Metal Complexes of Biologically Important Ligands, 101^[\diamond]

Oxidative Addition of α -Bromoglycine to Palladium(0) and Platinum(0) Complexes: α -Metallated Amino Acids as Models for Intermediates in the Metal-Catalyzed Hydrogenation of Dehydroamino Acids^{\ddagger}

Bernd Kayser, Christopher Missling, Jörg Knizek^[2], Heinrich Nöth^[2], Wolfgang Beck*

Institut für Anorganische Chemie der Ludwig-Maximilians-Universität, Meiserstraße 1, D-80333 München, Germany

Received September 22, 1997

Keywords: a-Metallated amino acids / Palladium / Platinum / Oxidative addition / a-Bromoglycinate

Oxidative addition of methyl N-benzoyl-2-bromoglycinate to bis(dibenzylideneacetone)palladium, in the presence of 2,2'-bipyridyl, and to $(Ph_3P)_2Pt(\eta^2-C_2H_4)$ gives the α -metallated glycine esters **1a** and **2a**. Abstraction of bromide from **1a**, **2a**, using AgSbF₆ or AgBF₄, affords the cationic C,O-chelate

complexes $[(bpy)Pd-CH(CO_2Me)NHC(Ph)O]^+$ $(\mathbf{1b},\mathbf{c})$ and $[(Ph_3P)_2Pt-CH(CO_2Me)NHC(Ph)O]^+$ $(\mathbf{2b}),$ respectively, featuring coordination of the amide O atom. The complexes $\mathbf{1b}$ and $\mathbf{2b}$ have been characterized by X-ray diffraction.

 α -Haloglycine esters are valuable synthons for the synthesis of modified α -amino acids^[3]. Recently, we used these compounds for the introduction of α -amino acid residues into organometallic systems^[4], giving products that may find application in the labelling of amino acids and peptides, a growing field in bioinorganic chemistry^[5]. α -Metallated amino acids are intermediates in the asymmetric hydrogenation of dehydroamino acids and have been detected as such by Halpern et al.^[6] and Brown et al.^[7] by means of NMR spectroscopy.

Structures of α -metallated amino acids have been reported by Vahrenkamp et al.^[8] and by ourselves^[4b]. Recently, Bergens et al.^[9] characterized a C,O-bound intermediate in the hydrogenation of methyl α -acetamidocinnamate, derived from a (BINAP)(H)Ru^{II} catalyst.

The easy access to α -metallated amino acids by oxidative addition of methyl *N*-benzoyl-2-bromoglycinate to Me₂Pt(bpy) (bpy = 2,2'-bipyridyl)^[4b] prompted us to search for square-planar complexes with the halide and the *C*-bound α -amino acid in a *cis* configuration. Abstraction of halide from these should yield simple models for intermediates in the hydrogenation of dehydroamino acids, with coordination of the amide O atom.

The oxidative addition of organic halides to zerovalent palladium and platinum complexes^[10], e.g. to $(Ph_3P)_2Pt(\eta^2-C_2H_4)^{[11]}$ or to $(dba)_2Pd$ (dba = dibenzylideneacetone)^[12] is a general method for the synthesis of σ -bonded organometallic complexes.

Results and Discussion

The reactions of methyl *N*-benzoyl-2-bromoglycinate with (dba)₂Pd in the presence of bpy, and with

(Ph₃P)₂Pt(η^2 -C₂H₄) yielded the α -metallated complexes 1a and 2a, respectively, in good yields. The compounds were found to be light-sensitive and relatively unstable in air and towards organic solvents. Abstraction of bromide from 1a, 2a, using AgSbF₆ or AgBF₄, led to coordination of the amide group, thereby affording the stable C,O-chelate complexes 1b,c and 2b.

