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Treatment of Fe[(C5H4)NHPh]2 (1H2) with M(NMe2)4 (3a:
M = Ti, 3b: M = Zr) in benzene afforded the chelates
(1)Ti(NMe2)2 (4) and (1)Zr(NMe2)2(HNMe2) (5), respectively.
Chelate 5 was cleanly oxidised by ferrocenium hexafluoro-
phosphate in acetonitrile. Treatment of 5 with two equiva-

The search for new generation nonmetallocene catalysts
for the polymerisation of α-olefins is of continuing inter-
est.[1] Complexes of the Group 4 metals containing chelat-
ing di(amido) ligands represent a very promising class of
(pre-)catalysts in this context. This has been demonstrated
in recent years by the groups of Bochmann,[2] Eisen,[3] Gib-
son,[4] McConville,[5] Schrock,[6] and others,[7] building on
earlier work by Bürger et al.[8] Ziegler and co-workers, using
quantum-chemical methods, have rationalised the factors
governing the ethylene polymerisation activity of such cata-
lysts.[9]

We decided to utilise the novel 1,19-ferrocenediyl-bridged
ligand system Fe[(C5H4)NPh]2 (1) in this context. This li-
gand is related to 2, recently reported by Kempe and co-
workers.[10] They found that, because of the high flexibility
of 2, complexes of the type 2TiXY (X 5 Y 5 NMe2; X 5
NMe2, Y 5 Cl) are unstable. Not surprisingly, therefore,
catalytically active complexes of 2 are unknown. In con-
trast, 1 would be expected to provide a fairly rigid ligand
framework and should furthermore exhibit excellent π-
donor qualities (beneficial for olefin insertion),[9] since the
amido nitrogen atoms are directly connected to the elec-
tron-rich ferrocene moiety.[11]

We note that the electronic properties of our redox-active
ligand system can be changed quite dramatically by oxida-
tion. In fact, the development of redox-active ligands which
allow the electrochemical control of stoichiometric and
catalytic reactivities of transition metal centres is of great
current interest.[12]
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lents of [Me2NH2]Cl (6) in benzene afforded
(1)ZrCl2(HNMe2) (7). The chelates 5 and 7 were charac-
terised by X-ray structure analyses. The new redox-active
chelate complexes are precatalysts for the polymerisation of
ethylene.

Metathesis of 1H2
[13] with one equivalent of Ti(NMe2)4

(3a) afforded (1)Ti(NMe2)2 (4). Analogously, treatment of
1H2 with Zr(NMe2)4 (3b) gave (1)Zr(NMe2)2(HNMe2) (5),
and treatment of this with two equivalents of [Me2NH2]Cl
(6) furnished (1)ZrCl2(HNMe2) (7) (Scheme 1). Di(amido)-
zirconium(IV) complexes may be viewed as relatives of zir-
conocene derivatives[4] and hence ours are akin to the ferro-
cenediyl-bridged zirconocene dichloride {Fe[(C5H4)-
C5Me4]2}ZrCl2 reported by Brintzinger and co-workers.[14]

Cyclic voltammetric studies have shown that the ligand
precursor 1H2 undergoes a chemically reversible, one-elec-
tron oxidation at E°9 5 20.06 V (vs. SCE) in dichlorome-
thane solution. Such an easy oxidation matches well the
corresponding process exhibited by the related species
Fe[(C5H4)NMe2]2 and Fe[(C5H4)NPh2]2.[15,16] Com-
plexation of the metal-ligand fragment causes the ferrocene-
diyl-centred oxidation of the zirconaferrocenophane
(1)Zr(NMe2)2(HNMe2) (5) to become slightly more diffi-
cult, by about 40 mV (E°9 5 20.02 V), indicating that the
Zr(NMe2)2(HNMe2) fragment withdraws electron density
from the ferrocene subunit. Chemical oxidation of 5 was
cleanly achieved with one equivalent of ferrocenium hexa-
fluorophosphate in acetonitrile.

Single crystal X-ray diffraction studies have been per-
formed for both new zirconium compounds. The zirconium
atom in 5 is coordinated by five nitrogen atoms in a dis-
torted trigonal bipyramidal arrangement (Figure 1). The
axial positions are occupied by the amino ligand and the
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Scheme 1. Synthesis of the chelate complexes 4, 5, 5[PF6], and 7

amido ligand trans to it, their ligating atoms forming an
angle of 171.4(3)° with the Zr atom. The N(1)2Zr(1)2N(2)
bite angle of the chelating ligand 1 is 132.9(3)°. The amino
nitrogen2zirconium distance is 243.8(8) pm — consistent
with a Zr2N(sp3) single bond — while, thanks to their par-
tial double-bond character, the four amido
nitrogen2zirconium bonds are much shorter, ranging from
205.7(7) to 215.4(7) pm. These bond lengths are similar to
those found for the related compound [Ph2Si(N-
Ar)2]Zr(NMe2)2(HNMe2) (Ar 5 2,6-Me2C6H3).[4] The
cyclopentadienyl rings of the ferrocene unit are in an ec-
lipsed orientation. The parallel sandwich structure is
slightly distorted and opens up towards the zirconium
centre with a cyclopentadienyl ring tilt angle of 11.4°. The
Fe2Zr distance of 333.9 pm precludes a significant bond-
ing interaction between the two metal atoms.

