J = 7.0 Hz), 8.08–8.11 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 82.9$, 126.4 (2C), 126.7, 126.9 (2C), 128.4 (2C), 128.5, 128.8 (2C), 130.5, 130.8, 145.1, 165.9; HRMS (ESI): Calcd for C₁₅H₁₁ONI [M + H]⁺ = 347.9880, Found = 347.9875.

5-Iodo-2-phenyl-4-*p***-tolyloxazole (4Bb)**: Yield: 295.9 mg (82 %); white solid; mp: 101–103 °C; IR (neat): $\tilde{v} = 2987$, 1495, 1086, 960, 818, 687 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): $\delta = 2.41$ (s, 3H), 7.28 (d, 2H, J = 8.4 Hz), 7.46–7.49 (m, 3H), 7.94 (d, 2H, J = 8.2 Hz), 8.07–8.10 (m, 2H); ¹³C-NMR (100 MHz, CDCI₃): $\delta = 21.4$, 82.4, 126.3 (2C), 126.8 (3C), 127.6, 128.8 (2C), 129.2 (2C), 130.7, 138.4, 145.2, 165.8; HRMS (ESI): Calcd for C₁₆H₁₃ONI [M + H]⁺ = 362.0036, Found = 362.0031.

4-p-Fluorophenyl-5-iodo-2-phenyloxazole (4Bc): Yield: 266.0 mg (73 %); white solid; mp: 118–119 °C; IR (neat): $\tilde{v} = 2987$, 1494, 1231, 1093, 836, 684 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.16$ (t, 2H, J =

8.7 Hz), 7.47–7.49 (m, 3H), 8.01–8.11 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ = 82.6, 115.5 (d, 2C, J_{C-F} = 21.6 Hz), 126.3 (2C), 126.5, 126.6, 128.8 (2C), 128.8 (d, 2C, J_{C-F} = 8.5 Hz), 130.9, 144.3, 162.8 (d, J_{C-F} = 248.1 Hz), 165.9; HRMS (ESI): Calcd for C₁₅H₁₀ONFI [M + H]⁺ = 365.9786, Found = 365.9780.

4-*p***-Chlorophenyl-5-iodo-2-phenyloxazole (4Bd)**: Yield: 194.0 mg (51 %); white solid; mp: 123–124 °C; IR (neat): $\tilde{v} = 2987$, 1477, 1092, 961, 830 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.44$ (d, 2H, J = 8.6 Hz), 7.47–7.50 (m, 3H), 8.01 (d, 2H, J = 8.6 Hz), 8.07–8.09 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 83.0$, 126.4 (2C), 126.5, 128.1 (2C), 128.7 (2C), 128.8 (2C), 129.0, 130.9, 134.3, 144.1, 166.0; HRMS (ESI): Calcd for C₁₅H₁₀ON³⁵CII [M + H]⁺ = 381.9490, Found = 381.9486.

2-(3',5'-Dimethylphenyl)-5-iodo-4-phenyloxazole (4Ca): Yield: 310.7 mg (83 %); white solid; mp: 151–153 °C; IR (neat): $\tilde{v} = 2969$, 1540, 1442, 1229, 1097, 694 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.39$ (s, 6H), 7.11 (s, 1H), 7.38 (t, 1H, J = 7.5 Hz), 7.47 (t, 2H, J = 7.5 Hz), 7.71 (s, 2H), 8.04 (d, 2H, J = 7.0 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.2$ (2C), 82.6, 124.1 (2C), 126.4, 126.9 (2C), 128.4 (2C), 130.5, 132.5 (2C), 138.4 (2C), 144.9, 166.2; HRMS (ESI): Calcd for C₁₇H₁₅ONI [M + H]⁺ = 376.0193, Found = 376.0194.

2-(3',5'-Dimethylphenyl)-5-iodo-4-*p***-tolyloxazole (4Cb)**: Yield: 248.7 mg (64 %); white solid; mp: 111–113 °C; IR (neat): $\tilde{v} = 2915$, 1557, 1495, 1224, 1087, 957, 732 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.39$ (s, 6H), 2.40 (s, 3H), 7.10 (s, 1H), 7.27 (d, 2H, J = 8.2 Hz), 7.71 (s, 2H), 7.93 (d, 2H, J = 8.2 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.2$ (2C), 21.4, 82.1, 124.1 (2C), 126.5, 126.8 (2C), 127.7, 129.1 (2C), 132.5, 138.3, 138.4 (2C), 145.0, 166.1; HRMS (ESI): Calcd for C₁₈H₁₇ONI [M + H]⁺ = 390.0349, Found = 390.0348.

4-p-Fluorophenyl-2-(3',5'-dimethylphenyl)-5-iodoxazole (**4Cc**): Yield: 203.3 mg (52 %); white solid; mp: 142–143 °C; IR (neat): $\tilde{v} = 2971$, 1558, 1491, 1293, 1102, 835 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.39$ (s, 6H), 7.11 (s, 1H), 7.15 (tt, 2H, J = 8.8, 1.8 Hz), 7.70 (s, 2H), 8.01–8.04 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.2$ (2C), 82.3, 115.4 (d, $J_{C-F} = 21.6$ Hz), 124.0 (2C), 126.3, 126.7 (d, $J_{C-F} = 2.8$ Hz), 128.7 (d, $J_{C-F} = 8.5$ Hz), 132.6 (2C), 138.4 (2C), 144.1, 162.7 (d, $J_{C-F} = 248.1$ Hz), 166.2; HRMS (ESI): Calcd for C₁₇H₁₄ONFI [M + H]⁺ = 394.0099, Found = 394.0099.

