Iron-Catalyzed Cocyclization of Adiponitriles with Nitriles: A New Synthesis of Fused 1,2,4-Triazines

E. R. F. GESING, U. GROTH, K. P. C. VOLLHARDT*

Department of Chemistry, University of California, Berkeley, California 94720, U.S.A. and The Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley. California 94720, U.S.A.

1,2,4-Triazines, particularly when anelated, are commanding considerable current attention because of their biological activity ¹⁻⁷ and other potential uses ⁸, for example as synthetic intermediates ^{9,10,11}. We report here the ready chemoand regiospecific construction of the 5,6,7,8-tetrahydrobenzo[1,2-*e*]-1,2,4-triazine nucleus from adiponitrile precursors (Scheme A, Table 1, Scheme B) by exploiting the ability of iron carbonyl to catalyze nitrile cyclotrimerizations ¹².

Scheme A

$$\begin{array}{c}
CH_2 \\
C \equiv N \\
C \equiv N
\end{array}
+
\begin{array}{c}
-CH_2 - CN \\
4
\end{array}$$

$$\begin{array}{c}
\frac{\text{Fe}_2(CO)_9}{62\%}, \nabla \\
\end{array}$$

Scheme B

Several features in these transformations are noteworthy.

First, whereas adiponitrile cyclizes with itself quite effectively to give the trimer **3e**, and mononitriles, such as benzonitrile, also autocyclize but to the 1,3,5-triazines¹², these types of products are formed in only trace quantities in the cocyclizations leading to **3a-d**.

Second, despite the comparatively stringent conditions, the yields are fairly good. However, functionalized systems other than **2b**, such as NC—CH₂—COOC₂H₅,

NC-CH₂CH₂-O-CH₂C₆H₅, and also

 $NC-(CH_2)_n-CN$ (n = 1-3) decomposed on attempted cyclization.

352 Communications SYNTHESIS

Table 1. 5,6,7,8-Tetrahydrobenzo-1,2,4-triazines 3 prepared (Scheme A)

Product ^a No.	R		m.p. [°C] (solvent)	Molecular Formula ^b
3a	<i>n</i> -C₄H ₉	42	139–140° (acetone)	C ₁₁ H ₁₇ N ₃ (191.3)
3b°	$-(CH_2)_4-O$	64	143-144°	$C_{18}H_{23}N_3O$
	C ₆ H ₅ —ĊH	Ι,	(C_2H_5OAc)	(297.4)
3c	$-CH_2C_6H_5$	58	198–199°	$C_{14}H_{15}N_3$
			(C_2H_5OAc)	(225.3)
3d14	$-C_6H_5$	68	141-142°	$C_{13}H_{13}N_3$
			(cther)	(211.3)
$3e^d$	$-(CH_2)_4-$	71	231-232°	$C_{18}H_{24}N_6$
			(C_2H_5OAc)	(324.4)

^a Spectroscopic data (M.S., I.R., N.M.R.) are in full accord with the assigned structures.

C₁₂H₁₅NO calc. C 76.16 H 7.99 N 7.40 (189.3) found 75.99 8.06 7.35

Table 2. 13C-Chemical Shift Values in ppm for 5 and 6

Carbona	5	6
1	45.49	38.78
2	27.53 в	28.61 b
3	24.80 ^b	25.21 b
4	39.06	38.87
5	168.00	157.23
6	159.84	150.74
7	173.67	162.47
8	113.29	114.68
8	46.95	46.63
9		
9.	139.25, 139.92	136.29, 139.40
10		
10	129.12, 129.19	129.10, 129.20
11		
11'	128.09, 128.21	128.18, 128.24
12		
12'	125.88, 126.06	126.04, 126.45

For the numbering, see Scheme B.

Third, the cyclization of 1-benzyl-1,4-dicyanobutane (4) [from adiponitrile: lithium diisopropylamide, tetrahydro-furan, -20° to 0°C, benzyl bromide, 0°C to r.t., yield: 77%; b.p. 190-200°C/0.5 torr (Kugelrohr)] and benzyl cyanide gave only the 3,8-regioisomer (5). The structure of 5 was assigned based on a comparison of its ¹³C-N.M.R. spectrum with that of the analogous N-1-oxide (6)^{1,13}. Oxidation at N-1 causes a relatively large upfield shift for the methine carbon

resonance $(\Delta \delta = -6.7 \text{ ppm})$ reflecting the γ -syn-relationship¹.

Fourth, extreme caution should be exercized when handling the 1.2.4-triazines 3.5, and 6! Three laboratory workers developed skin rashes when exposed to these materials, one severely so, and over his entire body.

3,8-Dibenzyl-5,6,7,8-tetrahydro-1,2,4-benzo[1,2-*e*]triazine (5):

1-Benzyl-1,4-dicyanobutane (4; 0.99 g, 5 mmol), benzyl cyanide (0.59 g, 5 mmol), and nonacarbonyldiiron (0.38 g, 1 mmol) are heated for 18 h at 220 °C under nitrogen. The mixture is extracted with hot methanol (3 × 20 ml), the solution is filtered, and the methanol evaporated. The residue is chromatographed on Kieselgel 60 using ethyl acetate as cluent ($R_F = 0.26$); yield: 0.97 g (62%). Recrystallization from acetone affors pale yellow crystals; m.p. 132°–133°C.

