

A Highly Efficient Ruthenium-Catalyzed Rearrangement of α,β -Epoxyketones to 1,2-Diketones

Chia-Lung Chang, Manyam Praveen Kumar, and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC

rsliu@mx.nthu.edu.tw

Received December 19, 2003

TpRuPPh₃(CH₃CN)₂PF₆ catalyzed the efficient rearrangement of α , β -epoxyketones to 1,2-diketones. Unlike a previously reported iron catalyst, the reaction in this case is applicable not only to 1,2disubstituted epoxides but also to mono- and trisubstituted epoxides and tolerates oxygen functionalities. The sterically crowded and highly basic tris(1-pyrazolyl)borate (Tp) ligand of the ruthenium catalyst might account for its high selectivity toward 1,2-diketone rather than 1,3diketone.

Introduction

The rearrangement of epoxides by Lewis acids is an important method for obtaining organic ketones or aldehydes.^{1,2} The rearrangement of α,β -epoxyketones by a Lewis acid was reported by House in the early 1960s;¹ the products normally consist of a mixture of 1,2- and 1,3-diketones, which result from either hydride or acyl migration, respectively.² In most cases, acyl migration is the preferred pathway because it shows neighboring group participation in opening of the epoxide ring.² The selective formation of 1,2- or 1,3-diketone from α,β epoxyketones is an interesting issue in organic synthesis.¹⁻⁹ Several methods have been developed for selective synthesis of 1,3-diketones using acid or metal catalysts such as BF₃·Et₂O,^{2c,d,3} LiClO₄,⁴ zeolites,⁵ and Pd-(PPh₃)₄.⁶ In contrast, little is known about the selective synthesis of 1,2-diketones due to slow hydride migration (path A, Scheme 1). Although $Mg(ClO_4)_2^{2a}$ and $Ti(O^{i}$ - $Pr)_2Cl_2^7$ are selective for the synthesis of 1,2-diketone, an excess of acid (>1.0 equimolar) is required. Silica gel shows activity for the rearrangement of chalcone epoxides to 1,2-diketones, but the reaction only works for derivatives of chalcone epoxides.8 Suda reported that an ironporphyrin catalyst effected the selective synthesis of 1,2**SCHEME 1**

SCHEME 2

diketones,⁹ but the examples are limited to only 1,2disubstituted epoxyketones. In this report, we describe a new ruthenium catalytic reaction that is applicable not only to 1,2-disubstituted α,β -epoxyketones but also to mono- and trisubstituted analogues. The trend in the catalytic activity of these epoxides is opposite that observed for common acid catalysts.²⁻⁵

Results and Discussions

Scheme 2 shows the working hypothesis regarding the use of TpRuPPh₃(CH₃CN)₂- PF_6^{10} catalyst to enhance the desired 1,2-hydrogen shift (path a). This cationic catalyst contains two labile CH₃CN, a sterically crowded tris(1pyrazolyl)borate, and one triphenylphosphine ligand. This structural feature is more suitable for the formation of five-membered chelated diketone A rather than the six-membered chelated species **B**. The bulky size of

^{(1) (}a) House, H. O. J. Am. Chem. Soc. 1954, 76, 1235. (b) House, H. O.; Ryerson, G. D. J. Am. Chem. Soc. 1961, 83, 979.

^{(2) (}a) Klix, R. C.; Bach, R. D. J. Org. Chem. 1987, 52, 580. (b) Bach, R. D.; Klix, R. C. J. Org. Chem. 1985, 50, 5440. (c) Bach, R. D.;
 Domagala, J. M. J. Org. Chem. 1984, 49, 4181. (d) Bach, R. D.;
 Klix, R. C. Tetrahedron Lett. 1985, 26, 985.

^{(3) (}a) Kunisch, F.; Hobert, K.; Welzel, P. Tetrahedron Lett. 1985, 26, 6039. (b) Okuda, K.; Katsura, T.; Tanino, H.; Kakoi, H.; Inoue, S. Chem. Lett. 1994, 157

⁽⁴⁾ Sankararaman, S.; Nesakumar, J. E. J. Chem. Soc., Perkin Trans. 1 1999, 3173.

⁽⁵⁾ Elings, J. A.; Lempers, H. E. B.; Sheldon, R. A. *Eur. J. Org. Chem.* **2000**, *10*, 1905.