The IR spectra of **1a** and **2a** show typical ester and amide absorptions at 1715 and 1640 cm⁻¹. The shift of the carbonyl ester band to lower wavenumbers ($\tilde{v} \approx 30 \text{ cm}^{-1}$) compared with the corresponding band in α -amino acid esters has been observed previously^[4b]. The lower wavenumber of the amide absorption in **1b,c** and **2b** (1600 cm⁻¹) is characteristic of a coordinated amide group. The ¹H-NMR spectrum of **1a** exhibits a doublet due to the CH proton, as expected, while that of complex **1c** features a broad singlet.

The signal of the Pt-CH proton in **2a** appears as a pseudo-quadruplet with satellites due to ¹⁹⁵Pt-C-H coupling. In the ¹H-NMR spectrum of **2b**, a doublet of triplets is observed for the α -CH proton due to *cis* and *trans* ³¹P-Pt-C-H coupling.

The ¹³C-NMR spectra of **1c** and **2b** show the expected resonances. Two ³¹P-NMR signals for the two non-equivalent P atoms are observed for **2b**. Their ¹J(Pt-P) values differ significantly because of the different *trans* influence of the strong C and weak O donors, similar to the situation in (Ph₃P)₂Pt-C(H)(CO₂R)C(O)O^[13].

Cationic alkyl- or acyl(bpy)Pd^{II} complexes readily react with CO, isonitriles, alkenes or allenes^[14]. Surprisingly, **1a** does not undergo insertion of CO, ethylene or allene at atmospheric pressure. Treatment with *tert*-butylisonitrile leads only to coordination of the isonitrile { $\tilde{v} = 2222 \text{ cm}^{-1}$ [v(CN)]} and no insertion product could be detected.

Eur. J. Inorg. Chem. **1998**, 375–379

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998

^[◊] Part 100: Ref.^[1].

Figure 1. Molecular structure of 1b^[a]

[a] Selected bond lengths [pm] and angles [°]: Pd1-N2 205.2(5), Pd1-N3 201.9(5), Pd1-O1 201.3(4), Pd1-C1 203.3(6), O1-C3 127.5(7), C3-N1 132.2(8), N1-C1 146.0(8); N2-Pd-N3 80.0(2), O1-Pd1-C1 82.4(2), Pd1-C1-N1 104.2(4), Pd1-O1-C3 113.4(4).

Crystal Structure Determinations of 1b and 2b

Crystals suitable for structure determination by X-ray diffraction were obtained by liquid-liquid diffusion of diethyl ether into an acetone solution of **1b** at room temperature and from a dichloromethane solution of **2b** layered with *n*-pentane. The unit cell of **1b** was found to contain the αS and αR enantiomers (at C1), with a parallel arrangement of the molecules and pairs of enantiomers (with a center of symmetry, Pd…Pd 427 pm) in the lattice. As expected on the basis of the spectroscopic data, the amino acid is coordinated to the Pd atom through the α -carbon atom and the amide group (Figure 1). The palladium center in **1b** has a square-planar environment with Pd–N distances (203–205 pm) similar to those reported for related complexes^{[12][15]}. The Pd–C distance [203.3(6) pm] compares well with values found for other sp³ carbon atoms *trans* to an sp² nitrogen atom^[15]. The acyl CO bond length [127.5(7) pm] is typical for a carbonyl group, although the CO absorption in the IR spectrum (1602 cm⁻¹) is suggestive of more single-bond character. The α -carbon atom is approximately tetrahedrally coordinated, with the largest deviation from ideal geometry being manifested in the N–C–Pd angle (104°). The chelate ring is almost planar and has a (small) O–C–N–C torsion angle of 11.7°.

[a] Selected bond lengths [pm] and angles [°]: Pt1-P1 232.8(2), Pt1-P2 223.3(2), Pt1-O1 208.9(4), Pt1-C1 210.0(6), O1-C4 128.1(7), C4-N1 130.9(8), N1-C1 146.0(8); P1-Pt1-P2 99.91(6), C1-Pt1-O1 80.8(2), Pt1-C1-N1 104.4(4), Pt1-O1-C4 112.1(4).

