Kinetic and equilibrium parameters of [4+2] cycloaddition reaction of 2,6-dimethylnaphthalene with 4-phenyl-1,2,4-triazoline-3,5-dione

V. D. Kiselev,^{a*} E. A. Kashaeva,^a L. N. Potapova,^a D. A. Kornilov,^a and A. I. Konovalov^b

^aA. M. Butlerov Chemical Institute of Kazan Federal University, 18 ul. Kremlevskaya, 420008 Kazan, Russian Federation. Fax: +7 (843) 292 7278. E-mail: vkiselev.ksu@gmail.com ^bA. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, 8 ul. Akad. Arbuzova, 420088 Kazan, Russian Federation. Fax: +7 (843) 273 1872

> Kinetic parameters of forward and retro Diels—Alder reactions between 2,6-dimethylnaphthalene and 4-phenyl-1,2,4-triazolinedione were determined, as well as the equilibrium parameters of the reaction in 1,2-dichloroethane.

> **Key words:** 2,6-dimethylnaphthalene, 4-phenyl-1,2,4-triazolinedione, Diels—Alder reaction, reaction rate, equilibrium.

In the sequence of aromatic dienes: benzene, naphthalene, anthracene, only the latter can be relatively easily involved in the Diels-Alder reaction with dienophiles.¹ Benzene fails to give this reaction due to the extremely unfavorable kinetic and equilibrium parameters. The reaction adduct between N-phenylmaleimide and naphthalene was obtained earlier by gallium chloride catalysis,² as well as under high pressure, which allowed to use elevated temperature.^{2,3} The N=N bond in 4-phenyl-1,2,4triazoline-3,5-dione is more active by almost five orders of magnitude in the Diels-Alder reaction than the C=C bond in the structural analog, N-phenylmaleimide, that allows one to obtain data on kinetic and equilibrium parameters of the Diels-Alder reaction even with low active dienes.⁴ We have obtained kinetic and equilibrium parameters for the Diels-Alder reaction between 4-phenyl-1,2,4-triazoline-3,5-dione (1) and 2,6-dimethylnaphthalene (2) in 1,2-dichloroethane (Scheme 1). Recently, it was shown⁵ that the active 9,10-reaction center in 9,10-diphenylanthracene 4 is completely blocked because of orthogonality of the anthracene plane and the plane of phenyl groups, that excludes a possibility of reaction with all known dienophiles with the C=C-reaction center.

Dienophile 1 was found to react with diene 4 at the sterically available 1,4-atoms of this diene.⁵ It was interesting to compare kinetic and equilibrium parameters of the cycloaddition reactions of 4-phenyl-1,2,4-triazoline-3,5-dione at atoms C(1) and C(4) of dienes 2 and 4.

The equilibrium constants obtained for the reaction $1 + 2 \leftrightarrows 3$ are equal to 11.15, 8.40, and 4.48 L mol⁻¹ at 20.0, 25.0, and 35.0 °C, respectively. The calculated enthalpy and entropy values of the reaction are

Scheme 1

 -44.0 ± 2 kJ mol⁻¹ and -130 ± 6 J mol⁻¹ K⁻¹, respectively. The rate constants of the forward reaction $\mathbf{1} + \mathbf{2} \rightarrow \mathbf{3}$ are equal to $3.26 \cdot 10^{-4}$, $4.41 \cdot 10^{-4}$, and $8.25 \cdot 10^{-4}$ L mol⁻¹ s⁻¹ at 20.0, 25.0, and 35.0 °C, respectively. From these data, the activation enthalpy (44.2 ± 4 kJ mol⁻¹) and entropy (-161 ± 13 J mol⁻¹ K⁻¹) were calculated. The rate constants of the adduct **3** decomposition ($\mathbf{3} \rightarrow \mathbf{1} + \mathbf{2}$), calcu-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0770-0771, March, 2014.

1066-5285/14/6303-0770 © 2014 Springer Science+Business Media, Inc.

lated from the relation of the rate constants of the forward reaction $1 + 2 \rightarrow 3$ and the equilibrium constants, are equal to $2.92 \cdot 10^{-5}$, $5.07 \cdot 10^{-5}$, and $17.6 \cdot 10^{-5} \text{ s}^{-1}$ at 20.0, 25.0, and 35.0 °C, respectively. The activation enthalpy and entropy of the process $3 \rightarrow 1 + 2$ are $88.2 \pm 4 \text{ kJ mol}^{-1}$ and $-31 \pm 13 \text{ J mol}^{-1} \text{ K}^{-1}$, respectively.

For the reaction $1 + 4 \rightarrow 5$, where addition takes place at atoms C(1) and C(4) of diene 4, the following rate constants in toluene were obtained: $2.72 \cdot 10^{-3}$; $5.73 \cdot 10^{-3}$, and $12.5 \cdot 10^{-3}$ L mol⁻¹ s⁻¹ at 25, 35, and 45 °C, respectively. The rate constants of decomposition of adduct $5 \rightarrow 1 + 4$ for these temperatures are equal to $1.29 \cdot 10^{-6}$, $5.12 \cdot 10^{-6}$, and $23.4 \cdot 10^{-6}$ s⁻¹, respectively. The calculated enthalpy and entropy of activation for the reaction $1 + 4 \rightarrow 5$ are equal to 58.6 kJ mol⁻¹ and -97 J mol⁻¹ K⁻¹, whereas for the reaction $5 \rightarrow 1 + 4$ to 108.8 kJ mol⁻¹ and 7 J mol⁻¹ K⁻¹. From this it follows that the enthalpy (-50.2 kJ mol⁻¹) and the entropy (-104 J mol⁻¹ K⁻¹) for the reaction $1 + 4 \rightarrow 5$ are close to the corresponding parameters for the reaction $1 + 2 \rightarrow 3$.