4-p-Chlorophenyl-2-(3',5'-dimethylphenyl)-5-iodoxazole (4Cd): Yield: 329.4 mg (80 %); white solid; mp: 131–133 °C; IR (neat): $\tilde{v} = 2910, 1557, 1479, 1227, 1085, 733 cm^{-1}; ^{1}H-NMR (400 MHz, CDCl_3): <math>\delta = 2.39$ (s, 6H), 7.11 (s, 1H), 7.44 (d, 2H, J = 8.2 Hz), 7.70 (s, 2H), 8.00 (d, 2H, J = 8.2 Hz); 13 C-NMR (100 MHz, CDCl_3): $\delta = 21.2$ (2C), 82.8, 124.1 (2C), 126.3, 128.1 (2C), 128.6 (2C), 129.1, 132.7, 134.3, 138.5 (2C), 144.0, 166.3; HRMS (ESI): Calcd for C₁₇H₁₄ON³⁵ClI [M + H]⁺ = 409.9803, Found = 409.9804.

5-lodo-2-*p***-methoxyphenyl-4-phenyloxazole** (**4Da**): Yield: 217.5 mg (58 %); yellow solid; mp: 92–93 °C; IR (neat): $\tilde{v} = 2973$, 1615, 1498, 1246, 1021, 826 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta =$ 3.88 (s, 3H), 6.98 (t, 2H, J = 9.0 Hz), 7.38 (t, 1H, J = 7.6 Hz), 7.47 (t, 2H, J = 7.6 Hz), 8.01–8.05 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): $\delta =$ 55.4, 81.9, 114.1 (2C), 119.5, 126.8 (2C), 128.0 (2C), 128.4, 128.4 (2C), 130.6, 144.8, 161.6, 165.9; HRMS (ESI): Calcd for C₁₆H₁₃O₂NI [M + H]⁺ = 377.9985, Found = 377.9980.

5-Iodo-2-*p***-methoxyphenyl-4-***p***-tolyloxazole (4Db):** Yield: 154.9 mg (40 %); white solid; mp: 125–127 °C; IR (neat): $\tilde{v} = 2968$, 1501, 1251, 1023, 825 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.40$ (s, 3H), 3.88 (s, 3H), 6.98 (d, 2H, J = 8.8 Hz), 7.27 (d, 2H, J = 8.2 Hz), 7.92 (d, 2H, J = 8.2 Hz), 8.02 (d, 2H, J = 9.0 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.3$, 55.4, 81.3, 114.1 (2C), 119.6, 126.8 (2C), 127.8, 128.0 (2C), 129.1 (2C), 138.3, 144.9, 161.6, 165.8; HRMS (ESI): Calcd for C₁₇H₁₅O₂NI [M + H]⁺ = 392.0142, Found = 392.0138.

4-*p*-**Fluorophenyl-5-iodo-2**-*p*-**methoxyphenyloxazole** (**4Dc**): Yield: 214.4 mg (54 %); yellow solid; mp: 136–138 °C; IR (neat): $\tilde{v} = 1613$, 1499, 1245, 1023, 827 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.88$ (s, 3H), 6.98 (d, 2H, J = 9.1 Hz), 7.15 (t, 2H, J = 8.6 Hz), 7.99– 8.04 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 55.4$, 81.5, 114.2 (2C), 115.4 (d, $J_{C-F} = 21.6$ Hz), 119.4, 126.8, 128.1 (2C), 128.7 (d, $J_{C-F} =$ 8.5 Hz), 144.1, 161.4, 162.7 (d, $J_{C-F} = 249.0$ Hz), 165.9; HRMS (ESI): Calcd for C₁₆H₁₂O₃NFI [M + H]⁺ = 395.9891, Found = 395.9886.

4-p-Chlorophenyl-5-iodo-2-p-methoxyphenyloxazole (**4Dd**): Yield: 221.9 mg (54 %); white solid; mp: 136–137 °C; IR (neat): $\tilde{v} = 1503, 1251, 1023, 834 \text{ cm}^{-1}; ^{1}\text{H-NMR} (400 \text{ MHz, CDCl}_3): \delta = 3.88$ (s, 3H), 6.99 (d, 2H, J = 9.1 Hz), 7.43 (d, 2H, J = 8.8 Hz), 7.98–8.03 (m, 4H); $^{13}\text{C-NMR} (100 \text{ MHz, CDCl}_3): \delta = 55.4, 82.0, 114.2$ (2C), 119.3, 128.1 (4C), 128.6 (2C), 129.1, 134.2, 143.9, 161.7, 166.0; HRMS (ESI): Calcd for C₁₆H₁₂O₂NCII [M + H]⁺ = 411.9596, Found = 411.9591.

5-Iodo-2-(naphthalen-2'-yl)-4-phenyloxazole (4Ea): Yield: 249.2 mg (63 %); white solid; mp: 111–113 °C; IR (neat): $\tilde{v} = 1549$, 1444, 1291, 1093, 822, 753 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.41$ (tt, 1H, J = 7.4, 2.0 Hz), 7.50 (t, 2H, J = 7.4 Hz), 7.53–7.58 (m, 2H), 7.87–7.90 (m, 1H), 7.93–7.98 (m, 2H), 8.09 (d, 2H, J = 7.0 Hz), 8.19 (dd, 1H, J = 8.5, 1.8 Hz), 8.60 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 83.1$, 123.1, 123.9, 126.4, 126.8, 126.9 (2C), 127.4, 127.8, 128.5 (2C), 128.5, 128.6, 128.8, 130.5, 132.9, 134.3, 145.2, 166.0; HRMS (ESI): Calcd for C₁₉H₁₃ONI [M + H]⁺ = 398.0036, Found = 398.0032.

