MECHANISTIC INFORMATION FROM THE EFFECT OF PRESSURE ON SOME TYPICAL OUTER-SPHERE ELECTRON-TRANSFER REACTIONS OF Co(III) COMPLEXES

I. KRACK, P. BRAUN and R. VAN ELDIK

Institute for Physical Chemistry, University of Frankfurt, Niederurseler Hang, 6000 Frankfurt am Main, Fed. Rep. Germany

The effect of pressure on a number of outer-sphere electron-transfer reactions was studied using conventional and stopped-flow kinetic techniques. The investigated systems are:

$$Co(NH_3)_5 X^{(3-n)+} + Fe(CN)_6^{4-} \rightarrow Co^{2+} + 5NH_3 + X^{n-} + Fe(CN)_6^{3-}$$
(1)

 $(X = H_2O, py, Me_2SO and Cl^-),$

 $Co(terpy)_{2}^{2+} + Co(bpy)_{3}^{3+} \rightarrow Co(terpy)_{2}^{3+} + Co(bpy)_{3}^{2+}$ (2)

Reaction (1) was studied in water, whereas reaction (2) was studied in water, formamide and acetonitrile. Reaction (1) proceeds via the formation of an ion-pair precursor, followed by the electron-transfer step. The volumes of activation for the electron transfer step are large positive quantities (between 27 and $34 \text{ cm}^3 \text{ mol}^{-1}$) and can largely be accounted for on the basis of solvational changes on the iron center. Reaction (2) does not involve the formation of ion-pairs, and the volumes of activation for the electron-transfer step vary between -5 and $-14 \text{ cm}^3 \text{ mol}^{-1}$ depending on the solvent employed. Partial molar volume measurements enable the construction of a reaction volume profile, which assists the mechanistic interpretation of these data. A comparison with theoretically expected volumes of activation is given and deviations are discussed.

1. Introduction

The effect of pressure on a few inner-sphere electron-transfer reactions was investigated in earlier studies performed in our laboratories [1– 3]. The complexity of these systems, however, did not allow a detailed interpretation of the observed pressure effects. Outer-sphere electrontransfer reactions are, on the other hand, significantly simpler since they do not involve bond formation between the redox partners. Stranks [4] developed an equation, based on the principles of the Hush-Marcus theories, to account for the effect of pressure on outer-sphere electrontransfer reactions. The apparent agreement between the theoretically predicted and experimentally observed volumes of activation, $\Delta V^{\#}$, is presumably one of the reasons why such measurements were not pursued. However, it was recently shown [5] that Strank's theoretically predicted values are in error and that his equation cannot account for the observed ΔV^{*} data [5,6]. We

have therefore undertaken a systematic study of the effects of pressure on various outer-sphere electron-transfer reactions [7, 8], as outlined by reactions (1) and (2) in the Abstract.

2. Reduction of $Co(NH_3)_5 X^{(3-n)+}$ by $Fe(CN)_6^{4-}$

Outer-sphere electron-transfer in this system proceeds via the formation of ion pairs, and can be expressed as in reactions (3) and (4). Under pseudo-first-order conditions, i.e. excess

$$\operatorname{Co}(\mathrm{NH}_{3})_{5} \mathrm{X}^{(3-n)^{+}} + \operatorname{Fe}(\mathrm{CN})_{6}^{4^{-}}$$

$$\stackrel{\kappa}{\longleftrightarrow} \left\{ \operatorname{Co}(\mathrm{NH}_{3})_{5} \mathrm{X}^{(3-n)^{+}} \cdot \operatorname{Fe}(\mathrm{CN})_{6}^{4^{-}} \right\}, \qquad (3)$$

$$\{ \text{Co}(\text{NH}_3)_5 X^{(3-n)^+} \cdot \text{Fe}(\text{CN})_6^{4^-} \}$$

$$\xrightarrow{k_{\text{ET}}} \text{Co}^{2^+} + 5\text{NH}_3 + X^{n^-} + \text{Fe}(\text{CN})_6^{3^-}, \qquad (4)$$

Fe(II), the observed rate constant can be

0378-4363/86/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

expressed as in (5), from which it follows that plots of k_{obs} versus [Fe(II)]

$$k_{\rm obs} = k_{\rm ET} K[{\rm Fe(II)}] / \{1 + K[{\rm Fe(II)}]\}$$
(5)

should be curved and reach a limiting value at high [Fe(II)]. A typical example of such plots for the reduction of $Co(NH_3)_5Me_2SO^{3+}$, as a function of pressure, is given in fig. 1. Values for the ion-pair formation constant (K) and electrontransfer rate constant (k_{ET}) can be obtained from plots of k_{obs}^{-1} versus [Fe(II)]⁻¹ [9]. From the temperature and pressure dependencies of K and k_{ET} , the thermodynamic and kinetic parameters, summarized in table I, were estimated in the usual way. Typical semilogarithmic plots of k_{ET} versus pressure are given in fig. 2.