A similar structure is found for **2b**. The two P atoms in **2b** are seen to deviate from the coordination plane by 18° and 3.4°, respectively. The Pt $-\alpha$ -C bond length [210.0(6) pm] is comparable to that found in other platinum(II) complexes with Pt $-\alpha$ -alkyl bonds^[16].

Interestingly, pairs of enantiomers αS and αR are found in the crystal (Figure 2), which are linked through two hydrogen bonds between the amino and the carbonyl groups of the methyl ester (N-H···O 286 pm).

Support by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. We thank Professor Dr. W. Steglich, München, for valuable discussions.

Experimental Section

General: All reactions were carried out in dry solvents under argon. – NMR: Jeol GSX 270 (¹H 270.0; ¹³C 100.4; ³¹P 109.3 MHz) with tetramethylsilane as internal standard; H₃PO₄ (85%) as external standard. – IR: 5ZDX FT-IR. – (dba)₂Pd^[18], (η^2 -ethylene)(Ph₃P)₂Pt^[19] and methyl *N*-benzoyl-2-bromoglycinate^[3b] were prepared according to literature procedures. AgBF₄ and AgSbF₆ were purchased from Aldrich and stored in the dark under argon.

 $(bpy)[CH(NHCOPh)(CO_2Me)]PdBr$ (1a): To a solution of 173 mg (0.3 mmol) of $(dba)_2Pd$ in 10 ml of benzene, 47 mg (0.3 mmol) of 2,2'-bipyridyl and 82 mg (0.3 mmol) of methyl N-benzoyl-2-bromoglycinate were added. The mixture was stirred for 1 h

	1b	2b
Formula	C ₂₀ H ₁₈ F ₆ N ₃ O ₃ PdSl	C46H40F6NO3P2PtSb
$M_{\rm r}$	690.52	1147.57
Crystal system	monoclinic	triclinic
Space group	P2(1)/c	$P\overline{1}$
a[Å]	8.422(2)	11.9029(1)
b[Å]	18.357(4)	12.4852(1)
	14.958(3)	16.3340(1)
α [້] [°]	90°	94.012(1)
βľ°i	105.643(9)	92.620(1)
γ [°]	90°	114.292(1)
$V[A^3]$	2227.0(9)	2199.64(3)
Z	4	2
ρ_{calcd} [gcm ⁻³]	2.060	1.733
$\mu [\text{mm}^{-1}]$	2.099	3.930
Crystal size	$0.2 \times 0.15 \times 0.12$	0.3 imes 0.3 imes 0.2
20 range [°]	3.6-58.8	3.6-58.8
Index range	$\pm h, \pm k, \pm l$	$\pm h, \pm k, \pm l$
Collected reflns.	6146	13135
Independent reflns.	4281 [2.45]	7027 [3.21]
$[R_{int}(\%)]$		LJ
Max./min.	0.727/0.606	0.710/0.497
transmissions		
Parameters	307	596
$R1/wR2$ [$F > 4\sigma(F)$]	0.0488/0.0914	0.0424/0.1039
GoF	1.368	1.139
Largest diff. peak	0.445/-0.502	1.685/-2.364
and hole $[e A^{-3}]$		

Table 1. Details of the crystal structure determinations^[17]

at room temp., during the course of which a yellow-green powder precipitated. The precipitate was separated by centrifugation, washed with diethyl ether (2 \times 10 ml), and dried in vacuo. Yield 128 mg (80%), yellow-green powder, m.p. 164 °C. – IR (KBr): \tilde{v} = 3407 cm⁻¹ m (NH), 1716 s (CO₂), 1633 s (NCO). - ¹H NMR $(CDCl_3)$: $\delta = 3.74$ (s, 3 H, CH₃), 5.32 (d, ${}^{3}J = 9.2$ Hz, 1 H, CH), 7.36-7.49 (m, 4 H, NH, C₆H₅), 7.57-7.74 (m, 2 H, bpy), 7.86-8.21 (m, 6 H, bpy, C_6H_5), 9.25 (d, ${}^{3}J$ = 3.94 Hz, 1 H, *o*-bpy), 9.35 (d, ${}^{3}J = 5.4$ Hz, 1 H, *o*-bpy). – C₂₀H₁₈N₃O₃BrPd·0.5C₆H₆ (573.8): calcd. C 48.15, H 3.69, N 7.32; found C 47.97, H 3.71, N 7.26.

