

Available online at www.sciencedirect.com

Polyhedron 24 (2005) 1298-1313

Synthesis, hydrosilylation reactivity and catalytic properties of group 4 *ansa*-metallocene complexes

Santiago Gómez-Ruiz^a, Sanjiv Prashar^{a,*}, Mariano Fajardo^a, Antonio Antiñolo^b, Antonio Otero^{b,*}, Miguel A. Maestro^c, Victoria Volkis^d, Moris S. Eisen^d, César J. Pastor^e

^a Departamento de Tecnología Química y Ambiental, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain ^b Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Facultad de Químicas, Campus Universitario, 13071-Ciudad Real, Spain

^c Departamento de Química Fundamental, Facultade de Ciencias, Campus da Zapateira, Universidade da Coruña, 15071 A Coruña, Spain ^d Department of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel ^e Servicio Interdepartamental de Investigación, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain

> Received 25 January 2005; accepted 7 March 2005 Available online 23 May 2005

Abstract

The following *ansa*-ligand precursors, Et(H)Si(C₅H₅)₂ (1), Et(H)Si(C₅HMe₄)Cl (2), Et(H)Si(C₅HMe₄)(C₅H₅) (3), Ph(H)Si(C₅H-Me₄)Cl (4), Ph(H)Si(C₅HMe₄)(C₅H₅) (5), Ph(H)Si(C₅HMe₄)₂ (6), CH₂=CHCH₂(H)Si(C₅HMe₄)Cl (7), CH₂=CHCH₂(H)Si(C₅H-Me₄)(C₅H₅) (8), CH₂=CHCH₂(H)Si(C₅HMe₄)₂ (9), and their lithium derivatives, Li₂{Et(H)Si(C₅H₄)₂} (10), Li₂{Et(H)-Si(C₅Me₄)(C₅H₄)} (11), Li₂{Ph(H)Si(C₅Me₄)(C₅H₄)} (12), Li₂{Ph(H)Si(C₅Me₄)₂} (13), Li₂{CH₂=CHCH₂(H)Si(C₅Me₄)(C₅H₄)} (14) and Li₂{CH₂=CHCH₂(H)Si(C₅Me₄)₂} (15) have been prepared. The group 4 metal complexes, [M{Et(H)Si(η⁵-C₅H₄)₂Cl₂] (M = Ti (16a), Zr (16b), Hf (16c)), [M{Et(H)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)}Cl₂] (M = Ti (17a), Zr (17b), Hf (17c)), [M{Ph(H)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)₂Cl₂] (M = Ti (19a), Zr (19b), Hf (19c)), M{CH₂=CHCH₂(H)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)}Cl₂] (M = Ti (21a), Zr (21b), Hf (21c)) were synthesized from the reaction of the lithium *ansa*-derivatives and the tetrachloride salts of the transition metal. The reactivity of the group 4 metal complexes in hydrosilylation processes has been studied. The reaction of 16b, 17a and 17b with tetravinylsilane gave [Zr{(CH₂=CH)₃SiCH₂CH₂(Et)Si(η⁵-C₅H₄)₂Cl₂] (22b) and [M{(CH₂=CH)₃SiCH₂CH₂(Et)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)]Cl₂] (M = Ti (23a), Zr (23b)), respectively. The reaction of 17a and 17b with dimethyldivinylsilane yielded the hydrosilylation products [M{(CH₂=CH)Me₂SiCH₂CH₂(Et)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)]Cl₂] (M = Ti (23a), Zr (23b)), respectively. The reaction of 17a and 17b with dimethyldivinylsilane yielded the hydrosilylation products [M{(CH₂=CH)Me₂SiCH₂CH₂(Et)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)]Cl₂] (25b) and [Zr{(Et₃SiCH₂CH₂(H)Me₂SiCH₂CH₂(Et)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)]Cl₂] (25b) and [Zr{(Et₃SiCH₂CH₂(H)Me₂SiCH₂CH₂(Et)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)]Cl₂] (25b

The previously synthesized compounds, $[M{CH_2=CH(Me)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (M = Ti (27a), Zr (27b)) and $[Zr{CH_2=CHCH_2(Me)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (28b), have also been tested in reactions of hydrosilylation with SiHMeCl_2 to give $[M{Cl_2MeSi-CH_2CH_2(Me)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (M = Ti (29a), Zr (29b)) and $[Zr{Cl_2MeSiCH_2CH_2CH_2(Me)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (30b). All the zirconocene compounds are active to varying degrees as catalysts in the polymerization of ethylene. The molecular structures of 21b and 21c have been determined by single crystal X-ray diffraction studies. © 2005 Elsevier Ltd. All rights reserved.

Keywords: ansa-Metallocene complexes; Titanium; Zirconium; Hafnium; Hydrosilylation; Polymerization

^{*} Corresponding author. Tel.: +34 914887186; fax: +34 914888143. *E-mail address:* sanjiv.prashar@urjc.es (S. Prashar).

^{0277-5387/}\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2005.03.056

1. Introduction

The catalytic activity of group 4 metallocene complexes in the polymerization of olefins has been the principal reason for the dramatic growth in interest towards these compounds [1]. The main focus of this research field is centred on the design of metallocene complexes towards the goal of "made to measure" catalysts that can direct the catalytic reaction in producing polymers with desired physical properties. *ansa*-Cyclopentadienyl systems are now widely recognized to afford better catalytic activity and selectivity in the polymerization of olefins than their non-*ansa* counterparts [2]. Recent studies have demonstrated that the incorporation of the *ansa*-bridge may have a profound influence on the chemical behaviour of these complexes [3].

Industry requirements for the development of supported metallocene polymerization catalysts, that can offer homogeneous single-site selectivity in a heterogeneous medium, is presently of utmost importance. Several studies on immobilized catalysts have recently been published [4]. The immobilization of the catalyst is normally achieved by the introduction of functional groups in the ligand system and their interaction with the surface of an inorganic oxide with the metallocene framework remaining, in most cases, unaltered [5].

Suzuki et al. [5d] have reported the hydrosilylation of ansa-zirconocene complexes with vinvl substituents at the silicon ansa bridge to give derivatives which were subsequently supported on silica. In a similar manner O'Hare and co-worker [5e] have reported the immobilization on silica of an ansa-bisindenyl complex. Alt et al. [6] have also recently published their work relating to the modification by hydrosilylation of ansa-cyclopentadienyl ligands and their subsequent incorporation in group 4 metallocene systems. Collins and co-workers [5a] have reported the anchoring, on modified silica surfaces, of ansa-metallocene complexes via hydrosilylation reactions. Seyferth and Wyrwa [7] have also carried out work incorporating group 4 metallocene fragments in organosilicon dendrimers.

As part of our ongoing studies in *ansa*-metallocene complexes [8], we recently published our initial results on the modification of the *ansa*-ligand framework via hydrosilylation reactions [9]. As a continuation of this work we now report the synthesis of new group 4 *ansa*-metallocene complexes and the reactivity of the *ansa*-bridge Si–H bond in the hydrosilylation of unsaturated silane substrates. We also describe the hydrosilylation of vinyl or allyl substituents at the silicon *ansa* bridge of group 4 metallocene complexes. The catalytic activity of the *ansa*-zirconocene complexes in the polymerization of ethylene is included.

2. Results and discussion

The ligand systems, $Et(H)Si(C_5H_5)_2$ (1), Et(H)- $Si(C_5HMe_4)Cl$ (2), $Et(H)Si(C_5HMe_4)(C_5H_5)$ (3), Ph(H)- $Si(C_5HMe_4)Cl$ (4), $Ph(H)Si(C_5HMe_4)(C_5H_5)$ (5), Ph(H) $Si(C_5HMe_4)_2$ (6), $CH_2=CHCH_2(H)Si(C_5HMe_4)-Cl$ (7), CH2=CHCH2(H)Si(C5HMe4)(C5H5) (8) and CH2=CH- $CH_2(H)Si(C_5HMe_4)_2$ (9) were prepared as yellow oils following previously reported synthetic protocols (Schemes 1 and 2) and isolated as mixtures of the double bond position isomers [8,9]. In the preparation of 2 and 4, an excess of the dichlorosilane reagent was used in order to favour monosubstitution. 1–9 were characterized by ¹H NMR spectroscopy and electron impact mass spectrometry (see Section 5). The ansa-biscyclopentadiene compounds, 1, 3, 5, 6, 8 and 9 were lithiated in the traditional manner with *n*-butyllithium, to give the dilithium derivates, $Li_2{Et(H)Si(C_5H_4)_2}$ (10), $Li_2{Et(H)}$ - $Si(C_5Me_4)(C_5H_4)$ (11), $Li_2\{Ph(H)Si(C_5Me_4)-(C_5H_4)\}$ (12), $Li_2\{Ph(H)Si(C_5Me_4)_2\}$ (13), $Li_2\{CH_2 = CHCH_2 - CHCH$ $(H)Si(C_5Me_4)(C_5H_4)$ (14) and $Li_2\{CH_2=CH-CH_2(H) Si(C_5Me_4)_2$ (15), in high yields.