⁽⁶⁾ Suzuki, M.; Watanabe, A.; Noyori, R. J. Am. Chem. Soc. 1980, 102. 2095.

⁽⁷⁾ Sosnovskii, G. M.; Astapovich, I. V. Zh. Org. Khim. 1993, 29, 85

⁽⁸⁾ Rao, T. B.; Rao, J. M. Synth. Commun. 1993, 23, 1527.

⁽⁹⁾ Suda, K.; Baba, K.; Nakajima, S.-I.; Takanami, T. *Chem. Commun.* **2002**, 2570.

⁽¹⁰⁾ Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34.

TABLE 1. Catalytic Transformation over Various Solvents and Catalysts

$MeO \xrightarrow{(Ru)} MeO \xrightarrow{(Ru)} 2$ $IRul = ToRuPPh_2(CH_2CN)_2PE_6$				
entry	catalyst	solvent	conditions	yields ^b (recovery) ^c
1	TpRuPPh ₃ (CH ₃ CN) ₂ PF ₆	toluene	100 °C (5 h)	99%
2	TpRuPPh ₃ (CH ₃ CN) ₂ PF ₆	CH ₃ CN	85 °C (12 h)	94%
3	TpRuPPh ₃ (CH ₃ CN) ₂ PF ₆	DME	85 °C (12 h)	87% (10%)
4	TpRuPPh ₃ (CH ₃ CN) ₂ PF ₆	DCE	80 °C (12 h)	71% (23%)
5	TpRuPPh ₃ (CH ₃ CN) ₂ PF ₆	benzene	80 °C (12 h)	81% (17%)
6	TpRuPPh ₃ (CH ₃ CN) ₂ PF ₆	DMF	110 °C (6 h)	89% (9%)
7	TpRu(PPh ₃) ₂ Cl	toluene	100 °C (5 h)	90%
8	CpRu(PPh ₃) ₂ Cl	toluene	100 °C (5 h)	(94%)
9	CnRu(PPh ₃)(CH ₃ CN) ₂ PF ₆	toluene	100 °C (5 h)	(5%)

^{*a*} Performed with 10 mol % catalyst, [substrate] = 0.80 M. ^{*b*} Products were isolated from silica column. ^{*c*} Values in parentheses represent recovery yields of compound **1**.

ent

1

2

3

structure **B** is less compatible with the congested space around the ruthenium center. This catalyst has catalytic activity toward transfer hydrogenation¹¹ and cleavage of a carbon–carbon triple bond.¹²

We examined the isomerization of monosubstituted epoxide 1 in various solvents, and the results are shown in Table 1. The yield of diketone **2** is quantitative with 10 mol % TpRuPPh₃(CH₃CN)₂PF₆ in hot toluene (100 °C, 5 h) and remains as high as 93% if 5 mol % catalyst is used (toluene, 100 °C, 10 h). Other solvents are also effective (entries 2-6) and give diketones 2 in yields of 71-94% without the formation of byproducts including 1,3-diketone, and this condition might be reflected by the recovery yields of α , β -epoxyketone **1** in dimethoxyethane (10%), dichloroethane (23%), benzene (17%), and dimethylformamide (9%). We examined three other catalysts (entries 7-9) to assess the effect of the tris(1pyrazolyl)borate and triphenyl phosphine ligands. To our surprise, a slight decrease in the yield (90%) of 1,2diketone 1 was observed for TpRu(PPh₃)₂Cl. This result is attributed to a rapid dissociation of PPh₃ in the presence of bulky tris(1-pyrazolyl)borate ligand.¹⁰ The replacement of tris(1-pyrazolyl)borate ligand with a cyclopentadienyl group, as in CpRu(PPh₃)(CH₃CN)₂PF₆,¹³ led to catalytic inactivity with exclusive recovery of the starting epoxyketone 1 (>94%). This phenomenon is unexpected because the metal is more acidic for CpRu-(PPh₃)(CH₃CN)₂PF₆ than for TpRu(PPh₃)(CH₃CN)₂PF₆.