5-Iodo-2-(naphthalen-2'-yl)-4-*p***-tolyloxazole (4Eb)**: Yield: 271.3 mg (66 %); white solid; mp: 130–131 °C; IR (neat): $\tilde{v} = 1547$, 1493, 1290, 1086, 818, 751 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.42$ (s, 3H), 7.30 (d, 2H, J = 7.6 Hz), 7.53–7.57 (m, 2H), 7.86–7.89 (m, 1H), 7.92–7.98 (m, 4H), 8.18 (dd, 1H, J = 8.6, 1.8 Hz), 8.58 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.4$, 82.6, 123.1, 124.0, 126.4, 126.8, 126.8 (2C), 127.4, 127.6, 127.8, 128.6, 128.8, 129.2 (2C), 132.9, 134.3, 138.4, 145.3, 165.9; HRMS (ESI): Calcd for C₂₀H₁₅ONI [M + H]⁺ = 412.0193, Found = 412.0187.

4-p-Fluorophenyl-5-iodo-2-(naphthalen-2'-yl)oxazole (**4Ec**): Yield: 303.7 mg (73 %); white solid; mp: 144–146 °C; IR (neat): $\tilde{v} = 1547$, 1491, 1214, 1095, 835, 753 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.18$ (t, 2H, J = 8.8 Hz), 7.54–7.59 (m, 2H), 7.87–7.90 (m, 1H), 7.93–7.97 (m, 2H), 8.05–8.10 (m, 2H), 8.17 (dd, 1H, J = 8.6, 1.8 Hz), 8.58 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 82.8$, 115.5 (d, 2C, $J_{C-F} = 21.6$ Hz), 123.0, 123.8, 126.4, 126.6 (2C), 126.8, 127.5, 127.9, 128.7, 128.8 (d, 2C, $J_{C-F} = 8.5$ Hz), 132.9, 134.3, 144.5, 162.8 (d, $J_{C-F} = 249.0$ Hz), 166.0; HRMS (ESI): Calcd for C₁₉H₁₂ONFI [M + H]⁺ = 415.9942, Found = 415.9938.

4-p-Chlorophenyl-5-iodo-2-(naphthalen-2'-yl)oxazole (**4Ed**): Yield: 273.0 mg (63 %); white solid; mp: 140–142 °C; IR (neat): $\tilde{v} = 1549, 1479, 1282, 1090, 828, 751 cm^{-1}; {}^{1}H-NMR (400 MHz, CDCl_3): \delta = 7.46 (d, 2H, J = 8.8, Hz), 7.53–7.59 (m, 2H), 7.86–7.90 (m, 1H), 7.92–7.97 (m, 2H), 8.04 (d, 2H, J = 8.8 Hz), 8.16 (dd, 1H, J = 8.6, 1.8 Hz), 8.56 (s, 1H); {}^{13}C-NMR (100 MHz, CDCl_3): \delta = 83.3, 123.0, 123.7, 126.5, 126.8, 127.5, 127.8, 128.1 (2C), 128.7 (2C), 128.8, 129.0 (2C), 132.9, 134.3 (2C), 144.2, 166.0; HRMS (ESI): Calcd for C₁₉H₁₂ON³⁵CII [M + H]⁺ = 431.9647, Found = 431.9642.$

2-(Benzothiophen-2'-yl)-5-iodo-4-phenyloxazole (4Fa): Yield: 203.7 mg (56 %); yellow solid; mp: 162–164 °C; IR (neat): $\tilde{v} = 1600$, 1445, 1293, 1074, 962, 746 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.38-7.45$ (m, 3H), 7.46–7.50 (m, 2H), 7.84–7.90 (m, 2H), 7.97 (s, 1H), 8.03–8.06 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 83.2$, 122.5, 124.7, 125.0, 125.0, 126.1, 127.0 (2C), 128.5 (2C), 128.6, 128.7, 130.1, 139.3, 140.7, 145.4, 161.9; HRMS (ESI): Calcd for C₁₇H₁₁ONIS [M + H]⁺ = 403.9601, Found = 403.9601.

4-*p*-**Nitrophenyl-2-***p*-**tolyloxazole (3Ae)**: Yield: 202.2 mg (72 %); yellow solid; mp: 194–197 °C; IR (neat): $\tilde{v} = 1605$, 1504, 1330, 1105, 852, 728 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): $\delta = 2.44$ (s, 3H), 7.31 (d, 2H, J = 8.2 Hz), 7.97–8.02 (m, 4H), 8.10 (s, 1H), 8.30 (d, 2H, J = 9.1 Hz); ¹³C-NMR (100 MHz, CDCI₃): $\delta = 21.6$, 124.2 (2C), 126.0 (2C), 126.6 (2C), 129.6 (2C), 135.1, 137.5, 140.0 (2C), 141.3, 147.2, 162.8; HRMS (ESI): Calcd for C₁₆H₁₃O₃N₂ [M + H]⁺ = 281.0921, Found = 281.0923.

4-*p*-**Nitrophenyl-2-phenyloxazole (3Be)**: Yield: 120.2 mg (45 %); yellow solid; mp: 176–178 °C; IR (neat): $\tilde{v} = 1603$, 1515, 1330, 1107, 856, 714 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.49-7.53$ (m, 3H), 8.00 (d, 2H, J = 9.0 Hz), 8.11–8.16 (m, 3H), 8.30 (d, 2H, J = 9.0 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 124.2$ (2C), 126.1 (2C), 126.6 (2C), 126.9, 128.9 (2C), 130.9, 135.4, 137.4, 140.1, 147.2, 162.6; HRMS (ESI): Calcd for C₁₅H₁₁O₃N₂ [M + H]⁺ = 267.0764, Found = 267.0767.