The reaction of **10–15** with either $[TiCl_4(THF)_2]$, ZrCl₄ or HfCl₄, yielded the corresponding *ansa*-metallocene (IV) dichloride complexes, $[M \{Et(H)Si(\eta^5-C_5H_4)_2\}$ -Cl₂] (M = Ti (**16a**), Zr (**16b**), Hf (**16c**)), $[M \{Et(H)Si(\eta^5-C_5M_4)(\eta^5-C_5H_4)\}Cl_2]$ (M = Ti (**17a**), Zr (**17b**), Hf (**17c**)), $[M \{Ph(H)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)\}Cl_2]$ (M = Ti (**18a**), Zr (**18b**), Hf (**18c**)), $[M \{Ph(H)Si(\eta^5-C_5Me_4)_2\}Cl_2]$ (M = Ti (**19a**), Zr (**19b**), Hf (**19c**)), $[M \{CH_2=$ CHCH₂(H)Si(η^5 -C₅Me₄)(η^5 -C₅H₄)\}Cl_2] (M = Ti (**20a**), Zr (**20b**)) and $[M \{CH_2=$ CHCH₂(H)Si(η^5 -C₅Me₄)_2\}Cl_2] (M = Ti (**21a**), Zr (**21b**), Hf (**21c**)) (Scheme 3).

16-21 were isolated as crystalline solids and characterized spectroscopically.¹ The ¹H NMR spectra for 16 showed the expected signals, namely 4 multiplets in the region δ 6.0–7.2, corresponding to the C₅ ring protons, and two multiplets, at ca. δ 1.1 and 1.4, assigned to the ethyl group. A triplet, at ca. δ 5.1, was observed for the proton bonded directly to the silicon atom. The mixed cyclopentadienyl chiral complexes 17, 18 and 20 gave eight signals assigned to the four protons of the unsubstituted cyclopentadienyl moiety and to the four methyl groups of the tetramethylcyclopentadienyl fragment. For 17 the α -protons of the ethyl unit are diastereoscopic and give rise to two overlapping multiplet signals (δ 1.4) with a further multiplet being observed for the β -protons (δ 1.5). The Si–H proton resonates (δ 5.2) as a pseudo-triplet due to its coupling with the two inequivalent α -protons of the ethyl group. For 18 three multiplets for the phenyl moiety (δ 7.3, 7.6 and 8.0) and a singlet (δ 5.9) assigned to the Si-H proton were observed. For 20 the α -protons of the allyl unit are again diastereoscopic and were observed as an unresolved multiplet (δ 2.5) arising from both geminal and vicinal couplings. Further multiplets were observed for the central CH (δ 6.1) and terminal olefinic protons (δ 5.2 and 5.3, *cis* and *trans*, respectively, with respect to H_{β}). As in the case of 17, the Si–H signal in 20 was observed as a pseudo-triplet (δ 5.2). The C_s symmetric complexes 19 and 21 gave in the ¹H NMR spectra, four singlets, in the region δ 1.6–2.2, corresponding to the per-methyl substituted ansa-ligand. For 19, three multiplets for the phenyl moiety (δ 7.3, 7.5 and 8.0) and a sin-

Scheme 3.

glet for the Si–H proton (δ 6.0) were also observed. For 21, the ¹H NMR spectra were completed with the assignment of four multiplets (δ 2.6, 5.2, 5.3 and 6.1) and a triplet (δ 5.3) to the allyl and Si-H protons, respectively. The ${}^{13}C{}^{1}H$ NMR spectra for 16–21 showed the expected signals for the different ligand systems present (see Section 5). Signals for the allyl carbons of 20 and 21 were observed in the ¹³C NMR spectra at ca. δ 20, 132 and 117 corresponding to the silicon bonded, central and terminal carbons, respectively. The signal due to the ansa-bridge silicon atom in 16-21 was observed in the ²⁹Si NMR spectra with the nature of this signal depending on the substituents present; 16, 17, 20 and 21 a doublet of multiplets and 18 and 19 a doublet. The multiplicity of the signal corresponds to the coupling of the silicon atom with its hydride substituent and the α -protons of the ethyl or allyl group.

The molecular structures of **21b** and **21c** were established by single crystal X-ray diffraction studies. The molecular structures and atomic numbering schemes are shown in Figs. 1 and 2. Selected bond lengths and angles for **21b** and **21c** are given in Table 1. In the case of **21c**, there are two distinct molecules in the asymmetric unit. A disordered toluene molecule was also located in the asymmetric unit.

For **21b** and **21c**, the usual bent metallocene conformation is observed with the geometry around the metal atom being pseudo-tetrahedral. The *ansa* ligand chelates

¹ We were unable to obtain the hafnium derivative of 20 with sufficient purity.

Fig. 1. Molecular structure and atom-labelling scheme for $[Zr{CH_2=CHCH_2(H)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (21b) with thermal ellipsoids at 30% probability.

Fig. 2. Molecular structure and atom-labelling scheme for $[Hf\{CH_2=CHCH_2(H)Si(\eta^5-C_5Me_4)_2\}Cl_2]$ (21c) with thermal ellipsoids at 50% probability.

the zirconium or hafnium atom and both C_5 rings are bound to the metal in an η^5 mode. The centroids of the tetramethylcyclopentadienyl rings form an angle with the metal atom of 128.5° **21b** and 129.05° and 128.65° **21c**, which is typical for dichloride group 4 *ansa*-metallocene complexes. In **21b** the hydrogen atom (H(1)) bonded to the silicon atom was located in the difference map. The carbon atoms of the allyl moiety in **21b** are disordered, therefore we make no reference to the bond distances and angles of this fragment. However, in **21c** the allyl carbon atoms were clearly resolved and exhibit bond distances of C(19)–C(20) 1.51(1) and 1.53(1) Å and C(20)–C(21) 1.33(1) and 1.26(1) Å which

Table 1	
Selected bond lengths (Å) and angles (°) for 21b and 21c	

	21b	21c	
M-Cent(1)	2.229	2.219	2.202
M-Cent(2)	2.217	2.206	2.209
av M-C(Cent(1)) ^a	2.531	2.522	2.513
av M-C(Cent(2)) ^a	2.522	2.517	2.516
M-Cl(1)	2.425(3)	2.402(2)	2.413(2)
M-Cl(2)	2.413(3)	2.412(2)	2.416(2)
Si(1)–C(19)	1.864(8)	1.835(8)	1.879(8)
Si(1)–H(1)	1.597		
C(19)–C(20)		1.51(1)	1.53(1)
C(20)–C(21)		1.33(1)	1.26(1)
Cent(1)-M-Cent(2)	128.5	129.05	128.65
Si(1)-C(1)-Cent(1)	160.7	161.37	160.87
Si(1)-C(10)-Cent(2)	162.7	161.19	161.27
C(1)-Si(1)-C(10)	96.5(2)	96.2(3)	95.9(3)
Cl(1)-M-Cent(1)	106.5	105.70	105.99
Cl(1)-M-Cent(2)	106.3	106.50	106.02
Cl(2)-M-Cent(1)	106.7	106.22	106.58
Cl(2)-M-Cent(2)	107.0	106.23	107.78
Cl(1)-M-Cl(2)	97.54(8)	99.33(6)	97.51(6)
H(1)-Si(1)-C(1)	106.6		
H(1)–Si(1)–C(11)	106.3		
H(1)-Si(1)-C(21)	112.0		
Si(1)-C(19)-C(20)		108.7(5)	109.4(5)
C(19)-C(20)-C(21)		124.8(9)	126.3(9)

Cent(1) and Cent(2) are the centroids of C(1)-C(5) and C(10)-C(14), respectively.

^a Refers to the average bond distance between Zr or Hf and the carbon atoms of the C_5 ring of the corresponding cyclopentadienyl moiety.

are typical for carbon carbon single (C(19)–C(20)) and double bonds (C(20)–C(21)), respectively. The angles Si(1)–C(19)–C(20) 108.7(5)° and 109.4(5)° and C(19)– C(20)–C(21) 124.8(9)° and 126.3(9)° indicate that C(19) and C(20) are sp³ and sp² hybridized, respectively. Selected structural data of **21b** and **21c** can be compared with similar *ansa*-metallocene complexes using Table 2.