The rearrangement of monosubstituted α,β -epoxyketones such as **1** normally gave complicated mixtures of products with a conventional acidic catalyst like BF₃· Et₂O.⁹ It is unfavorable to produce carbocation character on the CH₂ terminus during the ring-opening of epoxide. The ease and excellent yields in the rearrangement of α,β -epoxyketone **1** with TpRuPPh₃(CH₃CN)₂PF₆ catalyst encouraged us to perform an extensive investigation. Table 2 shows the suitability of this catalyst with various monosubstituted α,β -epoxy ketones. The ketone substrates include phenyl and its 4-substituted fluoro, cyano, and *tert*-butyl substituents (entries 1–4), with yields exceeding 92%. It is also applicable to 2-naphthyl, cyclo-

 \cap

R [Ru]=	3a-3h TpRuPPh₃([Ru] ► CH₃CN)₂	PF ₆	
ries R (epoxides)	Product (yields)	entrie	es R (epoxide	s) Product (yields)
🚫 3a	4a (93%)	5	3	4e (97%)
F-3b	4b (95%)	6	∑ 3f	4f (98%)
NC-3c	4c (92%)	7	C ₈ H ₁₇ 3a	4g (93%)

^{*a*} Conditions: 10 mol % catalyst, [substrate] = 0.80 M, 100 °C, 5 h. ^{*b*} Products were isolated from silica column.

4d (95%)

3d

hexyl, and *n*-octyl groups (entries 5-7) without the formation of byproducts including 1,3-diketones. A reaction period of 5 h is sufficient to complete the isomerization of these substrates (toluene, 100 °C).

In contrast to monosubstituted epoxides, rearrangement of 1,2-disubstituted α,β -epoxy ketones requires a greater duration of reaction (toluene, 100 °C, 12 h) to complete the catalytic reaction (Table 3). This catalytic reaction is equally effective for both trans- and cisepoxides 5a and 5b, respectively. The isolated yields of the corresponding 1,2-diketones were as high as 91-94%(Table 3, entries 1–2). Entries 3–8 show various α,β epoxyketones 5c-h with a change in the R^1 and R^3 substituents, which gave 1,2-diketones 6c-h in excellent yields (>90%) without the formation of 1,3-diketones or other byproducts. To our surprise, the styryl epoxide 5i (entry 9) failed to undergo rearrangement, and was recovered in 91% yield. Epoxide 5i is expected to be more reactive than analogues with alkyl substituents (5c-h)if carbocation character is developed during the opening of epoxides.¹⁻⁸ We also prepared trisubstituted epoxyketones 5j and 5k (entries 10 and 11) that also efficiently gave 1,2-diketones 6j and 6k, but the reaction time was as long as 18 h. The relative activities of these epoxides

⁽¹¹⁾ Yeh, K.-L.; Liu, B.; Lo, C.-Y.; Liu, R.-S. J. Am. Chem. Soc. 2002, 124, 6510.

⁽¹²⁾ Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. **2003**, *125*, 9294.

entries	epoxides	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	product (yields)
1	5a	Ph	<i>cis</i> -H	trans-nC4H9	6a (94%)
2	5b	Ph	$cis^{-n}C_6H_{13}$	trans-H	6b (91%)
3	5c	Ph	Н	Me	6c (93%)
4	5d	2-naphthyl	Н	Me	6d (94%)
5	5e	cyclohexyl	Н	Me	6e (92%)
6	5f	ⁿ C ₈ H ₁₇	cis-H	<i>trans-ⁿ</i> Cu	6f (95%)
7	5g	<i>'</i> Pr	cis-H	trans-nC6H13	6g (90%)
8	5ĥ	^t Bu	<i>cis</i> -H	<i>trans-ⁿ</i> Bu	6h (90%)
9	5i	${}^{n}C_{6}H_{13}$	Н	Ph	\mathbf{nr}^{c}
10	5j	Ph	Me	Me	6j (95%)
11	5k	${}^{n}C_{14}H_{29}$	Me	Me	6k (90%)

^{*a*} Conditions: 10 mol % catalyst, [substrate] = 0.80 M, 100 °C, 12 h for entries 1-8, 18 h for entries 9-11. ^{*b*} Products were isolated from silica column. ^{*c*} Recovery yield of **5i** was 91% in this case.

SCHEME 3^a

entries	R	epoxides	products (yields)
1	СНО	7a	8a (86 %)
2	CH₂OH	7b	8b (81 %)
3	CH2	7c	8c (89%)
4	CH =CH ₂	7d	8d (91 %)
5	<i>cis</i> -CH =CH(ⁿ F	Pr) 7e	8e (90 %)

^a Conditions: 10 mol % catalyst, [substrate] = 0.80 M, 100 °C, 8 h. ^bProducts were isolated from silica column.

decrease in the order monosubstituted > 1,1-disubstituted > trisubstituted epoxides.