4-*p*-**Nitrophenyl-2-(3**′,**5**′-**dimethylphenyl)oxazole** (**3Ce**): Yield: 154.3 mg (52 %); yellow solid; mp: 174–176 °C; IR (neat): $\tilde{v} = 1608$, 1513, 1333, 1112, 851, 733 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.41$ (s, 6H), 7.14 (s, 1H), 7.75 (s, 2H), 7.99 (d, 2H, J = 9.0 Hz), 8.11 (s, 1H), 8.30 (d, 2H, J = 9.0 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.2$ (2C), 124.1 (2C), 124.3 (2C), 126.0 (2C), 126.6, 132.6, 135.2, 137.5, 138.5 (2C), 140.0, 147.1, 162.9; HRMS (ESI): Calcd for C₁₇H₁₅O₃N₂ [M + H]⁺ = 295.1077, Found = 295.1077.

2-(Naphthalen-2'-yl)-4-*p***-nitrophenyloxazole (3Ee):** Yield: 316.3 mg (45 %); yellow solid; mp: 196–198 °C; IR (neat): $\tilde{v} = 1598$, 1507, 1305, 1105, 829, 749 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.55-7.60$ (m, 2H), 7.88–7.91 (m, 1H), 7.96–7.98 (m, 2H), 8.03 (d, 2H, J = 8.8 Hz), 8.17 (s, 1H), 8.21 (dd, 1H, J = 8.6, 1.6 Hz), 8.31 (d, 2H, J = 8.6 Hz), 8.62 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 123.3$, 124.1, 124.2 (2C), 126.1 (2C), 126.8, 126.9, 127.6, 127.9, 128.8 (2C), 132.9, 134.4, 135.6, 137.4, 140.3, 147.3, 162.8; HRMS (ESI): Calcd for C₁₉H₁₃O₃N₂ [M + H]⁺ = 317.0921, Found = 317.0918.

2-p-Chlorophenyl-4-*p***-nitrophenyloxazole (3Ge)**: Yield: 190.2 mg (63 %); yellow solid; mp: 184–186 °C; IR (neat): $\tilde{v} = 1607$, 1513, 1342, 1088, 851, 732 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.49$ (td, 2H, J = 8.8, 2.0 Hz), 7.99 (td, 2H, J = 9.0, 2.0 Hz), 8.07 (td, 2H, J = 8.8, 2.0 Hz), 7.99 (td, 2H, J = 9.0, 2.0 Hz), 8.07 (td, 2H, J = 8.8, 2.0 Hz), 8.13 (s, 1H), 8.31 (td, 2H, J = 9.0, 2.0 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 124.2$ (2C), 125.3, 126.1 (2C), 127.9 (2C), 129.2 (2C), 135.6, 137.1, 137.2, 140.3, 147.3, 161.6; HRMS (ESI): Calcd for C₁₅H₁₀O₃N₂Cl [M + H]⁺ = 303.0347, Found = 303.0347.

2-p-Chlorophenyl-4-phenyloxazoline (**2Ga**): Yield: 197.9 mg (77 %); white solid; mp: 86–87 °C; IR (neat): $\tilde{v} = 1641$, 1488, 1258, 1069, 696 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 4.28$ (t, 1H, J = 8.3 Hz), 4.80 (dd, 1H, J = 10.1, 8.5 Hz), 5.38 (dd, 1H, J = 10.1, 8.1 Hz), 7.27–7.31 (m, 3H), 7.35–7.38 (m, 2H), 7.42 (d, 2H, J = 8.5 Hz), 7.98 (d, 2H, J = 8.5 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 70.2$, 75.0, 126.0, 126.7 (2C), 127.7, 128.7 (2C), 128.8 (2C), 129.8 (2C), 137.7, 142.1, 163.8; HRMS (ESI): Calcd for C₁₅H₁₃ON³⁵Cl [M + H]⁺ = 258.0680, Found = 258.0684.

2-p-Chlorophenyl-4-*p***-tolyloxazoline (2Gb)**: Yield: 203.6 mg (75 %); white solid; mp: 100–101 °C; IR (neat): $\tilde{v} = 1643$, 1489, 1269, 1074, 954, 810 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.34$ (s, 3H), 4.27 (t, 1H, J = 8.3 Hz), 4.78 (dd, 1H, J = 10.2, 8.3 Hz), 5.35 (dd, 1H, J = 10.1, 8.3Hz), 7.15–7.20 (m, 4H), 7.41 (d, 2H, J = 8.8 Hz), 7.97 (d, 2H, J = 8.8 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.1$, 69.9, 75.0, 126.1, 126.6 (2C), 128.6 (2C), 129.4 (2C), 129.8 (2C), 137.4, 137.6, 139.1, 163.6; HRMS (ESI): Calcd for C₁₆H₁₅ON³⁵Cl [M + H]⁺ = 272.0837, Found = 272.0840.