We have previously reported the modification of ansa-metallocene systems via hydrosilylation processes [9] and in order to gain a better understanding into the possible electronic or steric factors that may influence the outcome of these reactions we have tested 16-21 as hydrosilylation reagents. The hydrosilylation of Si(CH= CH_2)₄ by 16–21 in the presence of the Karstedt catalyst (divinyltetramethylsiloxane Pt(0)) was attempted. The per-methyl substituted ansa-complexes 19 and 21 did not react, inferring that the Si-H bond is not sufficiently reactive (even at high temperatures) to participate in the hydrosilylation reaction. This may be due to electronic effects caused by the electrodonating nature of the methyl ring substituents which translates to a less reactive Si-H bond [13]. The mixed cyclopentadienyl complexes (with four fewer methyl substituents) 17, 18 and 20 did react with Si(CH=CH₂)₄ giving the product formed by the reaction of only one of the double bonds of the silane substrate. Only in the case of 17a and 17b were we able to isolate the final product with high purity

Table 2 Selected structural data of some *ansa*-zirconocene and hafnocene complexes

Complex	M–Cp (Å) ^a M–Cl (Å)	Ср–М–Ср (°) Cl–M–Cl (°)	$C_{(cp)}$ -Si- $C_{(cp)}$ (°)	Reference
$[Zr{CH_2=CHCH_2(H)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (21b)	2.223	2.419	128.5	97.54(8)	96.5(2)	this work
$[Zr{Me(H)Si(\eta^{5}-C_{5}Me_{4})_{2}}Cl_{2}]$	2.230	2.427	128.5	98.85(6)	96.15(19)	[9]
$[Zr{Me_2Si(\eta^5-C_5Me_4)_2}Cl_2]$	2.329	2.4334(7)	128.6	92.28	95.7(1)	[10]
$[Zr{Me(CH2=CH)Si(\eta^{5}-C_{5}Me_{4})_{2}}Cl_{2}]$	2.220	2.418	128.76	99.32(7)	95.8(2)	[8e]
$[Zr{(CH_2=CH)_2Si(\eta^5-C_5Me_4)_2}Cl_2]$	2.235	2.4333	128.7	99.24(3)	96.3(1)	[11]
$[Hf{CH2=CHCH2(H)Si(\eta^{5}-C5Me4)2}Cl2] (21c)$	2.213	2.407	129.05	99.33(6)	96.2(3)	this work
	2.206	2.415	128.65	97.51(6)	95.9(3)	
$[Hf{Me_2Si(\eta^5-C_5Me_4)_2}Cl_2]$	2.223	2.407(2)	129.2	98.0(1)	95.1(3)	[12]
$[Hf{Et_2Si(\eta^5-C_5Me_4)_2}Cl_2]$	2.224	2.407		98.75(8)	95.3(2)	[12]
$[Hf\{(CH_2=CH)_2Si(\eta^5-C_5Me_4)_2\}Cl_2]$	2.217	2.405	129.2	97.98(7)	96.5(2)	[12]
	(C–C (Å)	C=C (Å)	Si–C–C (°)	C—C=C (°)	Reference
$[Zr{Me(CH_2=CHCH_2)Si(\eta^5-C_5H_4)_2}Cl_2]$]	1.49(3)	1.26(5)	111.6(8)	124(5)	[8e]
$[Zr{Me(CH_2=CHCH_2)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}C$	Cl ₂]	1.49(1)	1.32(1)	113.8(7)	123(1)	[8e]
$[Hf{CH2=CHCH2(H)Si(\eta^{5}-C5Me4)2}Cl2] (21c)$	1	1.51(1)	1.33(1)	108.7(5)	124.8(9)	this work
	1	1.53(1)	1.26(1)	109.4(5)	126.3(9)	

^a Cp refers to the C₅Me₄ moiety.

and although the experimental conditions were directed towards the polyhydrosilylation of the silane substrate only the monohydrosilylation derivative, $[M{(CH_2=$ $CH)_3SiCH_2CH_2(Et)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)]Cl_2]$ (M = Ti (23a), Zr (23b)), was obtained (Scheme 4). This fact may be due to steric hindrance in the hypothetical tetra-substitution of the silane substrate by four metallocene units. However, Alt et al. [6a] have recently prepared tetranuclear complexes via the hydrosilylation of *ansa*-cyclopentadienyl ligands and their subsequent incorporation in group 4 *ansa*-metallocene systems. Our synthetic strategy differs from that used by Alt in that in our case the reactivity takes place at the group 4 *ansa*-metallocene complex and not from previous modification of the organic ligand.

23a and **23b** were isolated as red and yellow oils, respectively, and characterized by NMR spectroscopy. The ¹H NMR spectra showed the expected signals for

the cyclopentadienyl moieties namely four singlets and four multiplets. The three unreacted vinyl groups of the silane gave an ABX system in the ¹H NMR spectra and signals at ca. δ 133 (C_{α}) and 136 (C_{β}) in the ¹³C{¹H} NMR spectra. The -CH₂CH₂- fragment, resulting from the hydrosilylation of the vinyl group, gave a complex set of multiplets with geminal and vicinal couplings in the ¹H NMR spectra. Two signals were observed in the ²⁹Si{¹H} NMR spectra at ca. δ –18 and –9, corresponding to the vinyl substituted and ansa bridge silicon atoms, respectively. The hydrosilylation reaction can also give the alternative regioisomer, $[M_{(CH_2)}]$ CH)₃Si(CH₃)CH(Et)Si(η^5 -C₅Me₄)(η^5 -C₅H₄) Cl_2], via α -addition [14]. This minor product was detected, in quantities of ca. 5–10%, by ¹H NMR spectroscopy.

The *ansa*-metallocene complex without ring substituents **16b** was also tested in this reaction. It was hoped that the complete absence of electrodonating ring substituents would aid in the polyhydrosilylation of the tetravinylsilane. However, only the monohydrosilylation product, [Zr{(CH₂=CH)₃SiCH₂CH₂(Et)Si(η^5 -C₅H₄)₂}-Cl₂] (**22b**), was detected (Scheme 5). Nevertheless the Si–H bond in **16b** was shown to be more reactive than its methyl substituted counterparts **17–21** with the reaction of hydrosilylation being complete after 3 h at room temperature whereas for **23a** and **23b** the experimental conditions required were 100 °C and 40 h reaction time. **22b** was isolated as a yellow oil and characterized by NMR spectroscopy giving data similar to **23a** and **23b** (see Section 5).

Similar reactions have been carried out between 17a and 17b and dimethyldivinylsilane and gave the products [M{(CH₂=CH)Me₂SiCH₂CH₂(Et)Si(η^{5} -C₅Me₄) (η^{5} -C₅H₄)}Cl₂] (M = Ti (24a), Zr (24b)), as red and yellow oils, respectively, formed by the hydrosilylation of only one of the double bonds of the silane substrate

(Scheme 6). The NMR spectra of **24a** and **24b** are similar in all aspects to those previously discussed for **22** and **23** and showed in addition the presence of the minor regioisomer produced by α -addition (5–10%).

Further hydrosilylation of the vinyl groups of **22–24** was not possible when the hydrogen–silicon bond corresponded to the *ansa*-metallocene complexes. It appears that the reaction of one of the vinyl groups with the *ansa*-metallocene complex deactivates the remaining vinyl groups towards hydrosilylation by the Si–H of the *ansa* bridge. This may be attributed to electronic and/ or steric effects. However, with triethylsilane, hydrosilylation took place at all the remaining vinyl groups of **23b** and **24b**, to give [Zr{(Et₃SiCH₂CH₂)₃SiCH₂CH₂(Et)Si-(η^5 -C₅Me₄)(η^5 -C₅H₄)}Cl₂] (**25b**) and [Zr{(Et₃SiCH₂-CH₂)Me₂SiCH₂CH₂(Et)Si(η^5 -C₅Me₄)(η^5 -C₅H₄)}Cl₂] (**26b**) (Schemes 7 and 8).

25b and **26b** were isolated as yellow oils and characterized by NMR spectroscopy. The reaction was deemed to have gone to completion by the absence of any signals in ¹H and ¹³C{¹H} NMR spectroscopy corresponding to the vinyl groups of the parent complexes. The ¹H

NMR spectra showed the expected signals for the C_5H_4 and C_5Me_4 moieties. In addition two multiplets, assigned to the ethyl groups of SiEt₃, and a complex set of multiplets, corresponding to the two distinct $-CH_2CH_2$ - fragments, were observed. The presence of the minor α -addition regioisomers was again detected (5–10%). ²⁹Si{¹H} NMR spectra revealed three signals corresponding to the three distinct silicon atoms present.

The hydrosilylation of the previously reported complexes [M{CH₂=CH(Me)Si(η^5 -C₅Me₄)₂}Cl₂] (M = Ti (27a), Zr (27b)) and [Zr{CH₂=CHCH₂(Me)Si(η^5 -C₅Me₄)₂}Cl₂] (28b) [8e], by HSiMeCl₂ has successfully been carried out. The reaction, in the presence of the Karstedt catalyst, gave after two hours reaction time the β -hydrosilylation products [M{Cl₂MeSiCH₂CH₂-(Me)Si(η^5 -C₅Me₄)₂}Cl₂] (M = Ti (29a), Zr (29b)) and [Zr{Cl₂MeSiCH₂CH₂CH₂CH₂(Me)Si(η^5 -C₅Me₄)₂}Cl₂] (30b)

Scheme 10.

(Schemes 9 and 10). The presence of the minor α -addition regioisomer was also detected (5–10%).

29 and **30** were isolated as yellow solids and characterized by NMR spectroscopy. In the ¹H NMR spectra

Table 3 Ethylene polymerization results for 16--30 and $[Zr(\eta^5\text{-}C_5H_5)_2Cl_2]^a$

the presence of signals due to the vinyl or allyl protons of the starting products, **27** and **28**, was not observed. In the region of δ 0.5–1.8 multiplet signals were observed, two in the case of **29** (–SiCH₂CH₂Si–) and three for **30** (–SiCH₂CH₂CH₂CH₂Si–). For **29** and **30** a singlet at δ 0.4 was observed corresponding to the methyl protons of the dichloromethylsilyl fragment. Two signals were recorded in the ²⁹Si{¹H} NMR for **29** and **30** at ca. δ –10 and 32 and assigned to the *ansa* bridge and chloride bonded silicon atoms, respectively. In the ²⁹Si{¹H} NMR spectra of the vinyl and allyl substituted *ansa*metallocene precursors of **29** and **30** a unique signal was observed for the *ansa* bridge silicon atom at δ –21.2, –22.7 and –15.6 for **27a**, **27b** and **28b**, respectively [15].