The data in table I clearly demonstrate that reaction (4) is characterized by a large positive value for $\Delta V^{\#}$, which is accompanied by a fluctuating positive value for ΔS^{*} . The data also show that ion-pair formation exhibits almost no change, or a slight decrease, in molar volume. The more positive value in the case of the chloro complex is in line with the tendency that intrinsic volume changes during ion-pair formation will depend on the charge on the cobalt species. The volume of activation for the electron transfer reaction (4) is independent of the nature of X^{n-} , indicating that changes in volume on the cobalt center do not influence ΔV^* significantly. This is in contrast to the arguments presented by Saito et al. [10] and calls for a detailed analysis.

Fig. 1. Effect of pressure on k_{obs} as a function of [Fe(II)] for the reduction of Co(NH₃)₅Me₂SO³⁺ by Fe(CN)₆⁴⁻ at 25°C and ionic strength 1 M.

Fig. 2. Effect of pressure on $k_{\rm ET}$ for the reaction of $Co(NH_3)_5 X^{3+}$ by $Fe(CN)_6^{4-}$ in aqueous medium.

Table I Rate and activation parameters for the system

$Co(NH_3)_5 X^{(3-n)+}$	+ Fe(CN) ₆ ⁴⁻ $\stackrel{K}{\longleftrightarrow}$ {Co(NH ₃) ₅ X ⁽³⁻ⁿ⁾⁺ · Fe(CN) ₆ ⁴⁻ }
	$\downarrow k_{\rm ET}$
	$Co^{2+} + 5NH_3 + X^{n-} + Fe(CN)_6^{3-}$

X ^{<i>n</i>-}	K at 25°C (M ⁻¹)	$\Delta ar{V}$ (°C) (cm ³ mol ⁻¹)	k _{ET} at 25℃ (s ⁻¹)	ΔH^{*} (kJ mol ⁻¹)	$\frac{\Delta S^{*}}{(J K^{-1} mol^{-1})}$	$\frac{\Delta V^*}{(\text{cm}^3 \text{ mol}^{-1})}$
H,O	480 ± 110	-15 ± 8	$(10.0 \pm 0.2) \times 10^{-2}$	89 ± 3	38 ± 8	26.5 ± 2.4 (25)
py	168 ± 7	а	$(8.9 \pm 0.3) \times 10^{-3}$	118 ± 8	113 ± 29	29.8 ± 1.3 (15)
Me ₂ SO	34 ± 4	-11 ± 3	$(2.0 \pm 0.1) \times 10^{-1}$	84 ± 2	25 ± 8	34.4 ± 1.1 (25)
CI	36 ± 2	+2 ± 1	$(2.8 \pm 0.3) \times 10^{-2}$	77 ± 9	14 ± 32	26.1 ± 1.3 (35)

^a Not determined.

Electron transfer within the reactant ion-pair results in the formation of a product ion-pair consisting of $Co(NH_3)_5 X^{(2-n)+}$ and $Fe(CN)_6^{3-}$. Recent partial molar volume measurements and theoretical predictions [8, 10] indicate that a volume increase of about $20 \text{ cm}^3 \text{ mol}^{-1}$ is expected when Co(III) is reduced to Co(II). On the other hand, partial molar volume data for the iron species indicate that $Fe(CN)_{4}^{3-}$ is about 43 cm³ mol⁻¹ larger than $Fe(CN)_{6}^{4-}$ [11]. It follows that the increase in volume during such an electron-transfer step is mainly due to volume changes on the Fe center within the ion pair. In this way it is understandable why ΔV^{*} is fairly independent of the nature of X^{n-} . In addition, the quoted partial molar volume differences indicate that the transition state is approximately half-way along the reaction coordinate, on a volume basis, during the electron transfer step.