2-p-Chlorophenyl-4-*p***-fluorophenyloxazoline** (2Gc): Yield: 205.0 mg (74 %); white solid; mp: 98–100 °C; IR (neat): $\tilde{v} = 1637$, 1507, 1223, 1094, 832 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 4.24$ (t,

10

1H, J = 8.3 Hz), 4.80 (dd, 1H, J = 10.1, 8.5 Hz), 5.37 (dd, 1H, 10.1, 8.1 Hz), 7.05 (tt, 2H, J = 8.5, 2.0 Hz), 7.24–7.29 (m, 2H), 7.42 (d, 2H, J = 8.8 Hz), 7.97 (d, 2H, J = 8.8 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 69.4$, 74.9, 115.6 (d, $J_{C-F} = 21.6$ Hz), 125.8, 128.3 (d, $J_{C-F} = 8.5$ Hz), 128.7 (2C), 129.8 (2C), 137.8, 137.9 (d, $J_{C-F} = 2.8$ Hz), 162.2 (d, $J_{C-F} = 245.2$ Hz), 163.9; HRMS (ESI): Calcd for $C_{15}H_{12}ON^{35}CIF$ [M + H]⁺ = 276.0586, Found = 276.0588.

2-p-Methoxyphenyl-4-p-nitrophenyloxazoline (**2De**): Yield: 197.9 mg (66 %); yellow solid; mp: 100–102 °C; IR (neat): $\tilde{v} = 2955$, 1650, 1421, 1337, 1247, 1074, 739 cm⁻¹; ¹H-NMR (400 MHz, CDCI₃): $\delta = 3.88$ (s, 3H), 4.21 (t, 1H, J = 8.3 Hz), 4.84 (dd, 1H, J = 10.1, 8.5 Hz), 5.48 (dd, 1H, J = 10.1, 8.1 Hz), 6.97 (d, 2H, J = 8.8 Hz), 7.49 (d, 2H, J = 8.5 Hz), 7.98 (d, 2H, J = 9.0 Hz), 8.22 (d, 2H, J = 9.0 Hz); ¹³C-NMR (100 MHz, CDCI₃): $\delta = 55.4$, 69.3, 74.2, 113.8 (2C), 119.3, 123.9 (2C), 127.6 (2C), 130.3 (2C), 147.3, 149.9, 162.5, 165.5; HRMS (ESI): Calcd C₁₆H₁₅O₄N₂ for [M + H]⁺ = 299.1026, Found = 299.1024.

4-Methyl-2-*p***-tolyloxazoline (2Af)**: Yield: 110.1 mg (63 %); yellow oil; IR (neat): $\tilde{v} = 2966$, 1644, 1512, 1259, 1059, 727 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.36$ (d, 3H, J = 6.6 Hz), 2.39 (s, 3H), 3.94 (t, 2H, J = 7.9 Hz), 4.32–4.41 (m, 1H), 4.51 (dd, 1H, J = 9.3, 7.9 Hz), 7.21 (d, 2H, J = 7.9 Hz), 7.83 (d, 2H, J = 8.2 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.4$, 21.5, 61.8, 73.9, 125.0, 128.1 (2C), 129.0 (2C), 141.5, 163.5; HRMS (ESI): Calcd for C₁₁H₁₄ON [M + H]⁺ = 176.1070, Found = 176.1071.

4-Ethyl-2-*p***-tolyloxazoline (2Ag)**: Yield: 128.1 mg (68 %); yellow oil; IR (neat): $\tilde{v} = 2963$, 1646, 1352, 1064, 827, 727 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 0.99$ (t, 3H, J = 7.4 Hz), 1.55–1.66 (m, 1H), 1.72–1.83 (m, 1H), 2.39 (s, 3H), 4.04 (t, 1H, J = 7.9 Hz), 4.19–4.27 (m, 1H), 4.46 (dd, 1H, J = 9.3, 8.3 Hz), 7.21 (d, 2H, J = 8.5 Hz), 7.83 (d, 2H, J = 8.3 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 9.92$, 21.5, 28.6, 67.8, 72.0, 125.0, 128.1 (2C), 128.9 (2C), 141.5, 163.5; HRMS (ESI): Calcd for C₁₂H₁₆ON [M + H]⁺ = 190.1226, Found = 190.1223.

Transformation of 5-Iodo-4-phenyl-2-*p***-tolyloxazole 4Aa into 4-Phenyl-2-***p***-tolyloxazole 3Aa:** To a mixture of 5-iodo-4-phenyl-2*p*-tolyloxazole (**4Aa**, 0.5 mmol, 180.6 mg) in EtOH (7.5 mL) was added Zn powder (5.0 mmol, 363.3 mg) under argon atmosphere. The obtained mixture was stirred for 16 h at refluxing temperature. The cooled mixture was filtered through celite, and then the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: *n*-hexane/AcOEt = 9:1) to afford 4-phenyl-2-*p*-tolyloxazole (**3Aa**, 113.4 mg, 96 %).

4-Phenyl-2-*p***-tolyloxazole (3Aa)**: Yield: 113.4 mg (96 %); white solid; mp: 109–110 °C; IR (neat): $\tilde{v} = 1498$, 1117, 1075, 929, 732 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.42$ (s, 3H), 7.27–7.35 (m, 3H), 7.43 (t, 2H, J = 7.9 Hz), 7.82 (d, 2H, J = 8.1 Hz), 7.94 (s, 1H), 8.01 (d, 2H, J = 7.9 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.5$, 124.8, 125.6 (2C), 126.4 (2C), 128.0, 128.7 (2C), 129.4 (2C), 131.2, 133.1, 140.6, 141.8, 162.1; HRMS (ESI): Calcd for C₁₆H₁₄ON [M + H]⁺ = 236.1070, Found = 236.1067.