3. Polymerization studies

The polymerization of ethylene using the zirconium derivatives described in this paper as catalysts has been carried out. The polymerization experiments were conducted with a MAO–metal catalyst ratio of 3000:1, at 20 °C and at olefin pressure of 2 bar for 15 min. Polymerization was also carried out with the reference compound [$Zr(\eta^5-C_5H_5)_2Cl_2$], under the same experimental conditions. The catalytic activities and polymer molecular weight and distribution values are given in Table 3.

Complex **29b** proved to be the most active catalyst of the series. A slightly lower value was recorded for the reference complex $[Zr(\eta^5-C_5H_5)_2Cl_2]$. The low catalytic activities observed for **22**, **23b** and **25** may be due to steric factors as proposed previously by De Jesús and co-workers [16] for similar modified metal-

$[Zr(\eta^5-C_5H_5)_2Cl_2] 23750 1014670$	2.1 3.2 3.1
$[7_{2}(E_{1}(H)S_{1}(m^{5}(C,H)))C_{1}](16)$ 11100 210200	3.2 3.1
$\begin{bmatrix} 21 \{ El(\Pi)Sl(1] - C_5\Pi_4)_2 \} Cl_2 \end{bmatrix} (100) $ 11100 210200	3.1
$[Zr{Et(H)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}Cl_2] (17b) 8760 186200$	
$[Zr{Ph(H)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}Cl_2] (18b) 7053 185240$	3.3
$[Zr{(CH2=CHCH2)(H)Si(η5-C5Me4)(η5-C5H4)}Cl2] (20b) 3120 133500$	4.1
$[Zr{Ph(H)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (19b) 15967 194650	3.4
$[Zr{(CH_2=CHCH_2)(H)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (21b) 6373 156800	4.0
$[Zr{(CH_2=CH)_3SiCH_2CH_2(Et)Si(\eta^5-C_5H_4)_2}Cl_2] (22b) 3307 139460$	4.0
$[Zr{(CH_2=CH)_3SiCH_2CH_2(Et)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}Cl_2] (23b) 5513 420000$	3.1
$[Zr{(CH_2=CH)Me_2Si(CH_2CH_2)(Et)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}Cl_2] (24b) 7213 141300$	3.1
$[Zr{(Et_3SiCH_2CH_2)_3SiCH_2CH_2(Et)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}Cl_2] (25b) 3367 717000$	4.7
$[Zr{(Et_3SiCH_2CH_2)Me_2SiCH_2CH_2(Et)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}Cl_2] (26b) 10147 669000$	3.1
$[Zr{CH_2=CH(Me)Si(\eta^5-C_5Me_4)_2}Cl_2] (27b) $ 15510 236000	5.4
$[Zr{CH_2=CHCH_2(Me)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (28b) 16472 136790	3.0
$[Zr{Cl_2MeSiCH_2CH_2(Me)Si(\eta^5-C_5Me_4)_2}Cl_2] (29b) 26898 483000$	4.8
$[Zr{Cl_2MeSiCH_2CH_2CH_2(Me)Si(\eta^5-C_5Me_4)_2}Cl_2] (30b) 17707 558000$	4.6

^a At 20 °C, 2 bar monomer pressure, 200 mL toluene, [Al] = 9×10^{-2} mol L⁻¹, [Zr] = 3×10^{-5} mol L⁻¹, t_{Pol} = 15 min.

^b In kg Pol (mol Zr h)⁻¹.

locene systems. In general, but not always, the complexes that contain a carbon carbon double bond substituent give low catalytic activities. This is most probably due to the fact that during the polymerization of ethylene, the vinyl or allyl groups of the *ansa*-ligand co-polymerize with the monomer thus immobilizing the metallocene complex on the polymer chain to give a pseudo-heterogeneous catalyst. This phenomenon with similar *ansa*-metallocene complexes has previously been reported [17].

4. Conclusions

In this paper we have reported the synthesis and catalytic activity of new *ansa*-metallocene complexes containing a Si–H bond which can be exploited in reactions of hydrosilylation to modify the ligand framework. The potential of translating this reactivity to the immobilization of *ansa*-metallocene catalysts on distinct substrates should be of great interest.

5. Experimental

All reactions were performed using standard Schlenk tube techniques in an atmosphere of dry nitrogen. Solvents were distilled from the appropriate drying agents and degassed before use. C5H2Me4, [TiCl₄(THF)₂], ZrCl₄, HfCl₄, HSiMeCl₂,Si(CH=CH₂)₄, $SiMe_2(CH = CH_2)_2$ and $HSiEt_3$ were purchased from Aldrich, HSiEtCl₂ and HSiPhCl₂ from Fluka and $HSi(CH_2CH = CH_2)Cl_2$ and the Karstedt catalyst from ABCR. All the commercial reagents were used directly. Na(C₅H₅) [18], 27a, 27b and 28b [8e] were prepared as previously described. IR spectra were recorded on a Thermo Nicolet Avatar 330 FT-IR spectrophotometer. ¹H, ¹³C and ²⁹Si NMR spectra were recorded on a Varian Mercury FT-400 spectrometer. Microanalyses were carried out with a Perkin-Elmer 2400 or LECO CHNS-932 microanalyser. Mass spectroscopic analyses were preformed on a Hewlett-Packard 5988A (m/z 50-1000) instrument. Polymer molecular weights and distribution were determined by GPC (Waters 150C Plus or Alliance GPC-2000) in 1,2,4-trichlorobenzene at 150 °C.

5.1. Synthesis of $Et(H)Si(C_5H_5)_2$ (1)

Et(H)SiCl₂ (3.66 g, 28.38 mmol) was added to a solution of Na(C₅H₅) (5.00 g, 56.76 mmol) in THF (50 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 15 h. Solvent was removed in vacuo and hexane (150 mL) was added to the resulting orange oil. The mixture

was filtered and solvent removed from the filtrate under reduced pressure to yield the title compound as a dark orange oil (4.54 g, 85%). ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ –0.38 (2H), 0.96 (3H) (m, Si*Et*), 3.07 (m, 2H, *H*C₅), 3.47 (m, 1H, Si*H*), 5.52 (2H), 6.00 (2H), 6.64 (2H), 6.97 (2H) (m, C₅H₄). MS electron impact (*m/e* (relative intensity)): 188 (25) [M⁺], 159 (19) [M⁺ – Et], 123 (62) [M⁺ – C₅H₅], 93 (100) [M⁺ – C₅H₅, –Et].

The preparation of 2–9 was carried out in an identical manner to 1.

5.2. $Et(H)Si(C_5HMe_4)Cl(2)$

From Et(H)SiCl₂ (5.02 g, 39.00 mmol) and Li(C₅HMe₄) (2.50 g, 19.50 mmol). Yield: 3.57 g, 94%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ -0.54 (2H), 0.94 (3H) (m, Si*Et*), 1.85 (6H), 1.99 (3H), 2.04 (3H) (s, C₅*Me*₄), 3.24 (m, 1H, *H*C₅), 4.73 (m, 1H, Si*H*). MS electron impact (*m/e* (relative intensity)): 214 (18) [M⁺], 122 (100) [M⁺ – Et(H)SiCl], 91 (52) [M⁺ – C₅HMe₄].

5.3. $Et(H)Si(C_5HMe_4)(C_5H_5)_2$ (3)

From Et(H)Si(C₅HMe₄)Cl (2) (2.00 g, 9.31 mmol) and Na(C₅H₅) (0.82 g, 9.31 mmol). Yield: 2.05 g, 90%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ -0.48 (2H), 0.95 (3H) (m, Si*Et*), 1.88 (3H), 1.90 (3H), 1.96 (3H), 2.07 (3H) (s, C₅*Me*₄), 2.90 (1H), 3.01 (1H) (m, *H*C₅), 3.42 (m, 1H, Si*H*), 6.57 (1H), 6.59 (1H), 6.66 (1H), 6.83 (1H) (m, C₅*H*₄). MS electron impact (*mle* (relative intensity)): 244 (18) [M⁺], 215 (28) [M⁺ - Et], 179 (100) [M⁺ - C₅H₅], 123 (52) [M⁺ - C₅HMe₄], 121 (41) [M⁺ - Et(H)SiC₅H₅].

5.4. $Ph(H)Si(C_5HMe_4)Cl(4)$

From Ph(H)SiCl₂ (6.92 g, 39.00 mmol) and Li(C₅HMe₄) (2.50 g, 19.50 mmol). Yield: 4.66 g, 91%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ 1.63 (3H), 1.68 (3H), 1.96 (3H), 2.02 (3H) (s, C₅Me₄), 3.43 (m, 1H, HC₅), 5.14 (m, 1H, SiH), 7.30 (2H), 7.38 (2H), 7.74 (1H) (m, SiPh). MS electron impact (*mle* (relative intensity)): 262 (74) [M⁺], 227 (26) [M⁺ - Cl], 141 (23) [M⁺ - C₅HMe₄], 122 (100) [M⁺ - Ph(H)SiCl].