The core geometry of 7 is also best described as distorted
trigonal bipyramidal (Figure 2). Again, the amino ligand is
in an axial position, the second axial position being occu-
pied by a chloro ligand [N(3)2Zr(1)2Cl(1) 172.12(10)°]. In
related systems containing linked amido-cyclopentadienyl
ligands,[17] the amino ligand is positioned between the two
chloro ligands. The N(1)2Zr(1)2N(2) bite angle is essen-
tially identical to that in 5, while the corresponding
zirconium2nitrogen bond lengths are slightly shorter, re-
sulting in a smaller cyclopentadienyl tilt angle of 9.4° and
a shorter Fe2Zr distance of 331.0 pm. In both compounds,
all amido nitrogen atoms are trigonal planar and the phenyl
rings lie approximately in the plane defined by the zirco-
nium atom and the amido nitrogen atoms of the chelating
ligand 1.
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Figure 1. Molecular structure of 5 in the crystal; selected bond
lengths (pm) and angles (°): Zr(1)2N(1) 212.8(7), Zr(1)2N(2)
215.3(7), Zr(1)2N(4) 215.4(7), Zr(1)2N(5) 205.7(7), N(1)2C(5)
142.3(11), N(1)2C(11) 139.5(10), N(2)2C(10) 141.3(10),
N(2)2C(22) 138.9(9); N(3)2Zr(1)2N(5) 92.5(3), N(4)2Zr(1)2
N(5) 96.0(3)

Preliminary investigations have shown that these new
compounds are precatalysts for the polymerisation of ethyl-
ene.[18] The results of a detailed study, which also addresses
the aspect of redox-tuning of catalyst activity, will be re-
ported in due course.
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Figure 2. Molecular structure of 7 in the crystal; selected bond
lengths (pm) and angles (°): Zr(1)2N(1) 206.0(4), Zr(1)2N(2)
207.6(4), Zr(1)2N(3) 238.3(4), Zr(1)2Cl(1) 245.95(16),
Zr(1)2Cl(2) 241.76(14), N(1)2C(5) 141.6(6), N(1)2C(11) 141.4(6),
N(2)2C(10) 141.9(6), N(2)2C(17) 139.4(6); N(3)2Zr(1)2Cl(2)
81.56(10), Cl(1)2Zr(1)2Cl(2) 91.02(5)

Experimental Section

General: All manipulations were performed under an inert atmo-
sphere (purified argon or dinitrogen), using standard Schlenk and
cannula techniques or a conventional glovebox. Solvents and re-
agents were dried and purified by standard procedures. 2 NMR
spectra were recorded at 300 K with a Bruker DRX 500 spectro-
meter operating at 500.13 MHz for 1H; TMS was used as external
reference. 2 The materials and apparatus used for the electrochem-
ical investigations have been described elsewhere.[19] 2 Elemental
analyses were performed by the Microanalytical Laboratory of
Universität Bielefeld.

Complex 4: A solution of 1H2 (0.87 g, 2.35 mmol) and 3a (0.53 g,
2.35 mmol) in benzene (1 mL) was kept at 70 °C for 2 h. The volat-
ile components were then removed in vacuo. The residue was ex-
tracted with n-hexane (20 mL) and the extract filtered. The filtrate

Table 1. X-ray structure analysis data of 5 and 7

Chem. formula C28H37FeN5Zr C24H25Cl2FeN3Zr·2 CHCl3
Mol. wt. 590.70 812.18
Space group Monoclinic, P21/c Orthorhombic, Pbcn
a [Å] 12.771(5) 15.029(6)
b [Å] 12.605(5) 17.751(6)
c [Å] 17.149(11) 24.766(10)
β [°] 98.03(4)
V [Å3] 2734(2) 6607(4)
Z 4 8
ρ(calcd.) [g/cm3] 1.435 1.633
µ [mm21] 0.937 1.424
F(000) 1224 3248
Index ranges 0 # h # 15, 0 # k # 14, 220 # l # 20 0 # h # 20, 0 # k # 23, 0 # l # 33
θ range [°] 1.6225.0 1.6228.5
Reflections collected 5046 8388
Independent reflections 4814 [R(int.) 5 0.0701] 8388
Data/restraints/parameters 4814/0/322 8388/0/360
Goodness-of-fit on F2 1.052 1.013
Final R1[a] [I . 2σ(I)]/wR2[b] 0.0814/0.1911 0.0609/0.1348
Larg. diff. peak/hole [e/Å3] 1.041/20.901 1.041/21.182

