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Cyclization of 5-Alkynylketones with Chromium Alkylidene 
Equivalents Generated in situ from gem-Dichromiomethanes 

Masahito Murai,*a,b Ryuji Taniguchi,a Takashi Kurogi,a Shunsuke Moritani,a and Kazuhiko Takai*a 

A rare example of cyclization with alkynylketones, which possess 

non-polar alkynyl and less electrophilic polar keto carbonyl groups, 

was demonstrated. The key to promoting carbene/alkyne 

metathesis followed by alkylidenation with pendant C=O double 

bonds was the Schrock-type nucleophilic reactivity of the generated 

chromium carbene equivalents from readily available 

diiodomethanes and CrCl2 by simple heating. 

Metal carbenes are well-established reagents in modern organic 

synthesis.1 Strategies, including -hydrogen abstraction of 

dialkylmetal species (Figure 1, Path A), complexation of metal species 

with carbene equivalents, such as diazoalkanes (Path B), and 

elimination of ethylene via ring-cleavage of metallacyclobutanes 

(Path C), have been reported for the reliable generation protocols of 

metal carbene species.2 Another approach involves conversion of 

gem-metalloalkanes (M1−CR2−M2), possessing two metal atoms on 

the alkylene carbon (Path D).3,4 Although Grubbs et al. realized the 

possibility of the route by the generation of titanium carbene species 

from the Tebbe reagent (Ti−CH2−Al) upon treatment with 4-

(dimethylamino)pyridine in 1982,4 few studies expanding on this 

method have been reported. In the current study, a gem-

dichromiomethane species (Cr−CR2−Cr), which can be readily 

prepared from CrCl2 and dihalomethanes, was chosen as a readily 

available and stable metal carbene generator via Path D, and was 

used as a precursor for the facile in situ generation of Schrock-type 

carbene equivalents.5,6 The group 6 metal carbene species stabilized 

by heteroatom or aryl group substitution at the -carbon, 

represented by chromium Fischer-type carbenes, [R1R2C=M(CO)5]  

(e.g., R1, R2 = alkyl, alkoxy, amino, halogen), possessing an 

electrophilic carbene carbon, are historically important 

organometallic reagents in organic syntheses and organometallic 

chemistry.7 Surprisingly, however, few reports exist on the 

generation and use of Schrock-type chromium carbene, i.e., 

chromium-alkylidene species.8 
 

 
 

Figure 1. Generation of metal carbene species 
 

The present study demonstrates the reactivity of gem-

dichromiomethane species, which are as useful dianion species,5,9 as 

Schrock-type chromium carbene equivalents via coupling and 

cyclization with 5-alkynylketones. The in situ preparation of gem-

dichromiomethane species from reaction of CrCl2 (8 equiv) and 

(diiodomethyl)trimethylsilane,10 followed by treatment with 5-

alkynylketone in THF at 70 °C, afforded alkynylcycloalkene 1a as a 

single stereoisomer in 70% yield (Eq 1). Note that this cyclization of 
 

  

alkynylketones, which possess non-polar C≡C and polar keto C=O 

bonds, is very rare,11 while the corresponding cyclization of 

alkynylaldehydes, which have more electrophilic formyl groups, is 

relatively common.12 Previously, cyclization with Fischer-type 

electrophilic ruthenium carbene complexes generated in situ 

provided dihydropyrans (Eq 2, Si = SiMe3, W = CO2Me, Ru = 

Cp*RuCl).11b In contrast, formation of 1a in the current study could 

be explained by the sequential metathesis reaction13 of carbene 

species to C≡C and C=O bonds (see Scheme 2 (vide infra)), implying 

that the generated carbene equivalents possessed Schrock-type 

nucleophilic reactivity. Although reactivity of gem-

dichromiomethane species toward alkynes has been demonstrated 
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in our recent work on the transformation of 1,n-enynes,14 the 

present results provide direct information about the reactivity of the 

generated carbene equivalents. The yield of 1a increased to 85% by 

changing the solvent to DME (1,2-dimethoxyethane) (see Table S1 in 

ESI for optimization details). The amount of CrCl2 could be reduced 

to 4 equiv using manganese powder to reduce the generated CrX3 (X 

= Cl or I) back to CrX2 (see Scheme 2),15,16 resulting in isolation of 1a 

in 80% yield (Table 1). The yield of 1a decreased to 32% when the 

reaction was conducted at 50 °C, and an inseparable mixture was 

obtained with TMEDA, which was an effective additive for previously 

reported cyclopropanation of alkenes.17 
 

 

Cyclization initiated by coupling of a chromosilylcarbene 

equivalent with C≡C bonds proceeded smoothly with phenyl 

ketones to produce 1b and 1c in 74% and 71% yield, respectively 

(Table 1). Note that aryl ketones could not be used as substrates in 

the previous intermolecular  alkyl idenations of  carbonyl 

compounds.18 Despite the more sterically hindered environment of 

ketocarbonyl groups, cyclization proceeded efficiently to afford 

fused bi- and tricycles 1d and 1e in high yields. The composition of 

the linkers between the alkynyl and carbonyl groups did not affect 

cyclization efficiency, and azacycle 1f and spirocycle 1g, respectively, 

were obtained, respectively. However, substituents at the propargyl  
 

Table 1. Coupling and cyclization of 5-alkynylketones with gem-
(dichromio)silylmethane 

  

  
Scheme 1. Sequential cyclization initiated by coupling with diyne 

position or alkyne terminal prevented the triple bond from 

participating in the present reaction.19,20 In contrast, sequential 

cyclization with a diyne containing a keto carbonyl group provided 

the conjugated triene 2 in 64% yield (Scheme 1). The double bond 

geometry of 1 and 2 was E regardless of the structure of the 

precursor. 