5.5. $Ph(H)Si(C_5HMe_4)(C_5H_5)_2$ (5)

From Ph(H)Si(C₅HMe₄)Cl (4) (2.00 g, 7.61 mmol) and Na(C₅H₅) (0.67 g, 7.61 mmol). Yield: 1.96 g, 88%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ 1.65 (3H), 1.71 (3H), 1.72 (3H), 1.91 (3H) (s, C₅Me₄), 3.06 (1H), 3.13 (1H) (m, HC₅), 3.60 (m, 1H, Si*H*), 6.63 (1H), 6.67 (1H), 6.73 (1H), 6.95 (1H) (m, C_5H_4), 7.29 (2H), 7.33 (2H), 7.46 (1H) (m, Si*Ph*). MS electron impact (*m/e* (relative intensity)): 292 (24) [M⁺], 262 (28) [M⁺ – 2 × Me], 227 (100) [M⁺ – C_5H_5], 171 (55) [M⁺ – C_5HMe_4].

5.6. $Ph(H)Si(C_5HMe_4)_2$ (6)

From Ph(H)SiCl₂ (1.73 g, 9.75 mmol) and Li(C₅H-Me₄) (2.50 g, 19.50 mmol). Yield: 2.05 g, 90%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ 1.62 (6H), 1.68 (6H), 1.85 (6H), 1.99 (6H) (s, C₅Me₄), 3.27 (m, 2H, HC₅), 4.06 (m, 1H, SiH), 7.03 (2H), 7.17 (2H), 7.22 (1H) (m, SiPh). MS electron impact (*m/e* (relative intensity)): 348 (9) [M⁺], 227 (100) [M⁺ - C₅HMe₄], 121 (14) [M⁺ - Ph(H)SiC₅HMe₄], 105 (17) [M⁺ - 2 × C₅HMe₄].

5.7. $CH_2 = CHCH_2(H)Si(C_5HMe_4)Cl(7)$

From CH₂=CHCH₂(H)SiCl₂ (2.74 g, 19.50 mmol) and Li(C₅HMe₄) (2.50 g, 19.50 mmol). Yield: 3.57 g, 94%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ 1.52 (m, 2H, CH₂CH=CH₂), 1.81 (6H), 1.82 (3H), 1.86 (3H) (s, C₅Me₄), 2.74 (m, 1H, HC₅), 4.77 (m, 1H, SiH), 4.93 (m, 2H, CH₂CH=CH₂), 5.59 (m, 1H, CH₂CH=CH₂). MS electron impact (*m/e* (relative intensity)): 226 (1) [M⁺], 121 (100) [M⁺ – CH₂CH= CH₂(H)SiCl], 103 (46) [M⁺ – C₅HMe₄].

5.8. $CH_2 = CHCH_2(H)Si(C_5HMe_4)(C_5H_5)$ (8)

From CH₂=CHCH₂(H)Si(C₅HMe₄)Cl (7) (2.00 g, 8.81 mmol) and Na(C₅H₅) (0.78 g, 8.81 mmol). Yield: 1.78 g, 79%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ 1.50 (m, 2H, CH₂CH=CH₂), 1.66 (3H), 1.74 (3H), 1.80 (3H), 1.91 (3H) (s, C₅Me₄), 2.73 (1H), 3.03 (1H) (m, HC₅), 4.64 (m, 1H, SiH), 4.94 (m, 2H, CH₂CH=CH₂), 6.49 (m, 1H, CH₂CH=CH₂), 5.95 (2H), 6.41 (2H), (m, C₅H₄). MS electron impact (*m*/*e* (relative intensity)): 256 (5) [M⁺], 215 (7) [M⁺ – CH₂CH=CH₂], 191 (19) [M⁺ – C₅H₅], 149 (100) [M⁺ – CH₂CH=CH₂, –C₅H₅, –H].

5.9. $CH_2 = CHCH_2(H)Si(C_5HMe_4)_2$ (9)

From CH₂=CHCH₂(H)SiCl₂ (1.37 g, 9.75 mmol) and Li(C₅HMe₄) (2.50 g, 19.50 mmol). Yield: 2.86 g, 94%. ¹H NMR (400 MHz, CDCl₃) (for the predominant isomer): δ 1.48 (m, 2H, CH₂CH=CH₂), 1.83 (12H), 1.92 (6H), 1.97 (6H) (s, C₅Me₄), 2.70 (m, 2H, HC₅), 3.98 (m, 1H, SiH), 4.88 (m, 2H, CH₂CH=CH₂), 5.67 (m, 1H, CH₂CH=CH₂). MS electron impact (*m/e* (relative intensity)): 312 (21) [M⁺], 191 (85) [M⁺ - C₅HMe₄], 149 (100)

$[M^+ - CH_2CH=CH_2, -C_5HMe_4], 121 (98) [M^+ - CH_2CH=CH_2(H)SiC_5HMe_4].$

5.10. Synthesis of $Li_2 \{ Et(H) Si(C_5H_4)_2 \}$ (10)

LiBu^{*n*} (1.6 M in hexane) (13.3 mL, 21.24 mmol) was added dropwise to a solution of Et(H)Si(C₅H₅)₂ (1) (2.00 g, 10.62 mmol) in hexane (100 mL) at -78 °C. The mixture was allowed to warm to 25 °C and stirred for 15 h. Solvent was removed in vacuo to give a white solid which was washed with hexane (2 × 50 mL) and dried under vacuum to yield a free flowing white solid of the title complex (2.06 g, 97%). *Anal.* Calc. for C₁₂H₁₄Li₂Si: C, 71.99; H, 7.05. Found: C, 71.58; H, 7.00%.

The preparation of 11–15 was carried out in an identical manner to 10.

5.11. $Li_2\{Et(H)Si(C_5Me_4)(C_5H_4)\}$ (11)

From $Et(H)Si(C_5HMe_4)(C_5H_5)_2$ (3) (2.00 g, 8.18 mmol) and LiBuⁿ (1.6 M in hexane) (10.2 mL, 16.36 mmol). Yield: 1.89 g, 90%. *Anal.* Calc. for $C_{16}H_{22}Li_2Si$: C, 74.98; H, 8.65. Found: C, 74.49; H, 8.60%.

5.12. $Li_2\{Ph(H)Si(C_5Me_4)(C_5H_4)\}$ (12)

From Ph(H)Si(C₅HMe₄)(C₅H₅)₂ (**5**) (2.00 g, 6.83 mmol) and LiBu^{*n*} (1.6 M in hexane) (8.6 mL, 13.66 mmol). Yield: 1.83 g, 88%. *Anal.* Calc. for C₂₀H₂₂Li₂Si: C, 78.93; H, 7.29. Found: C, 78.66; H, 7.27%.

5.13. $Li_2\{Ph(H)Si(C_5Me_4)_2\}$ (13)

From Ph(H)Si(C₅HMe₄)₂ (**6**) (2.00 g, 5.73 mmol) and LiBu^{*n*} (1.6 M in hexane) (7.2 mL, 11.46 mmol). Yield: 1.69 g, 82%. *Anal.* Calc. for C₂₄H₃₀Li₂Si: C, 79.97; H, 8.39. Found: C, 79.45; H, 8.31%.

5.14. $Li_2\{CH_2 = CHCH_2(H)Si(C_5Me_4)(C_5H_4)\}$ (14)

From CH₂=CHCH₂(H)Si(C₅HMe₄)(C₅H₅) (8) (2.00 g, 7.80 mmol) and LiBu^{*n*} (1.6 M in hexane) (9.8 mL, 15.60 mmol). Yield: 1.73 g, 83%. *Anal.* Calc. for $C_{17}H_{22}Li_2Si$: C, 76.10; H, 8.26. Found: C, 75.89; H, 8.22%.

5.15. $Li_2\{CH_2 = CHCH_2(H)Si(C_5Me_4)_2\}$ (15)

From CH₂=CHCH₂(H)Si(C₅HMe₄)₂ (**9**) (2.00 g, 6.40 mmol) and LiBu^{*n*} (1.6 M in hexane) (8.0 ml, 12.80 mmol). Yield: 1.70 g, 78%. *Anal.* Calc. for C₂₁H₃₀Li₂Si: C, 77.74; H, 9.32. Found: C, 77.44; H, 9.28%.