We also examined the ability of this catalytic activity to tolerate different functional groups. As shown in Scheme 3, we prepared various monosubstituted α,β epoxyketones **7a**-**e** bearing an aldehyde, alcohol, dioxalane, mono-, and 1,2-disubstituted alkenes. The 1,2diketones **8a**-**e** were isolated in yields of 81–91%, which indicates that this catalytic reaction is applicable to various oxygen functionalities. The alkene product **8e** retains a cis geometry without isomerization of the olefin functionality.

Scheme 4 shows a plausible mechanism that is distinct from those observed for acid catalysts.^{1–8} The active ruthenium species are likely to be neutral TpRuPPh₃(CH₃-CN)PF₆ in toluene because TpRu(PPh₃)₂Cl is equally active. Acid-promoted ring opening of the epoxides seems unlikely for the present system. The catalytic inactivity of styryl oxide **5i** indicates that neither benzyl carbo-

SCHEME 4

Ru(CH₃CN)₂LX **Ru**(CH₃CN)LX + CH₃CN

cation nor radical character is being developed in this reaction mechanism. We propose that the ruthenium complex coordinates with the carbonyl group of α,β epoxyketone to generate species C. The approach of the ruthenium center to the acidic C_{α} -proton develops carboanion character to induce ring opening of the epoxides, giving five-membered chelated enolate anion D. Reprotonation of the enolate functionality with the Ru-H bond of species **D** is expected to regenerate active ruthenium species and 1,2-diketone product. To examine this hypothesis, we prepared the substrate 9, which was found to be inactive in hot toluene using TpRuPPh₃(CH₃-CN)₂PF₆ catalyst (100 °C, 12 h) with a 90% recovery. The catalytic inactivity of compound 9 is attributed to the lack of a C_{α} -proton. Scheme 5 shows a crucial experiment to confirm the enolate intermediate **D**. We selected epoxide 5j as a molecule for study because the resulting product 6j has a less acidic isopropyl proton to retard proton exchange with external D_2O . In the presence of D_2O , treatment of epoxide 5j with 10 mol % ruthenium catalyst in hot CH_3CN (90 °C, 6 h) gave product 6j containing 98% deuterium content, which is thought to derive from protonation of enolate species \mathbf{D} with D_2O . The proton exchange of product 6j with external D₂O proved to be too slow to account for such a large deuterium content on the basis of a blank experiment.

Conclusion

We have developed a catalytic reaction for the efficient rearrangement of α,β -epoxyketones to 1,2-diketones. The substrates include monosubstituted, 1,2-disubstituted, and trisubstituted α,β -epoxy ketones. The trend in the catalytic activity of these epoxides is opposite that seen with common acid catalysts. This catalytic reaction tolerates suitable oxygen functionalities. 1,2-Diketones are recognized as versatile intermediates in organic synthesis, and their synthesis has received considerable attention.^{14,15} The present method appears to be useful in view of its simplicity (no additives), high yields, and wider range of suitable α,β -epoxyketones. Detailed studies are underway to elucidate the reaction mechanism.¹⁶

Experimental Section

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using a standard syringe, cannula, and septa apparatus. Benzene, diethyl ether, tetrahydrofuran, and hexane were dried with sodium benzophenone and distilled before use. Dichloromethane was dried over CaH₂ and distilled before use. Vinylmagnesium bromide, *p*-methoxyphenyl aldehyde, *m*-chloroperbenzoic acid, and tetra-*n*-propylammonium perruthenate (TPAP) were obtained commercially and used without purification. TpRu-(PPh₃)(CH₃CN)₂PF₆ was prepared by heating TpRu(PPh₃)₂Cl with LiPF₆ in CH₃CN according to a literature method.¹⁰ Spectral data of compounds **3a**-**h**, **4a**-**h**, **5a**-**k**, **6a**-**k**, and **7a**-**e** in repetitive experiments are provided in Supporting Information.