 $[CH(NHCOPh)(CO_2Me)](PPh_3)_2PtBr$ (2a): To a solution of 224 mg (0.3 mmol) of (n²-ethylene)(Ph₃P)₂Pt in 10 ml of benzene, 82 mg (0.3 mmol) of methyl N-benzoyl-2-bromoglycinate was added. Gas evolution was observed and the yellow solution was stirred for 1 h. A white residue was separated by centrifugation, the volatiles were evaporated from the supernatant solution, and the residue was washed with pentane (3 \times 15 ml). Yield 268 mg (90%), white powder, m.p. 104°C (decomp.). – IR (KBr): $\tilde{v} = 3413$ cm⁻¹ m (NH), 1713 s (CO₂), 1647 s (NCO), 280 m (PtBr). - ¹H NMR (C₆D₆): $\delta = 3.78$ (s, 3 H, CH₃), 5.44 (pseudo-q, ${}^{3}J_{PH} = 9.7$ Hz, ${}^{2}J_{PtH} = 93.6$ Hz, 1 H, CH), 6.94–8.74 (m, 36 H, NH, C₆H₅, PPh₃). $-{}^{31}$ P NMR (C₆D₆): $\delta = 17.90$ (d, ${}^{2}J_{PP} = 16.5$ Hz, ${}^{1}J_{PtP} =$ 1902.9 Hz), 20.45 (d, ${}^{2}J_{PP} = 16.5$ Hz, ${}^{1}J_{PtP} = 4481.5$ Hz). - $C_{46}H_{40}NO_{3}BrP_{2}Pt$ (991.8): calcd. C 55.71, H 4.07, N 1.41; found C 55.51, H 4.76, N 1.75.

General Procedure for the Abstraction of Bromide from 1a and **2a**: To a solution of 160 mg (0.3 mmol) of **1a** [or 297 mg (0.3 mmol) of 2a] in 10 ml of acetone, a solution of 58 mg (0.3 mmol) of AgBF₄ or 103 mg (0.3 mmol) of AgSbF₆ in 5 ml of acetone was added. Reaction was indicated by the rapid precipitation of AgBr; the suspension was stirred for 1 h in the dark at room temp. and then the precipitate was separated by centrifugation. The colorless/yellow solution was concentrated in vacuo and the residue was washed with diethyl ether (1b,c) or pentane (2b) $(2 \times 15 \text{ ml})$ and dried in vacuo.

 $[(bpy)Pd-CH(CO_2Me)NHC(Ph)O]^+$ BF₄⁻ (1c): Yield 154 mg (95%), colorless powder, m.p. 193°C (decomp.). - IR (KBr): $\tilde{v} = 3410 \text{ cm}^{-1} \text{ m}$ (NH), 1707 s (CO₂), 1602 s (NCO), 1083 (BF_4^{-}) . - ¹H NMR (CDCl₃ + DMSO): δ = 3.33 (s, 3 H, CH₃), 4.57 (s, 1 H, CH), 7.14–7.43 (m, 5 H, Ph, bpy), 7.71 (d, ${}^{3}J = 7.6$ Hz, 2 H, Ph), 7.92 (pseudo-q, ${}^{3}J = 7.7$ Hz, 2 H, bpy), 8.01–8.11 (m, 2 H, bpy), 8.43 (d, ${}^{3}J = 5.5$ Hz, 1 H, bpy), 8.71 (d, ${}^{3}J = 5.2$ Hz, 1 H, bpy), 9.77 (s, 1 H, NH). $- {}^{13}$ C NMR (CDCl₃ + DMSO): $\delta = 50.86, 51.25$ (CH, CH₃), 122.30, 122.98, 126.64, 126.71, 126.73, 127.77, 128.07, 132.89, 140.07, 140.44, 147.62, 152.66, 152.71, 155.72 (bpy, Ph), 173.90, 178.63 (CO₂, NCO). C₂₀H₁₈BF₄N₃O₃Pd (541.6): calcd. C 44.35, H 3.35, N 7.76; found C 43.89, H 3.17, N 7.61.