5.16. Synthesis of $[Ti\{Et(H)Si(\eta^5-C_5H_4)_2\}Cl_2]$ (16a)

THF (50 mL) was added to a solid mixture of $[TiCl_4(THF)_2]$ (1.67 g, 4.99 mmol) and $Li_2{Et(H)Si(\eta^5 C_5H_4$)₂ (10) (1.00 g, 4.99 mmol). The resulting solution was stirred for 15 h. Solvent was removed in vacuo and toluene added (75 mL) to the resulting solid. The mixture was filtered and the filtrate concentrated (10 mL) and cooled to -30 °C to yield crystals of the title complex (0.78 g, 51%). IR (ZnSe): v_{Si-H} 2187 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.11 (3H), 1.37 (2H) (m, SiEt), 5.05 (t, 1H, SiH) (${}^{3}J({}^{1}H-{}^{1}H)$ 3.3 Hz), 6.02 (2H), 6.08 (2H), 7.22 (2H), 7.25 (2H) (m, C_5H_4). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 1.5, 7.3 (SiEt), 101.7 (C^{ipso}), 118.2, 120.4, 134.7, 136.2 (C_5H_4). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -24.0 (doublet of multiplets) $({}^{1}J({}^{29}\text{Si}-{}^{1}\text{H})$ 214.7 Hz). MS electron impact (*m/e* (relative intensity)): 304 (74) $[M^+]$, 268 (32) $[M^+ - Cl]$, 240 (37) $[M^+ - Cl, -Et], 176$ (100) $[M^+ - Cl, -Et], -Et$ -C₅H₄]. Anal. Calc. for C₁₂H₁₄Cl₂SiTi: C, 47.24; H, 4.63. Found: C, 47.11; H, 4.59%.

The preparation of **16b–32** was carried out in an identical manner to **16a**.

5.17. $[Zr \{ Et(H) Si(\eta^5 - C_5 H_4)_2 \} Cl_2]$ (16b)

From ZrCl₄ (1.16 g, 4.99 mmol) and Li₂{Et(H)-Si(C₅H₄)₂} (**10**) (1.00 g, 4.99 mmol). Yield: 0.63 g, 36%. IR (ZnSe): v_{Si-H} 2177 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.17 (3H), 1.37 (2H) (m, Si*Et*), 5.07 (t, 1H, Si*H*) (³*J*(¹H–¹H) 3.3 Hz), 6.02 (2H), 6.11 (2H), 6.97 (2H), 7.00 (2H) (m, C₅H₄). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 1.7, 7.3 (Si*Et*), 104.6 (C^{ipso}), 113.7, 116.0, 127.8, 129.3 (C₅H₄). ²⁹Si NMR (79.49 MHz, CDCl₃): δ –24.2 (doublet of multiplets) (¹*J*(²⁹Si–¹H) 213.4 Hz). MS electron impact (*m/e* (relative intensity)): 348 (70) [M⁺], 316 (25) [M⁺ – Et], 282 (39) [M⁺ – Cl, –Et], 253 (45) [M⁺ – Et, –C₅H₄]. *Anal.* Calc. for C₁₂H₁₄Cl₂SiZr: C, 41.36; H, 4.05. Found: C, 41.05; H, 4.04%.

5.18. $[Hf{Et(H)Si(\eta^5-C_5H_4)_2}Cl_2]$ (16c)

From HfCl₄ (1.60 g, 4.99 mmol) and Li₂{Et(H)-Si(C₅H₄)₂} (**10**) (1.00 g, 4.99 mmol). Yield: 0.67 g, 31%. IR (ZnSe): v_{Si-H} 2166 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.11 (3H), 1.36 (2H) (m, Si*Et*), 5.06 (t, 1H, Si*H*) (³*J*(¹H–¹H) 3.3 Hz), 5.95 (2H), 6.03 (2H), 6.88 (2H), 6.90 (2H) (m, C₅H₄). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 1.8, 7.5 (Si*Et*), 106.1 (C^{ipso}), 111.5, 113.9, 126.4, 127.9 (C₅H₄). ²⁹Si NMR (79.49 MHz, CDCl₃): δ –24.9 (doublet of multiplets) (¹*J*(²⁹Si–¹H) 215.1 Hz). MS electron impact (*m/e* (relative intensity)): 436 (26) [M⁺], 407 (16) [M⁺ – Et], 250 (65) [M⁺ – Et(H)-Si(C₅H₄)₂]. *Anal.* Calc. for C₁₂H₁₄Cl₂HfSi: C, 33.08; H, 3.24. Found: C, 32.99; H, 3.19%.

5.19. $[Ti\{Et(H)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)\}Cl_2]$ (17a)

From $[TiCl_4(THF)_2]$ (1.30 g, 3.90 mmol) and $Li_{2}{Et(H)Si(C_{5}Me_{4})(C_{5}H_{4})}$ (11) (1.00 g, 3.90 mmol). Yield: 0.89 g, 63%. IR (ZnSe): v_{Si-H} 2172 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.38 (3H), 1.48 (2H) (m, SiEt), 1.87 (3H), 1.90 (3H), 2.15 (3H), 2.16 (3H) (s, C_5Me_4), 5.21 (dd, 1H, SiH) (³J(¹H–¹H) 4.4 Hz), 5.59 (1H), 5.62 (1H), 7.17 (1H), 7.22 (1H) (m, C_5H_4). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 3.3, 7.8 (Si*Et*), 13.7, 15.7, 15.8 (C_5Me_4), 95.3 (C^{ipso}), 115.2, 117.0, 132.3, 134.3 (C₅H₄), 99.7, 129.8, 131.7, 144.0, 144.5 (C_5Me_4) . ²⁹Si NMR (79.49 MHz, CDCl₃): δ –25.5 (doublet of multiplets) $({}^{1}J({}^{29}Si-{}^{1}H)$ 210.6 Hz). MS electron impact (m/e (relative intensity)): 360 (48) [M⁺], 324 (100) $[M^+ - Cl, -H]$, 288 (91) $[M^+ - 2 \times Cl, -H]$. Anal. Calc. for C₁₆H₂₂Cl₂SiTi: C, 53.20; H, 6.14. Found: C, 53.01; H, 6.09%.

5.20. $[Zr \{Et(H)Si(\eta^5 - C_5Me_4)(\eta^5 - C_5H_4)\}Cl_2]$ (17b)

From $ZrCl_4$ (0.91 g, 3.90 mmol) and $Li_2{Et(H)}$ - $Si(C_5Me_4)(C_5H_4)$ (11) (1.00 g, 3.90 mmol). Yield: 0.73 g, 46%. IR (ZnSe): v_{Si-H} 2168 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.36 (3H), 1.46 (2H) (m, SiEt), 2.03 (3H), 2.07 (3H), 2.08 (6H) (s, C₅Me₄), 5.20 (dd, 1H, SiH) $({}^{3}J({}^{1}H-{}^{1}H)$ 4.4 Hz), 5.71 (1H), 5.78 (1H), 6.99 (1H), 7.04 (1H) (m, C_5H_4). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 3.6, 7.9 (SiEt), 12.3, 12.4, 14.4, 14.9 (C₅Me₄), 95.1 (C^{ipso}), 112.1, 113.9, 126.4, 127.8 (C₅H₄), 102.5, 124.7, 126.0, 135.7, 136.2 (C₅Me₄). ²⁹Si NMR (79.49 MHz, CDCl₃): δ –26.7 (doublet of multiplets) (¹J(²⁹Si-¹H) 207.6 Hz). MS electron impact (m/e (relative intensity)): 402 (88) [M⁺], 366 (100) $[M^+ - Cl]$, 338 (86) $[M^+ - Cl, -Et]$. Anal. Calc. for C₁₆H₂₂Cl₂SiZr: C, 47.50; H, 5.48. Found: C, 47.33; H, 5.48%.

5.21. $[Hf{Et(H)Si(\eta^{5}-C_{5}Me_{4})(\eta^{5}-C_{5}H_{4})}Cl_{2}]$ (17c)

From HfCl₄ (1.25 g, 3.90 mmol) and Li₂{Et(H)Si- $(C_5Me_4)(C_5H_4)$ (11) (1.00 g, 3.90 mmol). Yield: 0.82 g, 43%. IR (ZnSe): v_{Si-H} 2164 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.34 (3H), 1.45 (2H) (m, SiEt), 2.03 (3H), 2.07 (3H), 2.08 (6H) (s, C₅Me₄), 5.18 (dd, 1H, SiH) $({}^{3}J({}^{1}H-{}^{1}H)$ 4.4 Hz), 5.67 (1H), 5.73 (1H), 6.91 (1H), 6.97 (1H) (m, C_5H_4). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 3.6, 7.8 (SiEt), 12.1, 12.2, 14.0, 14.5 (C₅Me₄), 97.0 (C^{ipso}), 109.5, 111.5, 125.0, 126.9 (C₅H₄), 104.6, 121.5, 123.3, 133.8, 134.3 (C₅Me₄). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -27.3 (doublet of multiplets) $({}^{1}J({}^{29}Si-{}^{1}H) 207.2 \text{ Hz})$. MS electron impact (*m/e* (relative intensity)): 492 (85) $[M^+]$, 456 (100) $[M^+ - C]$, -H], 428 (19) $[M^+ - Cl, -Et]$. Anal. Calc. for C₁₆H₂₂Cl₂HfSi: C, 39.07; H, 4.51. Found: C, 39.00; H, 4.46%.