M.S. (70 eV): m/e = 315 (M⁺, 54%).

I.R. (Nujol): v = 3020, 3010, 1655, 1580, 1490, 725, 695 cm⁻¹. ¹H-N.M.R. (CDCl₃/TMS_{int}): $\delta = 1.76$ –1.93 (m, 2H) 2.08–2.29 (m, 2H); 2.44–2.52 (m, 2H); 2.70 (dd, J = 10 Hz, 14 Hz, 1H); 3.36, 3.43 (AB, J = 4 Hz, 2H); 4.17 (s, 2H); 7.20–7.44 ppm (m, 10H).

3,8-Dibenzyl-5,6,7,8-tetrahydrobenzo[1,2-*e*]1,2,4-triazine 1-Oxide (6):

A solution of 5 (0.16 g, 0.5 mmol) and *m*-chloroperoxybenzoic acid (0.22 g, 80 %, 1 mmol) in dichloromethane (5 ml) is heated to reflux for 72 h. The reaction mixture is diluted with ether (20 ml) and washed with aqueous sodium hydrogen carbonate (2 × 20 ml) and water (20 ml). The organic layer is dried with magnesium sulfate, the solvent evaporated, and the residue chromatographed on Kieselgel 60 using ethyl acetate/methanol (3:1) as eluent ($R_F = 0.43$); yield: 0.12 g (73 %). Recrystallization from ethyl acetate affords white crystals; m.p. 123 °C (decomp.)

M.S. (70 eV): m/e = 331 (M⁺, 4%).

I.R. (Nujol): v = 3040, 3020, 1655, 1650, 1640, 1555, 1490, 745, $705 \,\mathrm{cm}^{-1}$.

¹H-N.M.R. (CDCl₃, TMS_{int}): δ = 1.73–2.24 (m, 4H); 2.38–2.62 (m, 2H); 2.69 (dd, J = 10 Hz, 15 Hz, 1 H); 3.21, 3.36 (AB, J = 4 Hz, 2 H); 4.45 (s, 2 H); 7.11–7.52 ppm (m, 10 H).

This work was supported by the NIH (GM 22479). E.R.F.G. was a recipient of a postdoctoral fellowship from the N.A.T.O. – Deutscher Akademischer Austauschdienst (1979–1981). U.G. is a postdoctoral fellow supported by the Deutsche Forschungsgemeinschaft (1982–1983). K.P.C.V. is a Camille and Henry Dreyfus Teacher-Scholar (1978–1983).

Received: September 6, 1983

^b Satisfactory microanalyses obtained: $C \pm 0.25$, $H \pm 0.13$, $N \pm 0.09$.

Nitrile **2b**^a was prepared from 1,4-dibromobutane by treatment first with the sodium salt of benzyl alcohol and benzyl alcohol in dimethyl sulfoxide at room temperature followed by sodium cyanide in dimethyl sulfoxide at 80°C; yield: 45%; b.p. 130–140°C/0.5 torr (Kugelrohr).

d The bistriazine 3e was obtained by direct cyclization of adiponitrile.

^b Assignment uncertain.

^{*} Address for correspondence.

O. Repic, P.G. Mattner, M.J. Shapiro, J. Heterocycl. Chem. 19, 1201 (1982).

² K. D. Deodhar, A. D. D'Sa, S. R. Pednekar, D. S. Kanekar, Synthesis 1982, 853.

³ G. B. Bennett et al., J. Med. Chem. 24, 490 (1981).

⁴ G. Doleschall, K. Simon-Ormai, Acta Chim. Acad. Scient. Hung. 104, 107 (1980).

⁵ A. Messmer, Gy. Hajos, P. Benko, L. Pallos, Acta Chim. Acad. Scient. Hung. 103, 123 (1980).

⁶ V.J. Ram H.K. Pandey, Arch. Pharm. (Weinheim, Ger.) 313, 465 (1980).

- ⁷ M.M.M. Sallam, Y.A. Ibrahim, S. Abdel-Latif Abdel-Hady, Helv. Chim. Acta 59, 1093 (1976).
- 8 H. Neunhoeffer in *The Chemistry of Heterocyclic Compounds*.

 Chemistry of 1,2,3-Triazines and 1,2,4-Triazines, Tetrazines and Pentazines, A. Weissberger, E.C. Taylor, Eds., John Wiley & Sons, New York, 1978, p. 189.
- D. L. Boger, J. S. Panek, J. Org. Chem. 47, 3763 (1982).
 D. L. Boger, J.S. Panek, M. M. Meier, J. Org. Chem. 47, 895
- ¹¹ D. L. Boger, J. S. Panek, J. Org. Chem. 46, 2179 (1981).
- S. F. A. Kettle, L. E. Orgel *Proc. Chem. Soc.* **1959**, 307.
 W.W. Paudler, T.-K. Chen *J. Org. Chem.* **36**, 787 (1971).
- ¹⁴ R. Metze, P. Schreiber, Chem. Ber. 89, 2466 (1956).