When 5-alkynylaldehyde was used as a precursor, direct 

alkylidenation furnished 3 without affecting the terminal triple bond 

(Eq 3). The results obtained so far indicated that the affinity of the 

gem-di(chromio)silylmethane species was in the order of formyl 

group (CHO) > ethynyl group (C≡ CH) > keto carbonyl group 

(RC(=O)R’). 

 
 

The reaction mechanism for the current coupling and cyclization 

reaction is proposed in Scheme 2. gem-(Dichromio)silylmethane 

species 4 generated in-situ by sequential single-electron transfers 

from 4 equiv of CrCl2 may generate chromium alkylidene species A. 

Chromacyclobutene intermediate B generated via formal 

[2+2]cycloaddition of alkynylketones with A is then converted to 

alkenylchromacarbene species C,14 which subsequently undergoes 

intramolecular alkylidenation of the pendant keto carbonyl group to 

furnish alkenylcycloalkene 1.21 Note that the generated C is a 

Schrock-type carbene species, and formation of the corresponding 

dihydropyrans as shown in Eq 2 was not observed. 
 

 
 

Scheme 2. Plausible reaction mechanism for the formation of 1 (Cr 

= CrCl(dme)(ClCrCl2(dme)), X = Cl or I) 
 

Although attempts to obtain direct information about the 

generation of chromium alkylidene species A was unsuccessful, the 

isolation and structural characterization of a key reactive species, 

gem-(dichromio)silylmethane 4, stabilized by coordination of DME, 

was achieved. Note that only a trace amount of 4 was detected in 

DME at 70 °C due to its competitive decomposition to (E)-1,2-

bis(trimethylsilyl)ethene in the absence of alkynylketones (Eq 4).22 

However, an authentic sample of 4 was obtained by ligand exchange 

of the THF-coordinated gem-(dichromio)silylmethane 4’ prepared in 

THF at 25 °C (Eq 5).23 A single crystal suitable for X-ray 

crystallographic analysis was obtained by recrystallization from a 

DME solution layered with hexane. The solid-state structure of 4 in  
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Figure 2. POV-ray drawing of 4 with thermal ellipsoids at the 50% 
probability level. Hydrogen atoms with the exception of H1 and co-
crystallized solvent molecules have been omitted for clarity.  

 

Figure 2 contained a dinuclear chromium coordinated with a DME 

bridged by a methine carbon.  Comparison of a previously isolated 

gem-(dichromio)silylmethane complex having a TMEDA ligand5c 

indicated that bond the lengths for C−Cr(dme) (2.051(4) Å, 2.062(4) 

Å) were slightly shorter than that for C−Cr(tmeda), (2.082(3) Å). 

Despite the shorter C−Cr distances and less hindered environments 

around the chromium center of 4 compared to those for the TMEDA-

coordinated species, the weaker -donation ability of DME may 

result in facile ligand dissociation to provide a vacant site for the 

coordination of alkynylketones. This is one of the reasons why DME-

coordinated gem-(dichromio)silylmethane 4 showed better 

performance for the transformation of alkynylketones than TMEDA-

coordinated species (Table S1 in ESI, entries 4 vs 8). Solution 

susceptibility measurements obtained using Evans’ method24 

revealed that complex 4 had S = 3 (eff = 6.64 B), where each 

chromium(III) center had a d3 high-spin configuration with no metal-

metal bond, similar to the TMEDA-coordinated species (eff = 6.75 

B).5c The reactivity of 4 as a key precursor to the chromium 

alkylidene species was demonstrated in the addition and cyclization 

leading to 1a (Eq 6). The reaction proceeded efficiently at 70 °C, 

which indicated that heating was required for both the generation of 

4 and the addition to alkynylketones. As expected, (E)-1,2-

bis(trimethylsilyl)ethene was formed quantitatively in the absence of 

alkylketones.  
 

  

In conclusion, the present study demonstrated the rare generation 

of alkylidene equivalents from gem-dimetalloalkanes (Path D in 

Figure 1). gem-Dichromiomethanes acted as a chromiumalkylidene 

equivalent to promote carbene/alkyne metathesis13 followed by 

capture by polar C=O bonds to yield functionalized carbo- and 

heterocycles. Formation of alkeynylcycloalkenes via the attack of an 

alkenylcarbene intermediate to a carbonyl group indicated that the 

carbene equivalents generated possessed Schrock-type nucleophilic 

reactivity. Application of this strategy for preparation of early 

transition metal-based alkylidene species is ongoing. 
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