5.22. $[Ti{Ph(H)Si(\eta^{5}-C_{5}Me_{4})(\eta^{5}-C_{5}H_{4})}Cl_{2}]$ (18a)

From [TiCl₄(THF)₂] (1.10 g, 3.28 mmol) and Li₂{Ph(H)Si(C₅Me₄)(C₅H₄)} (**12**) (1.00 g, 3.28 mmol). Yield: 0.82 g, 61%. IR (ZnSe): v_{Si-H} 2167 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.49 (3H), 2.00 (3H), 2.11 (3H), 2.22 (3H) (s, C₅Me₄), 5.85 (s, 1H, SiH), 5.68 (1H), 5.81 (1H), 7.21 (2H) (m, C₅H₄), 7.31 (2H), 7.55 (2H), 7.95 (1H) (m, SiPh). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 13.5, 13.8, 15.9, 16.8 (C₅Me₄), 94.5 (C^{ipso}), 115.2, 118.0, 134.7, 135.9 (C₅H₄), 98.4, 128.5, 129.8, 143.0, 146.0 (C₅Me₄), 128.8, 130.9, 131.2, 133.1 (SiPh). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -32.4 (d) (¹J(²⁹Si⁻¹H) 215.4 Hz). MS electron impact (*m/e* (relative intensity)): 408 (26) [M⁺], 372 (41) [M⁺ - Cl, -H], 336 (100) [M⁺ - 2 × Cl, -H]. Anal. Calc. for C₂₀H₂₂Cl₂SiTi: C, 58.70; H, 5.42. Found: C, 58.44; H, 5.34%.

5.23. $[Zr \{Ph(H)Si(\eta^{5}-C_{5}Me_{4})(\eta^{5}-C_{5}H_{4})\}Cl_{2}]$ (18b)

From $ZrCl_4$ (0.77 g, 3.28 mmol) and Li_2 {Ph(H)- $Si(C_5Me_4)(C_5H_4)$ (12) (1.00 g, 3.28 mmol). Yield: 0.82 g, 55%. IR (ZnSe): v_{Si-H} 2155 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.60 (3H), 2.04 (3H), 2.12 (3H), 2.13 (3H) (s, C₅Me₄), 5.88 (s, 1H, SiH), 5.81 (1H), 5.98 (1H), 7.05 (1H), 7.13 (1H) (m, C_5H_4), 7.28 (2H), 7.57 (2H), 7.95 (1H) (m, SiPh). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 12.3, 12.4, 14.5, 15.1 (C_5Me_4) , 94.2 (C^{ipso}) , 125.0, 128.7, 134.6, 135.1 (C_5H_4) , 101.0, 112.2, 114.7, 128.9, 131.0 (C_5Me_4) , ²⁹Si NMR 124.4, 128.6, 129.0, 134.2 (SiPh). (79.49 MHz, CDCl₃): δ -37.9 (d) (¹J(²⁹Si⁻¹H) 214.5 Hz). MS electron impact (m/e (relative intensity)): 452 (34) $[M^+]$, 414 (57) $[M^+ - Cl, -H]$, 105 (100) $[M^+ - H, -Zr(C_5Me_4)(C_5H_4)Cl_2]$. Anal. Calc. for C₂₀H₂₂Cl₂SiZr: C, 53.07; H, 4.90. Found: C, 52.96; H, 4.87%.

5.24. $[Hf{Ph(H)Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)}Cl_2]$ (18c)

From HfCl₄ (1.05 g, 3.28 mmol) and Li₂{Ph(H)-Si(C₅Me₄)(C₅H₄)} (**12**) (1.00 g, 3.28 mmol). Yield: 0.74 g, 42%. IR (ZnSe): v_{Si-H} 2172 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.66 (3H), 2.06 (3H), 2.13 (3H), 2.19 (3H) (s, C₅Me₄), 5.84 (s, 1H, SiH), 5.77 (1H), 5.93 (1H), 6.98 (1H), 7.06 (1H) (m, C₅H₄), 7.27 (2H), 7.55 (2H), 7.95 (1H) (m, SiPh). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 12.1, 12.2, 14.2, 14.8 (C₅Me₄), 95.9 (C^{ipso}), 109.7, 112.5, 128.2, 130.9 (C₅H₄), 103.1, 121.6, 124.2, 133.3, 135.6 (C₅Me₄), 124.4, 128.6, 129.0, 134.2 (SiPh). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -38.5 (d) (¹J(²⁹Si-¹H) 214.1 Hz). MS electron impact (m/e (relative intensity)): 540 (9) [M⁺], 502 (6) [M⁺ - Cl], 315 (5) [M⁺ - Ph(H)Si(C₅Me₄)(C₅H₄)], 123 (100) [M⁺ - $Hf(C_5H_4Si(H)Ph)Cl_2]$. Anal. Calc. for $C_{20}H_{22}Cl_2HfSi$: C, 44.49; H, 4.11. Found: C, 44.03; H, 4.08%.

5.25. $[Ti{Ph(H)Si(\eta^{5}-C_{5}Me_{4})_{2}}Cl_{2}]$ (19a)

From [TiCl₄(THF)₂] (0.92 g, 2.77 mmol) and Li₂{Ph(H)Si(C₅Me₄)₂} (**13**) (1.00 g, 2.77 mmol). Yield: 0.80 g, 62%. IR (ZnSe): v_{Si-H} 2155 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.59 (6H), 1.93 (6H), 2.11 (6H), 2.18 (6H) (s, C₅Me₄), 6.06 (s, 1H, SiH), 7.26 (2H), 7.53 (2H), 7.98 (1H) (m, SiPh). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 13.9, 16.1, 17.2 (C₅Me₄), 88.4, 125.2, 130.8, 143.2, 144.5 (C₅Me₄), 128.1, 128.4, 130.9, 135.0 (SiPh). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -41.3 (d) (¹J(²⁹Si⁻¹H) 210.1 Hz). MS electron impact (*m*/*e* (relative intensity)): 464 (12) [M⁺], 428 (22) [M⁺ - Cl], 413 (25) [M⁺ - Cl, -Me], 105 (100) [M⁺ - Ti(C₅Me₄)₂Cl₂]. Anal. Calc. for C₂₄H₃₀Cl₂SiTi: C, 61.94; H, 6.50. Found: C, 61.55; H, 6.42%.

5.26. $[Zr \{Ph(H)Si(\eta^{5}-C_{5}Me_{4})_{2}\}Cl_{2}]$ (19b)

From $ZrCl_4$ (0.67 g, 2.77 mmol) and Li_2 {Ph(H)- $Si(C_5Me_4)_2$ (13) (1.00 g, 2.77 mmol). Yield: 0.66 g, 47%. IR (ZnSe): v_{Si-H} 2169 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.70 (6H), 2.04 (6H), 2.07 (6H), 2.13 (6H) (s, C₅Me₄), 6.02 (s, 1H, SiH), 7.26 (2H), 7.52 (2H), 7.94 (1H) (m, SiPh). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ 12.6, 12.7, 14.9, 16.1 (C₅Me₄), 89.0, 124.9, 125.2, 136.0, 136.9 (C_5 Me₄), 128.3, 130.3, 130.7, 135.0 (Si*Ph*). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -43.0 (d) (¹J(²⁹Si⁻¹H) 208.5 Hz). MS electron impact (m/e (relative intensity)): 508 (86) [M^+], 471 (40) $[M^+ - Cl]$, 455 (89) $[M^+ - Cl, -Me]$, 105 (100) $[M^+ - Zr(C_5Me_4)_2Cl_2].$ Anal. Calc. for C₂₄H₃₀Cl₂SiZr: C, 56.66; H, 5.94. Found: C, 56.12; H, 5.91%.

5.27. $[Hf{Ph(H)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (19c)

From HfCl₄ (0.89 g, 2.77 mmol) and Li₂{Ph(H)-Si(C₅Me₄)₂} (13) (1.00 g, 2.77 mmol). Yield: 0.64 g, 39%. IR (ZnSe): v_{Si-H} 2116 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.77 (6H), 2.09 (6H), 2.12 (6H), 2.16 (6H) (s, C₅Me₄), 5.99 (s, 1H, SiH), 7.18 (2H), 7.50 (2H), 7.95 (1H) (m, SiPh). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 12.5, 12.6, 14.8, 16.0 (C₅Me₄), 91.1, 121.8, 123.4, 134.3, 135.3 (C₅Me₄), 128.2, 130.3, 130.5, 134.9 (SiPh). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -43.7 (d) (¹J(²⁹Si⁻¹H) 208.7 Hz). MS electron impact (*m/e* (relative intensity)): 596 (29) [M⁺], 561 (3) [M⁺ - Cl], 545 (12) [M⁺ - Cl, -Me], 105 (100) [M⁺ - Hf(C₅Me₄)₂Cl₂]. Anal. Calc. for C₂₄H₃₀Cl₂HfSi: C, 48.37; H, 5.07. Found: C, 48.00; H, 5.02%.