[a] R1 5 Σ||Fo| 2 |Fc||/Σ|Fo|. 2 [b] wR2 5 {Σ[w(Fo
22Fc

2)2]/Σ[w(Fo
2)2]}0.5.
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was reduced to dryness in vacuo, leaving the product as a brownish
yellow solid. Yield 0.90 g (76%). 2 1H NMR (CDCl3): δ 5 3.24 (s,
12 H, NMe2), 3.63 (s, 4 H, C5H4), 4.54 (s, 4 H, C5H4), 6.71 (‘‘t’’,
apparent J 5 6.9 Hz, 2 H, Ph), 6.78 (‘‘d’’, apparent J 5 7.9 Hz, 4
H, Ph), 7.16 (‘‘t’’, apparent J 5 7.2 Hz, 4 H, Ph). 2 13C{1H} NMR
(CDCl3): δ 5 45.1 (NMe2), 68.9, 71.0, 87.3 (C5H4), 115.4, 118.1,
128.9, 154.5 (Ph). 2 C26H30FeN4Ti (502.3): calcd. C 62.17, H 6.02,
N 11.15; found C 61.18, H 5.88, N 11.71.

Complex 5: Benzene (7 mL) was added to 1H2 (0.87 g, 2.35 mmol)
and 3b (0.60 g, 2.35 mmol), affording a light yellow precipitate. The
mixture was stirred for 1 h at room temperature. Crystallisation
from a minimal quantity of hot benzene afforded the product as
light yellow crystals. Yield 0.99 g (71%). 2 1H NMR (CDCl3): δ 5

2.39 (br. s, 6 H, HNMe2), 3.05 (s, 12 H, NMe2), 3.70 (t, J 5 1.9 Hz,
4 H, C5H4), 4.62 (t, J 5 1.9 Hz, 4 H, C5H4), 6.66 (‘‘t’’, apparent
J 5 7.2 Hz, 2 H, Ph), 6.74 (‘‘d’’, apparent J 5 7.8 Hz, 4 H, Ph),
7.17 (‘‘t’’, apparent J 5 7.7 Hz, 4 H, Ph). 2 13C{1H} NMR
(CDCl3): δ 5 39.1 (HNMe2), 43.2 (NMe2), 68.5, 70.5, 89.9 (C5H4),
115.3, 117.0, 129.1, 153.9 (Ph). 2 C28H37FeN5Zr (590.7): calcd. C
56.93, H 6.31, N 11.86; found C 56.69, H 6.11, N 11.20.

Complex 5[PF6]: A solution of 5 (59 mg, 0.10 mmol) and ferrocen-
ium hexafluorophosphate (33 mg, 0.10 mmol) in acetonitrile
(5 mL) was stirred at room temperature for 5 h. The volatile com-
ponents (solvent and ferrocene) were then removed in vacuo, leav-
ing the product as a brown solid. Yield 73 mg (99%). 2

C28H37F6FeN5PZr (735.6): calcd. C 45.72, H 5.07, N 9.52; found
C 45.69, H 5.02, N 8.87.

Complex 7: A solution of 5 (0.28 g, 0.47 mmol) and 6 (77 mg,
0.94 mmol) in benzene (10 mL) was stirred at room temperature
for 15 h. The resulting yellow precipitate was then filtered off. Crys-
tallisation from a minimal quantity of chloroform afforded the
product as yellow needles. Yield 59 mg (22%). 2 13C{1H} NMR
(CDCl3): δ 5 39.1 (HNMe2), 43.2 (NMe2), 68.9, 71.0, 87.3 (C5H4),
115.4, 118.1, 128.9, 154.5 (Ph). 2 C24H25Cl2FeN3Zr·2CHCl3
(812.2): calcd. C 38.45, H 3.35, N 5.17; found C 39.04, H 3.23,
N 5.20.

Crystal Structure Determinations of 5 and 7:[20] A yellow single crys-
tal of 5 (dimensions 0.5 3 0.5 3 0.25 mm) and 6 (dimensions 0.8
3 0.4 3 0.4 mm), respectively, was used for data collection at 173 K
on a Siemens P21 four-circle diffractometer with graphite-mono-
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chromated Mo-Kα radiation (λ 5 0.71073 Å). The structure was
solved by direct methods. Programs used were Siemens SHELXTL
PLUS[21] and SHELXL-97.[22] Full-matrix, least-squares refine-
ment on F2 was carried out anisotropically for the non-hydrogen
atoms. Hydrogen atoms were included at calculated positions, using
a riding model. Further X-ray structure analysis data are given
in Table 1.
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