Earlier, it has been shown⁴ that the enthalpy in the Diels—Alder reaction with dienophile 1 and 4-phenyl-maleimide is virtually the same. The enthalpy of the reaction $1 + 2 \rightarrow 3$ determined in the present work (-44.0 kJ mol⁻¹) is close to the value calculated earlier¹ (-43±4 kJ mol⁻¹) based on the heat of 1,4-dihydrogenation of the diene.

In conclusion, extremely high activity of 4-phenyl-1,2,4-triazoline-3,5-dione allowed us to determine kinetic and thermodynamic parameters in the Diels—Alder reaction with strongly conjugated and low active diene, *viz.*, 2,6-dimethylnaphthalene.

Experimental

Dienophile **1** (Aldrich, 97%) was sublimed at 100 °C and 10 Pa; m.p. 180 °C (decomp.), λ_{max} (benzene) = 540 nm (ε 248), λ_{max} (dioxane) = 527 nm (ε 186). Dienes **2** and **4** (Aldrich, 99%) were used without additional purification. Product **5** was obtained according to the procedure described earlier.⁵ Physicochemical and spectral characteristics agreed with those given in work.⁵

(1*R*,8*S*)-4,15-Dimethyl-11-phenyl-9,11,13-triazatetracyclo-[6.5.2.0^{2,7}.0^{9,13}]pentadeca-2,4,6,14-tetraene-10,12-dione (3). ¹H NMR (400 MHz, CDCl₃), 25 °C, $\delta_{\rm H}$: 7.20–7.60, 6.29 (d.quint, 1 H, *J* = 5.8 Hz, *J* = 1.8 Hz); 5.67 (d, 1 H, *J* = 5.8 Hz); 5.50 (d, 1 H, *J* = 1.8 Hz); 2.21 (s, 3 H); 1.89 (d, 3 H, *J* = 1.9 Hz). The data completely agree with the structure of adduct **3** and are close to the data for the adduct of the reaction of **2** with 4-methyltriazolinedione.⁶

Solvents were dried using standard procedures.⁷ Since reagent 1 is sensitive to moisture, the constancy of optical density of solutions in time was controlled before kinetic measurements. Kinetic measurements were carried out under pseudo first order conditions on a HITACHI U-2900 spectrophotometer. Initial concentrations of reagents: $C_2 = 0.17 - 0.21 \text{ mol } L^{-1}$, $C_1 =$ = $(5.9-7.2) \cdot 10^{-3}$ mol L⁻¹. The constancy of residual absorption of 1 with time was a criterion of a steady-state equilibrium. The equilibrium was set up within 25 h. The course of the forward reaction was monitored based on the decrease in the absorption of **1** in 1,2-dichloroethane, $\lambda_{max} = 540$ nm (ε 178), where compounds 2 and 3 are transparent. Kinetic measurements for the reaction $1 + 4 \rightarrow 5$ in toluene were carried out similarly. The rate of the retro reaction $5 \rightarrow 1 + 4$ was studied under conditions excluding equilibrium. For this, decomposition of adduct 5 was carried out in the presence of *trans,trans-*1,4-diphenylbuta-1,3-diene, which rapidly and irreversibly caught dienophile 1 formed upon decomposition of adduct 5. The reaction rate was monitored based on the increase in the absorption of diene 4 on the 395 nm wavelength.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 12-03-00029a).

References

- V. D. Kiselev, I. I. Shakirova, A. I. Konovalov, *Russ. Chem.* Bull. (Int. Ed.), 2013, 62, 285 [Izv. Acad. Nauk, Ser. Khim., 2013, 290].
- G. G. Iskhakova, V. D. Kiselev, E. A. Kashaeva, L. N. Potapova, E. A. Berdnikov, D. B. Krivolapov, I. A. Litvinov, ARKIVOC, 2004, 12, 70.
- 3. F.-G. Klärner, V. Breitkopf, Eur. J. Org. Chem., 1999, 11, 2757.
- V. D. Kiselev, I. I. Shakirova, D. A. Kornilov, H. A. Kashaeva, L. N. Potapova, A. I. Konovalov, *J. Phys. Org. Chem.*, 2013, 26, 47.
- V. D. Kiselev, I. I. Shakirova, H. A. Kashaeva, L. N. Potapova, D. A. Kornilov, D. B. Krivolapov, A. I. Konovalov, *Mendeleev Commun.*, 2013, 23, 235.
- 6. G. W. Breton, K. A. Newton, J. Org. Chem., 2000, 65, 2863.
- 7. J. A. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents, New York—Chichester—Brisbane—Toronto—Singapore, John Wiley, 1986, 4th ed.

Received December 17, 2013; in revised form March 13, 2014