 $[(Ph_3P)_2Pt-CH(CO_2Me)NHC(Ph)O]^+$ SbF₆⁻ (**2b**): Yield 309 mg (90%), colorless powder, m.p. 158°C (decomp.). - IR (KBr): $\tilde{v} = 3437 \text{ cm}^{-1} \text{ m}$ (NH), 1709 m (CO₂), 1607 m (NCO), 1098 (SbF_6^{-}) . - ¹H NMR (CDCl₃): $\delta = 3.27$ (s, 3 H, CH₃), 5.44 (dt, ${}^{3}J_{(PH)trans} = 9.9$ Hz, ${}^{3}J_{(PH)cis} = 2.1$ Hz, ${}^{3}J_{HH} = 2.1$ Hz, ${}^{2}J_{PtH} = 46.8$ Hz, 1 H, CH), 7.00–7.71 (m, 35 H, PPh₃, Ph), 8.24 (pd, ${}^{4}J_{\text{PH}} = 6.5 \text{ Hz}, {}^{3}J_{\text{HH}} = 2.1 \text{ Hz}, 1 \text{ H}, \text{ NH}). - {}^{13}\text{C NMR} \text{ (CDCl}_3):$ δ = 50.62 (CH₃), 62.82 (dd, ²J_{(PC)trans} = 81.8 Hz, ²J_{(PC)cis} = 3.6 Hz, CH), 127.57-134.87 (m, 42 C, PPh₃, Ph), 173.64 (d, ${}^{3}J_{(PC)trans} = 4.7$ Hz, CO₂), 180.78 (dd, ${}^{3}J_{(PC)trans} = 10.6$ Hz, ${}^{3}J_{(PC)cis} = 3.4 \text{ Hz}, \text{ NCO}$). $-{}^{31}P \text{ NMR} (CDCl_3)$: $\delta = 8.33 \text{ (d, } {}^{2}J_{PP} =$ 19.8 Hz, ${}^{1}J_{PtP}$ = 4223.1 Hz), 22.87 (d, ${}^{2}J_{PP}$ = 19.8 Hz, ${}^{1}J_{PtP}$ =

2243.5 Hz). - C₄₆H₄₀F₆NO₃P₂PtSb (1147.6): calcd. C 48.14, H 3.51, N 1.22; found C 48.53, H 3.89, N 1.24.

Crystal Structure Determinations: A suitable single crystal of 1b or 2b was mounted on a glass fibre with perfluoroether oil. After cooling to -80°C, the crystal was optically centered on a Siemens P4 four-circle diffractometer equipped with a CCD area detector. The dimensions of the unit cell were determined from the observed reflections (> 10 σ) in 4 × 15 frames with different ψ and χ orientations. Data collection was performed with 10-s exposures at two different γ settings with $\Delta \psi$ intervals of 0.3° (altogether 1296 frames). Data reduction was performed with the program SAINT of Siemens Analytical Instruments, and a semiempirical absorption correction was applied. The structures were solved by the heavyatom method and successive Fourier synthesis using the SHELX-93 program (G.W. Sheldrick, University of Göttingen). All nonhydrogen atoms were refined anisotropically. H atoms bound to carbon atoms were placed in calculated positions and refined with a riding model. N-bonded H atoms were located in the difference Fourier synthesis and were freely refined with a fixed isotropic N. Selected crystallographic data and data relating to the structure solutions and refinement are summarized in Table 1.