Transformation of 5-lodo-4-phenyl-2-*p***-tolyloxazole 4Aa into 4,5-Diphenyl-2-***p***-tolyloxazole 5Aa: To a mixture of 5-iodo-4phenyl-2-***p***-tolyloxazole (4Aa**, 0.5 mmol, 180.6 mg) and PhB(OH)₂ (1.0 mmol, 121.9 mg) in DMF (10.0 mL) was added PdCl₂(PPh₃)₂ (0.025 mmol, 17.5 mg) under argon atmosphere. The obtained mixture was stirred for 30 min at room temperature. Then, K₂CO₃ (1.0 mmol, 138.2 mg) in H₂O (2.0 mL) was added to the mixture, and the obtained mixture was stirred for 6 h at 60 °C. Water (5.0 mL) was added to the reaction mixture, and the product was extracted with CH₂Cl₂ (15.0 mL × 3) and washed with brine (15.0 mL × 2). The organic layer was dried with Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica-gel col-

umn chromatography (eluent: *n*-hexane/EtOAc = 9:1) to give 4,5diphenyl-2-*p*-tolyloxazole (**5Aa**, 141.1 mg, 91 %).

4,5-Diphenyl-2-*p***-tolyloxazole (5Aa)**: Yield: 141.1 mg (91 %); white solid; mp: 126–128 °C; IR (neat): $\tilde{v} = 2987$, 1496, 1021, 964, 762, 685 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.43$ (s, 3H), 7.29 (d, 2H, J = 7.9 Hz), 7.34 –7.43 (m, 6H), 7.68 (d, 2H, J = 6.7 Hz), 7.73 (d, 2H, J = 6.7 Hz), 8.05 (d, 2H, J = 8.1 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.5$, 124.6, 126.4 (2C), 126.4 (2C), 128.1 (3C), 128.4, 128.5 (2C), 128.6 (2C), 129.0, 129.4 (2C), 132.6, 136.6, 140.6, 145.2, 160.3; HRMS (ESI): Calcd for C₂₂H₁₈ON [M + H]⁺ = 312.1383, Found = 312.1384.

Transformation of 5-lodo-4-phenyl-2-*p*-tolyloxazole 4Aa into 4-**Phenyl-**(*E*)-5-styryl-2-*p*-tolyloxazole 6Aa: To a mixture of 5-iodo-4-phenyl-2-*p*-tolyloxazole (4Aa, 0.5 mmol, 180.6 mg), K₂CO₃ (1.0 mmol, 138.2 mg), and PdCl₂(PPh₃)₂ (0.010 mmol, 7.0 mg) in DMF (5.0 mL) was added styrene (1.0 mmol, 57 µL) under argon atmosphere. The obtained mixture was stirred for 3 h at 60 °C. Sat. NaHCO₃ aq. solution (5.0 mL) was added to the reaction mixture, and the product was extracted with EtOAc (15.0 mL × 3) and washed with brine (15.0 mL). The organic layer was dried with Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography (eluent: *n*-hexane/EtOAc = 9:1) to give 4-phenyl-(*E*)-5-styryl-2-*p*-tolyloxazole (6Aa, 126.9 mg, 75 %).

4-Phenyl-(*E***)-5-styryl-2-***p***-tolyloxazole (6Aa)**: Yield: 126.9 mg (75 %); yellow solid; mp: 136–138 °C; IR (neat): \tilde{v} = 1652, 1498, 1080, 953, 705 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ = 2.44 (s, 3H), 7.21 (d, 1H, *J* = 16.1 Hz), 7.27–7.32 (m, 4H), 7.37–7.42 (m, 3H), 7.50 (t, 2H, *J* = 7.7 Hz), 7.53 (d, 2H, *J* = 7.3 Hz), 7.80 (d, 2H, *J* = 7.0 Hz), 8.08 (d, 2H, *J* = 8.4 Hz); ¹³C-NMR (100 MHz, CDCl₃): δ = 21.6, 113.4, 124.5, 126.6 (3C), 127.7 (2C), 128.0 (3C), 128.8 (3C), 129.5 (2C), 129.7 (2C), 132.2, 136.7, 138.6, 140.8, 144.9, 160.3; HRMS (ESI): Calcd for C₂₄H₂₀ON [M + H]⁺ = 338.1539, Found = 338.1541.

Transformation of 5-Iodo-4-phenyl-2-*p***-tolyloxazole 4Aa into 4-Phenyl-5-phenylethynyl-2-***p***-tolyloxazole 7Aa: To a mixture of 5iodo-4-phenyl-2-***p***-tolyloxazole (4Aa**, 0.5 mmol, 180.6 mg), Cul (0.010 mmol, 1.9 mg), and PdCl₂(PPh₃)₂ (0.010 mmol, 7.0 mg) in Et₃N (2.5 mL) was added ethynylbenzene (0.6 mmol, 66 μ L) under argon atmosphere. The obtained mixture was stirred for 3 h at 60 °C. H₂O (2.5 mL) was added to the reaction mixture, and the product was extracted with EtOAc (15.0 mL × 3) and washed with brine (15.0 mL). The organic layer was dried with Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography (eluent: *n*-hexane/ EtOAc = 9:1) to give 4-phenyl-5-phenylethynyl-2-*p*-tolyloxazole (**7Aa**, 161.3 mg, 96 %).