(1) Standard Procedure for the Synthesis of α,β -Epoxyketone. Synthesis of 1-(4-Methoxy-phenyl)-prop-2-en-1-ol. To a THF (10 mL) solution of p-methoxyphenyl aldehyde (2.00 g, 14.7 mmol) was added vinylmagnesium bromide (17.6 mL, 1 M, 17.6 mmol) at 0 °C, and the mixture was stirred for 2 h before addition of H_2O . The solution was evaporated under reduced pressure, and the organic layer was extracted with diethyl ether. The extract was dried in vacuo and chromatographed through a silica column to give allylic alcohol as a colorless oil (1.98 g, 12.0 mmol, 82%). IR (neat, cm⁻¹): 3423 (vs, br), 1645 (m), 1614 (w). ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d. J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.07-5.99 (m, 1H), 5.33 (dd, J=17.6, 1.5 Hz, 1H), 5.16 (dd, J = 12.8, 1.5 Hz), 5.14 (s, 1H), 3.78 (s, 3H), 1.94 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.0, 140.3, 134.8, 127.6, 114.6, 113.8, 74.7, 55.2. HRMS (70 eV): calcd for C10H12O2, 164.0837; found, 164.0836.

(2) Synthesis of (4-Methoxy-phenyl)-oxiranyl-metha**none (1).** To a CH₂Cl₂ solution (20 mL) of the preceding alcohol (1.20 g, 7.31 mmol) was added m-chloroperbenzoic acid (2.52 g, 14.6 mmol), and the mixture was stirred at 26 °C for 12 h before addition of water (10 mL). The organic layer was extracted with diethyl ether, washed with NaHCO₃ solution, and dried over MgSO₄. The extract was concentrated and eluted through a silica (hexane/NEt₃ = 100/1) column to give an epoxide as a colorless oil (1.20 g, 6.66 mmol). To a CH₂Cl₂ solution (20 mL) was added the epoxide (1.20 g, 6.66 mmol), N-methyl morpholine oxide (1.35 g, 10.0 mmol), TPAP (117 mg, 0.33 mmol), and powdered 4 Å molecular sieves (0.50 g), and the mixture was stirred at 25 °C for 1 h. The mixture was filtered, dried in vacuo, and chromatographed through a short alumina column to afford α,β -epoxyketone **1** (1.05 g, 5.92 mmol, 81%) as a colorless oil. $R_f = 0.41$ (ether/hexane = 1/3). IR (neat, cm^{-1}): 3032 (w), 1722 (s), 1622 (w). ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 4.18 (t, J = 2.6 Hz, 1H), 3.87 (s, 3H), 3.06 (t, J = 2.6 Hz,

(16) Mechanism of this rearrangement is also distinct from that of the iron-porphyrin catalyst,⁹ which is applicable to styrylepoxy ketones **5i**, affording excellent yields of 1,2-diketone products.

(17) Although this catalytic reaction works well for α,β -epoxy ketones, it is not applicable to α,β -epoxy aldehydes.

1H), 2.96–2.93 (m, 1H). $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ 192.8, 164.0, 130.5, 128.3, 113.9, 55.3, 50.6, 47.2. HRMS: calcd for C10H10O3, 178.0630; found, 178.0632.

(3) Procedure for Catalytic Reactions. To a toluene solution (0.70 mL) were added epoxide 1 (100 mg, 0.56 mmol) and TpRuPPh₃(CH₃CN)₂PF₆ (43 mg, 0.056 mmol), and the reaction mixture was heated at 100 °C for 5 h. The solution was filtered over a short silica bed and then washed with diethyl ether (4 mL). Concentration of the filtrate under reduced pressure gave 1,2-diketone 2 as a yellow oil (99 mg, 0.55 mmol, 99%).

(4) 1-(4-Methoxy-phenyl)-propane-1,2-dione (2). $R_f = 0.59$ (ether/heaxane = 1/3); IR (neat, cm⁻¹): 3031 (w), 1732 (s), 1720 (s), 1622 (w). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.1, 189.9, 164.7, 132.7, 124.6, 114.1, 55.5, 26.4. HMRS: calcd for C₁₀H₁₀O₃, 178.0630; found, 178.0631.

(5) Oxiranyl-phenyl-methanone (3a). This epoxide was prepared similarly from vinylmagnesium bromide and benzaldehyde, followed by sequential epoxidation with *m*-chloroperbenzoic acid and oxidation with TPAP according to the synthetic procedure for compound 1. $R_f = 0.52$ (ether/hexane = 1/3). IR (neat, cm⁻¹): 3033 (w), 1717 (s), 1619 (w). ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 7.2 Hz, 2 H), 7.58 (t, J = 7.2Hz, 1 H), 7.48 (t, J = 7.2 Hz, 2 H), 4.22 (dd, J = 4.4, 2.4 Hz, 1 H), 3.10 (dd, J = 6.4, 4.4 Hz, 1 H), 2.95 (dd, J = 6.4, 4.4 Hz, 1 H), ³C NMR (125 MHz, CDCl₃): δ 194.5, 135.3, 133.8, 128.7, 128.2, 50.9, 47.4. HMRS: calcd for C₉H₈O₂, 148.0524; found, 148.0526.