3. Reduction of $Co(bpy)_3^{3+}$ by $Co(terpy)_2^{2+}$

The electron-transfer reaction outlined in (2) (bpy = 2,2'-bipyridine, terpy = 2,2',6',6"-terpyridine) is not expected to involve significant ion-pairing due to the similarity in charge on the participating species. Under pseudo-first-order conditions, i.e. excess Co(III), $k_{obs} = k[Co(III)]$, where k represents the second-order rate constant for the electron-transfer reaction. The temperature [12] and pressure (fig. 3) dependencies of k were measured in various solvents and the corresponding activation parameters are summarized in table II. It follows that electron transfer is accom-

Fig. 3. In k versus pressure for the reduction of $Co(bpy)_3^{3+}$ by $Co(terpy)_2^{2+}$ in three solvents (S) at 25°C and ionic strength 0.01 M.

panied by negative values for ΔS^{*} and ΔV^{*} in all solvents.

The theoretical treatment developed by Stranks [4] should be applicable to such simple electron-transfer processes. According to this treatment $\Delta V^{\#}$ can be expressed in terms of contributions from coulombic interaction, solvent rearrangement, internal rearrangement and a Debye-Hueckel component, as indicated in eq. (6). Applications of the expressions for these

$$\Delta V^{\#} = \Delta V_{\text{coul}}^{\#} + \Delta V_{\text{SR}}^{\#} + \Delta V_{\text{IR}}^{\#} + \Delta V_{\text{DH}}^{\#}$$
(6)

terms [4] and taking Wherland's correction [5] into account, result in the following contributions towards $\Delta V^{\#}$, namely -4.8, -3.9, ~0 and +1.4 cm³ mol⁻¹, respectively [8]. It follows, that the theoretically expected $\Delta V^{\#}$ for the electron-transfer reaction in water is -7.3 cm³ mol⁻¹,

$\operatorname{Co}(\operatorname{terpy})_2^{2^+} + \operatorname{Co}(\operatorname{bpy})_3^{3^+} \xrightarrow{k} \operatorname{Co}(\operatorname{terpy})_2^{3^+} + \operatorname{Co}(\operatorname{bpy})_3^{2^+}$								
Solvent	$k \text{ at } 25^{\circ}\text{C}^{a}$ (M ⁻¹ s ⁻¹)	$\frac{\Delta H^{\# b}}{(\text{kJ mol}^{-1})}$	$\frac{\Delta S^{\# b}}{(J K^{-1} mol^{-1})}$	ΔV^* at 25°C ^a (cm ³ mol ⁻¹)				
H,O	26.2	21	-155	-9.4 ± 0.9				
HCONH,	9.1	51	-50	-13.8 ± 1.1				
CH ₃ CN	1.3	29	-146	-5.1 ± 1.4				

Table II Rate and activation parameters for the reaction

^a Data determined in this study, ionic strength = 0.01 M.

^b Data taken from ref. 12, ionic strength = 0.0027 - 0.0046 M.

which is remarkably close to the experimentally observed value of (-9.4 ± 0.9) cm³ mol⁻¹. Similar calculations for the reaction in the other solvents is more complicated and preliminary results [8] indicate larger discrepancies between the theoretically predicted and experimentally observed data. Nevertheless, the theoretical treatment developed by Stranks [4] does present a realistic description for this outer-sphere electron-transfer reaction in water as solvent. We are presently continuing this work to resolve discrepancies referred to before [5, 6].

Acknowledgements

The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- R. van Eldik, D.A. Palmer and H. Kelm, Inorg. Chim. Acta 29 (1978) 253.
- [2] R. van Eldik and H. Kelm, Inorg. Chim. Acta 60 (1982) 177.
- [3] R. van Eldik, Inorg. Chem. 21 (1982) 2501.
- [4] D.R. Stranks, Pure Appl. Chem. 38 (1974) 303.
- [5] S. Wherland, Inorg. Chem. 22 (1983) 2349.
- [6] L. Spiccia and T.W. Swaddle, J. Chem. Soc., Chem. Commun. (1985) 67.
- [7] I. Krack, Diplomarbeit, University of Frankfurt (1983).
- [8] P. Braun, Diplomarbeit, University of Frankfurt (1985).
- [9] R. van Eldik and H. Kelm, Inorg. Chim. Acta 73 (1983) 91.
- [10] M. Kanesato, M. Ebihara, Y. Sasaki and K. Saito, J. Amer. Chem. Soc. 105 (1983) 5711.
- [11] F.J. Millero, in: Water and Aqueous Solutions: Structure, Thermodynamics and Transport Processes, R.A. Horne, ed. (Wiley, London, 1972) ch. 13.
- [12] W.F. Prow, S.K. Garmestani and R.D. Farina, Inorg. Chem. 20 (1981) 1297.