- * Dedicated to Professor Wolfgang Herrmann, as a mark of friendship and respect, on the occasion of his 50th birthday.
- [1] K. Severin, R. Bergs, W. Beck, Angew. Chem., in press.
- [2] X-ray diffraction measurements.
- ^[4] X-ray diffraction measurements.
 ^[3] [^{3a]} R. Kober, W. Steglich, *Liebigs Ann. Chem.* 1983, 599–609.
 [^{3b]} R. Kober, K. Papadopoulos, W. Miltz, D. Enders, W. Steglich, *Tetrahedron* 1985, 41, 1693–1701. [^{3c]} P. Münster, W. Steglich, *Synthesis* 1987, 223–225. [^{3d]} G. Apitz, M. Jäger, C. L. E. Kartal, J. Schöffeler, W. Steglich, *Tetrahedron* 1993, 49, 8223–8232. – ^[3e] Th. Bretschneider, W. Miltz, P. Münster, W. Steglich, *Tetrahedron* **1988**, *44*, 5403–5414. – ^[31] V. A. Burgess, C. J. Easton, M. P. Hay, P. J. Steel, *Aust. J. Chem.* **1988**, *41*, 701–710. – ^[3g] S. Jaroch, T. Schwarz, W. Steg-
- Chem. 1988, 41, 701-710. ^[3g] S. Jaroch, T. Schwarz, W. Steglich, P. Zistler, Angew. Chem. 1993, 105, 1803-1805; Angew. Chem. Int. Ed. Engl. 1993, 32, 1771.
 ^[4] [^{4a]} B. Kayser, K. Polborn, W. Steglich. W. Beck, Chem. Ber. 1997, 130, 171-177. ^{[[4b]} B. Kayser, H. Nöth, M. Schmidt, W. Steglich, W. Beck, Chem. Ber. 1996, 129, 1617-1620.
 ^[5] [^{5a]} G. Jaouen, A. Vessiéres, I. S. Butler, Acc. Chem. Res. 1993, 26, 361-369. ^[5b] M. Salmain, M. Gunn, A. Gorfti, S. Top, G. Jaouen, Bioconjugate Chem. 1993, 4, 425-433. ^[5c] A. Gorfti, M. Salmain, G. Jaouen, M. J. McGlinchey, A. Bennouna, A. Mousser, Organometallics 1996, 15, 142-151. ^[5d] A. J. Gleichmann, J. M. Wolff, W. S. Sheldrick, J. Chem. ^[5d] A. J. Gleichmann, J. M. Wolff, W. S. Sheldrick, J. Chem. Soc., Dalton Trans. **1995**, 1549–1554. – ^[5e] J. M. Wolff, A. J. Gleichmann, W. S. Sheldrick, *J. Inorg. Biochem.* **1995**, *59*, 219. [51] J. M. Wolff, W. S. Sheldrick, *Chem. Ber.* **1997**, *130*, 981–988; *J. Organomet. Chem.* **1997**, *531*, 141–149. – ^[5g] R.
- ⁵⁶¹ (1988), J. Organomet. Chem. 1997, 351, 141 (1987), 200 K.
 Krämer, Angew. Chem. 1996, 108, 1287–1289; Angew. Chem.
 Int. Ed. Engl. 1996, 35, 1197–1199. ^[5h] M. Schweiger, T. Ederer, K. Sünkel, W. Beck, J. Organomet. Chem., in press.
 ^[6] ^[6a] A. S. C. Chan, J. J. Pluth, J. Halpern, Inorg. Chim. Acta
 1979, 37, L477–L479. ^[6b] A. S. C. Chan, J. Halpern, J. Am. Chem. Soc. 1980, 102, 838–840. ^[6c] J. Halpern, Pure Appl. Chem. 1962, 55, 00, 106
- Chem. 1983, 55, 99–196.
 [7] ^[7a] J. M. Brown, P. A. Chaloner, J. Chem. Soc., Chem. Commun. 1980, 344–346. ^[7b] J. M. Brown, P. J. Maddox, J. Chem. Soc., Chem. Commun. 1987, 1276–1278. – ^[7c] J. M. Brown, Chem. Soc. Rev. 1993, 22, 25–41. – ^[7d] J. A. Ramsden, T. D. W. Claridge, J. M. Brown, J. Chem. Soc., Chem. Commun. 1995, 2469-2471.
- [8] [8a] D. Mani, H.-T. Schacht, A. Powell, H. Vahrenkamp, Organometallics 1987, 6, 1360–1361. [8b] D. Mani, H.-T. Schacht, A. K. Powell, H. Vahrenkamp, Chem. Ber. 1989, 122, 2021. 2245 - 2251.
- ^[9] J. A. Wiles, S. H. Bergens, J. Am. Chem. Soc. **1997**, 119, 2940–2941.
- [10] A. J. Canty, G. K. Anderson, in Comprehensive Organometallic Chemistry II (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon Press, 1995, 9, 225, 431.