(6) 1-Phenyl-propane-1,2-dione (4a). This diketone was obtained similarly from heating epoxide **3a** with ruthenium catalyst in hot toluene (100 °C, 5 h) according to the procedure for compound **2**. $R_f = 0.57$ (ether/hexane = 1/3). IR (neat, cm⁻¹): 3035 (w), 1716 (s), 1617 (w). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.6 Hz, 2 H), 7.62 (t, J = 7.6 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 2.51 (s, 3 H). ¹³C NMR (125 MHz CDCl₃): δ 200.5, 191.3, 134.5, 131.7, 130.2, 128.8, 26.3. HMRS: calcd for C₁₀H₁₀O₂, 148.0524; found, 148.0525.

(7) 3-(*E*)-Butyl-oxiranyl-phenyl-methanone (5a). This epoxide was prepared similarly from 1-hexenylmagnesium bromide and benzaldehyde, followed by sequential epoxidation with *m*-chloroperbenzoic acid and oxidation with TPAP according to the synthetic procedure for compound 1. $R_f = 0.51$ (ether/hexane = 1/3). IR (neat, cm⁻¹): 3034 (w), 1720 (s), 1622 (w). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.3 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.3 Hz, 2H), 4.00 (d, J = 2.0 Hz, 1H), 3.14–3.10 (m, 1H), 1.77–1.66 (m, 2H), 1.52–1.46 (m, 2H), 1.44–1.36 (m, 2H), 0.91 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.5, 135.4, 133.6, 128.6, 128.1, 59.9, 57.2, 31.5, 27.2, 22.2, 13.7. HMRS: calcd for C₁₃H₁₆O₂, 204.1150; found, 204.1153.

1-Phenyl-heptane-1,2-dione (6a). This diketone was obtained similarly from heating epoxide **5a** with ruthenium catalyst in hot toluene (100 °C, 10 h) according to the procedure for compound **2**. $R_f = 0.75$ (ether/hexane = 1/3). IR (neat, cm⁻¹): 3037 (w), 1735 (s), 1712 (s), 1618 (w). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.8 Hz, 2H), 7.64 (t, J = 7.8 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 2.87 (t, J = 7.4 Hz, 2H), 1.72–1.70 (m, 2H), 1.38–1.32 (m, 4H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 203.4, 192.5, 134.4, 131.9, 130.0, 128.7, 38.6, 31.2, 22.4, 22.3, 13.8. HMRS: calcd for C₁₃H₁₆O₂, 204.1150; found, 204.1151.

Acknowledgment. We thank National Science Council, Taiwan, for financial support of this work.

Supporting Information Available: Spectral data of α , β -epoxyketones **3b–g**, **5b–k**, and **7a–e** and 1,2-diketones **4b–h**, **6b–k**, and **8a–e** in repetitive experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0303867

⁽¹³⁾ CpRu(CH_3CN)_2PPh_3PF_6 was prepared in situ from equimolar of CpRu(CH_3CN)_3PF_6 and PPh_3.

^{(14) (}a) Sakurai, K.; Tanabe, K.; Narasaka, K. Chem. Lett. 2000,
168. (b) Antonioti, S.; Dunach, E. Chem. Commun. 2001, 2566. (c) Si,
Z. X.; Jiao, X. Y.; Hu, B. F. Synthesis 1990, 509.
(15) (a) Seyferth, D.; Weinstein, R. M.; Hui, R. C.; Wang, W. L.;

^{(15) (}a) Seyferth, D.; Weinstein, R. M.; Hui, R. C.; Wang, W. L.; Archer, C. M. *J. Org. Chem.* **1991**, *56*, 5768. (b) Babadri, F.; Fiandanese, V.; Marchese, G. Ounzi, A. *Tetrahedron Lett.* **1995**, *36*, 7305. (c) Katritzky, A. R.; Wang, Z.; Lang, H.; Feng, D. *J. Org. Chem.* **1997**, *62*, 4125.