4-Phenyl-5-phenylethynyl-2-*p***-tolyloxazole (7Aa):** Yield: 161.3 mg (96 %); yellow solid; mp: 112–114 °C; IR (neat): $\tilde{v} = 2987$, 2198, 1499, 1248, 1078 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.43$ (s, 3H), 7.30 (d, 2H, J = 8.1 Hz), 7.38 (tt, 1H, J = 7.4, 2.0 Hz), 7.41–7.43 (m, 3H), 7.48 (t, 2H, J = 7.4 Hz), 7.60–7.63 (m, 2H), 8.06 (d, 2H, J = 8.1 Hz), 8.23 (d, 2H, J = 7.2 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.6$, 78.4, 100.1, 122.0, 124.2, 126.4 (2C), 126.8 (2C), 128.6 (4C), 129.0, 129.1, 129.5 (2C), 131.0 (2C), 131.4 (2C), 141.2, 143.6, 161.1; HRMS (ESI): Calcd for C₂₄H₁₈ON [M + H]⁺ = 336.1383, Found = 336.1383.

Transformation of 5-lodo-4-phenyl-2-*p***-tolyloxazole 4Aa into 4-Phenyl-5-***p***-toluenesulfenyl-2***-p***-tolyloxazole 8Aa:** To a mixture of 5-iodo-4-phenyl-2-*p*-tolyloxazole (**4Aa**, 0.5 mmol, 180.6 mg), Cul (0.025 mmol, 4.8 mg), K₂CO₃ (0.1 mmol, 138.2 mg), and *p*-toluene-thiol (0.55 mmol, 68.4 mg) in *i*PrOH (5.0 mL) was added ethylene glycol (1.0 mmol, 56 μ L) under argon atmosphere. The obtained mixture was stirred for 72 h at 90 °C. H₂O (5.0 mL) was added to

the reaction mixture, and the product was extracted with EtOAc (15.0 mL × 3) and washed with brine (15 mL). The organic layer was dried with Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography (eluent: *n*-hexane/EtOAc = 9:1) to give 4-phenyl-5-*p*-toluene-sulfenyl-2-*p*-tolyloxazole (**8Aa**, 161.5 mg, 45 %).

4-Phenyl-5-*p***-toluenesulfenyl-2-***p***-tolyloxazole** (8Aa): Yield: 161.5 mg (45 %); white solid; mp: 101–103 °C; IR (neat): $\tilde{v} = 2971$, 1498, 1180, 1073, 803, 731 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.29$ (s, 3H), 2.41 (s, 3H), 7.09 (d, 2H, J = 8.3 Hz), 7.20 (d, 2H, J = 8.1 Hz), 7.28 (d, 2H, J = 8.1 Hz), 7.36 (tt, 1H, J = 7.2, 2.0 Hz), 7.44 (t, 2H, J = 7.2 Hz), 8.02 (d, 2H, J = 8.3 Hz), 8.18 (d, 2H, J = 7.0 Hz); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.0$, 21.6, 124.3, 126.7 (2C), 127.3 (2C), 128.0 (2C), 128.4 (2C), 128.6, 129.5 (2C), 130.1 (2C), 130.9, 131.2, 136.0, 136.9, 141.3, 145.9, 163.6; HRMS (ESI): Calcd for C₂₃H₂₀ONS [M + H]⁺ = 358.1260, Found = 358.1262.

Supporting Information (see footnote on the first page of this article): Copies of the ¹H NMR and ¹³C NMR spectra of all *O*-(2-arylethyl) arylimidate-TfOH salts **1**, all 2,5-diaryl-5-iodooxazoles **4**, and derivatives **3Aa–8Aa**, including 2,5-diaryloxazolines **2Ga**, **2Gb**, **2Gc**, **2De**, **2Af**, and **2Ag** and 2,5-diaryloxazoles **3Ae**, **3Be**, **3Ce**, **3Ee**, and **3Ge**.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP18K05118 in Japan.

Keywords: Oxazole \cdot Iminyl Radical \cdot Imidate \cdot DIH \cdot 1,5-H shift

- Recent reviews: a) E. M. Rymbai, A. Chakraborty, R. Choudhury, N. Verma,
 B. De, Der Pharma Chemica **2019**, *11*, 20–41; b) H. Zhang, Z. Zhao, C.
 Zhou, *Eur. J. Org. Chem.* **2018**, 444–492; c) D. Davyt, G. Serra, *Mar. Drugs* **2010**, *8*, 2755–2780.
- [2] Recent reviews: a) V. Yeh, R. Iyengar, "Oxazoles", in "Comprehensive Heterocyclic Chemistry III" (Eds.: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor), Elsevier, **2008**, vol. 4, chap. 4.04, pp. 487–543; b) A. Ibrar, I. Khan, N. Abbas, U. Farooq, A. Khan, RSC Adv. **2016**, *6*, 93016–93047.
- [3] a) D. Zhang, H. Song, N. Cheng, W. Liao, Org. Lett. 2019, 21, 2745–2749;
 b) F. Xiao, S. Yuan, H. Huang, F. Zhang, G. Deng, Org. Lett. 2019, 21, 8533–8536;
 c) T. Selvi, K. Srinivasan, Chem. Commun. 2014, 50, 10845–10848;
 d) A. E. Wendlandt, S. S. Stahl, Org. Biomol. Chem. 2012, 10, 3866–3870;

e) G. C. Senadi, W. Hu, J. Hsiao, J. K. Vandavasi, C. Chen, J. Wang, *Org. Lett.* **2012**, *14*, 4478–4481; f) D. J. Ritson, C. Spiteri, J. E. Moses, *J. Org. Chem.* **2011**, *76*, 3519–3522; g) W. He, C. Li, L. Zhang, *J. Am. Chem. Soc.* **2011**, *133*, 8482–8485; h) J. P. Weyrauch, A. S. K. Hashmi, A. Schuster, T. Hengst, S. Schetter, A. Littmann, M. Rudolph, M. Hamzic, J. Visus, F. Rominger, W. Frey, J. W. Bats, *Chem. Eur. J.* **2010**, *16*, 956–963.