Eur. J. Inorg. Chem. 1998, 375-379

- [11] J. P. Birk, J. Halpern, A. L. Pickard, J. Am. Chem. Soc. 1968, 90, 4491-4492; A. R. Siedle, R. A. Newmark, W. B. Gleason, J. Am. Chem. Soc. 1986, 108, 767-773.
 [12] B. A. Markies, A. J. Canty, W. de Graaf, J. Boersma, M. D. Janssen, M. P. Hogerheide, W. J. J. Smeets, A. L. Spek, G. van Koten, J. Organomet. Chem. 1994, 482, 191-199; P. K. Byers, A. J. Canty, Organometallics 1990, 9, 210-220.
 [13] W. Henderson, R. D. W. Kemmitt, A. L. Davis, J. Chem. Soc., Dalton Trans. 1993, 2247-2250.
 [14] R. van Asselt, E. E. C. G. Gielens, R. E. Rülke, K. Vrieze, C. J. Elsevier, J. Am. Chem. Soc. 1994, 116, 977-985; J. G. P. Delis, P. G. Aubel, K. Vrieze, P. W. N. M. van Leeuwen, Organometallics 1997, 16, 2948-2957; R. E. Rülke, D. Kliphuis, C. J. Elsevier, J. Fraanje, K. Goubitz, P. W. N. M. van Leeuwen, K. Vrieze, J. Chem. Soc., Chem. Commun. 1994, 1817-1819.
 [15] P. K. Byers, A. J. Canty, B. W. Skelton, A. H. White, J. Organomet. Chem. 1987, 336, C55-C60; V. De Felice, V. G. Al-

bano, C. Castellari, M. E. Cucciolito, A. De Renzi, J. Or-ganomet. Chem. 1991, 403, 269–277; B. A. Markies, M. H. P. Rietveld, J. Boersma, A. L. Spek, G. van Koten, J. Organomet. Chem. 1992, 424, C12–C16.

- I. Zahn, K. Polborn, B. Wagner, W. Beck, *Chem. Ber.* **1991**, *124*, 1065–1073; A. G. Thayer, N. C. Payne, *Acta Crystallogr., Sect.* C **1986**, *42*, 1305–1310. [16]
- ^[17] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publi-cation no. CCDC-100822. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cam-brige CB2 1EZ, U.K. [Fax: (internat.) + 44 (0)1223 336033; e-mail: deposit@ccdc.cam.ac.uk].
- [^{18]} M. F. Rettig, P. M. Maitlis, *Inorg. Synth.* **1990**, *28*, 110–113.
 [^{19]} U. Nagel, *Chem. Ber.* **1982**, *115*, 1998–1999.

[97213]