- [4] a) X. Zhang, Y. He, J. Li, R. Wang, L. Gu, G. Li, J. Org. Chem. 2019, 84, 8225–8231; b) K. Xu, R. Yang, S. Yang, C. Jiang, Z. Ding, Org. Biomol. Chem. 2019, 17, 8977–8981; c) J. D. Herszman, M. Berger, S. R. Waldvogel, Org. Lett. 2019, 21, 7893–7896; d) T. Zeng, J. Xuan, W. Ding, K. Wang, L. Lu, W. Xiao, Org. Lett. 2015, 17, 4070–4073; e) S. Imai, H. Kikui, K. Moriyama, H. Togo, Tetrahedron 2015, 71, 5267–5274; f) W. Gao, R. Wang, C. Zhang, Org. Biomol. Chem. 2013, 11, 7123–7128; g) Y. Zheng, X. Li, C. Ren, D. Zhang-Negrerie, Y. Du, K. Zhao, J. Org. Chem. 2012, 77, 10353–10361; h) H. Xie, D. Yuan, M. Ding, J. Org. Chem. 2012, 77, 2594–2598; i) H. Jiang, H. Huang, H. Cao, C. Qi, Org. Lett. 2010, 12, 5561–5563; j) T. H. Graham, Org. Lett. 2010, 12, 3614–3617.
- [5] Recent reviews for iminyl radicals: Preparation of nitrogen-containing heterocycles a) Y. Yin, X. Wang, *New J. Chem.* **2019**, *43*, 3254–3264; b) J. Davies, S. P. Morcillo, J. J. Douglas, D. Leonori, *Chem. Eur. J.* **2018**, *24*, 12154–12163; c) J. Iwanejko, E. Wojaczynska, *Org. Biomol. Chem.* **2018**, *16*, 7296–7314; d) M. M. Jackman, Y. Cai, S. L. Castle, *Synthesis* **2017**, *49*, 1785–1795. Functionalization via β -cleavage reactions e) S. P. Morcillo, *Angew. Chem. Int. Ed.* **2019**, *58*, 14044–14054; *Angew. Chem.* **2019**, *131*, 14182.
- [6] Recent reports for nitrogen-containing heterocycles via iminyl radicals: a)
 F. Huang, S. Zhang, Org. Lett. **2019**, *21*, 7430–7434; b) C. Chen, Y. Bao, J. Zhao, B. Zhu, Chem. Commun. **2019**, *55*, 14697–14700; c) Y. Yuan, W. Dong, X. Gao, X. Xie, Z. Zhang, Chem. Commun. **2019**, *55*, 11900–11903; d) Y. Zhang, Z. Yin, X. Wu, Adv. Synth. Catal. **2019**, *361*, 1–6; e) Y. Han, Y. Jin, M. Jiang, H. Yang, H. Fu, Org. Lett. **2019**, *21*, 1799–1803; f) Y. Kumar, Y. Jaiswal, A. Kumar, Org. Lett. **2018**, *20*, 4964–4969; g) P. Qian, Y. Deng, H. Mei, J. Han, J. Zhou, Y. Pan, Org. Lett. **2017**, *19*, 4798–4801.
- [7] a) A. Kishi, K. Moriyama, H. Togo, J. Org. Chem. 2018, 83, 11080–11088;
 b) E. Kobayashi, A. Kishi, H. Togo, Eur. J. Org. Chem. 2019, 7335–7347; c)
 H. Naruto, H. Togo, Org. Biomol. Chem. 2019, 17, 5760–5770.
- [8] a) E. A. Wappes, K. M. Nakafuku, D. A. Nagib, J. Am. Chem. Soc. 2017, 139, 10204–10207; b) A. F. Prusiowski, R. K. Twumasi, E. A. Wappes, D. A. Nagib, J. Am. Chem. Soc. 2020, 142, 5429–5438; c) X. Mou, X. Chen, G. Chen, G. He, Chem. Commun. 2018, 54, 515–518.
- [9] a) A. W. Hofmann, Ber. Dtsch. Chem. Ges. 1883, 16, 558; A. W. Hofmann, Ber. Dtsch. Chem. Ges. 1885, 18, 5; b) K. Löffler, C. Freytag, Ber. Dtsch. Chem. Ges. 1909, 42, 3427; c) E. J. Corey, W. R. Hertler, J. Am. Chem. Soc. 1960, 82, 1657–1668.
- [10] A. D. Chen, J. H. Herbort, E. A. Wappes, K. M. Nakafuku, D. N. Mustafa, D. A. Nagib, *Chem. Sci.* **2020**, *11*, 2479–2486.

Received: March 23, 2020

Photochemistry

A. Saito, H. Togo* 1–13

 Photochemical Transformation of
 O-(β-Arylethyl) Arylimidates into
 2,4-Diaryl-5-iodoxazoles with 1,3-Diiodo-5,5-dimethylhydantoin

2,4-Diaryl-5-iodoxazoles could be obtained by the treatment of O-(β -arylethyl) arylimidates with 1,3-diiodo-5,5dimethylhydantoin (DIH) under irradiation with a tungsten lamp. This reaction proceeds through multiple stets, i.e., formation of *N*-iodoimidate, iminyl radical, 1,5-H shift, *5-exo-tet* cyclization to oxazoline, oxidation to oxazole, and iodination to 5-iodoxazole.

doi.org/10.1002/ejoc.202000383