5.28. $[Ti\{CH_2=CHCH_2(H)Si(\eta^5-C_5Me_4)-(\eta^5-C_5H_4)\}Cl_2]$ (20*a*)

From $[TiCl_4(THF)_2]$ (1.24 g, 3.73 mmol) and $Li_2\{CH_2 = CHCH_2(H)Si(C_5Me_4)(C_5H_4)\}$ (14) (1.00 g, 3.73 mmol). Yield: 0.85 g, 61%. IR (ZnSe): v_{Si-H} 2166, $v_{\rm CH}$ 3081, $v_{\rm CH}=_{\rm CH_2}$ 1625 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.90 (6H), 2.16 (6H) (s, C₅Me₄), 2.47 (m, 2H, CH₂CH=CH₂), 5.23 (dd, 1H, SiH) (${}^{3}J({}^{1}H-{}^{1}H)$ 4.4 Hz), 5.17 (1H) (cis), 5.26 (1H) (trans) (dd, $^{3}J_{trans}(^{1}\mathrm{H}-^{1}\mathrm{H})$ CH₂CH=CH₂) $({}^{3}J_{cis}({}^{1}H-{}^{1}H)$ 10.0, 17.1 Hz), 6.06 (m, 1H, CH₂CH=CH₂), 5.63 (1H), 6.06 (1H), 7.18 (1H), 7.24 (1H) (m, C_5H_4). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 13.8, 15.8, 16.5 (C₅Me₄), 18.1 (CH₂CH=CH₂), 95.0 (C^{ipso}), 115.1, 116.9, 132.1, 134.4 (C5H4), 95.2, 129.5, 130.7, 143.8, 144.5 (C5Me4), 117.1 (CH₂CH=CH₂), 131.6 (CH₂CH=CH₂). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -30.0 (doublet of multiplets) $({}^{1}J({}^{29}\text{Si}-{}^{1}\text{H})$ 217.0 Hz). MS electron impact (*m/e* (relative intensity)): 372 (48) $[M^+]$, 336 (100) $[M^+ - Cl]$, -H], 295 (44) [M⁺ - Cl, -H, $-CH_2CH=CH_2$], 123 (100) $[M^+ - Ti(C_5H_4Si(H)CH_2CH=CH_2)Cl_2]$. Anal. Calc. for C₁₇H₂₂Cl₂SiTi: C, 54.71; H, 5.94. Found: C, 54.35; H, 5.94%.

5.29. $[Zr \{CH_2 = CHCH_2(H)Si(\eta^5 - C_5Me_4)(\eta^5 - C_5H_4)\} - Cl_2]$ (20b)

From $ZrCl_4$ (0.87 g, 3.73 mmol) and $Li_2\{CH_2=$ $CHCH_2(H)Si(C_5Me_4)(C_5H_4)$ (14) (1.00 g, 3.73 mmol). Yield: 0.79 g, 51%. IR (ZnSe): v_{Si-H} 2170, v_{CH} 3080, $v_{CH=CH_2}$ 1626 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.00 (3H), 2.06 (3H), 2.07 (6H) (s, C_5Me_4), 2.45 (m, 2H, $CH_2CH=CH_2$), 5.22 (dd, 1H, SiH) (³J(¹H-¹H) 4.4 Hz), 5.14 (1H) (cis), 5.25 (1H) (trans) (dd, $10.1, {}^{3}J_{trans}({}^{1}\mathrm{H}-{}^{1}\mathrm{H})$ $CH_2CH=CH_2$) (³ J_{cis} (¹ $H-^1H$) 17.1 Hz), 6.04 (m, 1H, CH₂CH=CH₂), 5.74 (1H), 5.78 (1H), 7.00 (2H) (m, C_5H_4). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 12.3, 13.9, 14.4, 15.1 (C₅Me₄), 18.3 (CH₂CH=CH₂), 94.9 (C^{ipso}), 112.0, 113.9, 125.9, 128.0 (C_5H_4) , 102.0, 124.4, 126.4, 136.0, 136.3 (C_5Me_4) , 116.9 (CH₂CH=CH₂), 131.1 (CH₂CH=CH₂). ²⁹Si NMR (79.49 MHz, CDCl₃): δ -31.1 (doublet of multiplets) $({}^{1}J({}^{29}Si-{}^{1}H)$ 215.1 Hz). MS electron impact (*m/e* (relative intensity)): 416 (22) $[M^+]$, 378 (23) $[M^+ - C]$, -H], 337 (20) [M⁺ – Cl, -H, $-CH_2CH=CH_2$], 303 (5) $[M^+ - 2 \times Cl, -H, -CH_2CH = CH_2]$. Anal. Calc. for C₁₇H₂₂Cl₂SiZr: C, 49.01; H, 5.32. Found: C, 48.88; H, 5.28%.

5.30. $[Ti{CH_2=CHCH_2(H)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (21a)

From $[\text{TiCl}_4(\text{THF})_2]$ (0.98 g, 2.93 mmol) and Li₂{CH₂=CHCH₂(H)Si(C₅Me₄)₂} (**15**) (1.00 g, 2.93 mmol). Yield: 0.81 g, 64%. IR (ZnSe): $v_{\text{Si-H}}$ 2169, v_{CH} 3076, $v_{\text{CH}=\text{CH}_2}$ 1627 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.83 (6H), 1.87 (6H), 2.12 (12H) (s, C₅Me₄), 2.59 (m, 2H, CH₂CH=CH₂), 5.37 (t, 1H, SiH) (${}^{3}J({}^{1}H-{}^{1}H)$ 5.2 Hz), 5.17 (1H) (cis), 5.28 (1H) (trans) (dd, $({}^{3}J_{cis}({}^{1}\mathrm{H}-{}^{1}\mathrm{H})$ 9.9, $^{3}J_{trans}(^{1}\mathrm{H}-^{1}\mathrm{H})$ $CH_2CH=CH_2$) 16.9 Hz), 6.10 (m, 1H, CH₂CH=CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 13.7, 13.9, 16.0, 16.7 (C₅Me₄), 19.5 (CH₂CH=CH₂), 89.5, 129.0, 130.0, 143.4, 143.6 (C₅Me₄), 116.7 (CH₂CH=CH₂), 131.6 (CH₂CH=CH₂). ²⁹Si NMR (79.49 MHz, CDCl₃): δ –34.7 (doublet of multiplets) $({}^{1}J({}^{29}Si-{}^{1}H)$ 213.9 Hz). MS electron impact (*m/e* (relative intensity)): 428 (78) [M⁺], 392 (100) $[M^+ - Cl], 387 (44) [M^+ - CH_2CH = CH_2], 351 (22)$ $[M^+ - Cl, -CH_2CH = CH_2]$. Anal. Calc. for $C_{21}H_{30}$ -Cl₂SiTi: C, 58.75; H, 7.04. Found: C, 58.52; H, 7.01%.

5.31. $[Zr \{CH_2 = CHCH_2(H)Si(\eta^5 - C_5Me_4)_2\}Cl_2]$ (21b)

From $ZrCl_4$ (0.68 g, 2.93 mmol) and Li_2 {CH₂= $CHCH_2(H)Si(C_5Me_4)_2$ (15) (1.00 g, 2.93 mmol). Yield: 0.72 g, 52%. IR (ZnSe): v_{Si-H} 2182, v_{CH} 3076, $v_{\rm CH} = _{\rm CH_2}$ 1631 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.93 (6H), 1.97 (6H), 2.07 (12H) (s, C₅Me₄), 2.55 (m, 2H, $CH_2CH=CH_2$), 5.34 (t, 1H, SiH) (³J(¹H-¹H)) 5.2 Hz), 5.14 (1H) (*cis*), 5.25 (1H) (*trans*) (dd, CH₂CH=CH₂) $({}^{3}J_{cis}({}^{1}\text{H}-{}^{1}\text{H})$ 10.0, ${}^{3}J_{trans}({}^{1}\text{H}-{}^{1}\text{H})$ 17.0 Hz), 6.07 (m, 1H, CH₂CH=CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 12.5, 12.7, 14.8, 15.6 (C₅Me₄), 19.9 (CH₂CH=CH₂), 90.3, 124.5, 125.5, 136.0, 136.2 (C₅Me₄), 116.5 (CH₂CH=CH₂), 131.8 (CH₂CH=CH₂). ²⁹Si NMR (79.49 MHz, CDCl₃): δ –36.0 (doublet of multiplets) $({}^{1}J({}^{29}Si-{}^{1}H) 209.2 \text{ Hz})$. MS electron impact (*m/e* (relative intensity)): 472 (80) [M⁺], 435 (44) $[M^+ - Cl]$, 419 (100) $[M^+ - Cl, -Me]$. Anal. Calc. for C₂₁H₃₀Cl₂SiZr: C, 53.36; H, 6.40. Found: C, 53.31; H, 6.39%.

5.32. $[Hf{CH_2=CHCH_2(H)Si(\eta^5-C_5Me_4)_2}Cl_2]$ (21c)

From HfCl₄ (0.94 g, 2.93 mmol) and Li_2 {CH₂= $CHCH_2(H)Si(C_5Me_4)_2$ } (15) (1.00 g, 2.93 mmol). Yield: 0.71 g, 43%. IR (ZnSe): v_{Si-H} 2165, v_{CH} 3077, $v_{\rm CH=CH_2}$ 1629 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.01 (6 H), 2.04 (6H), 2.09 (6H), 2.10 (6H) (s, C₅Me₄), 2.54 (m, 2H, CH₂CH=CH₂), 5.30 (t, 1H, SiH) $({}^{3}J({}^{1}H-{}^{1}H)$ 5.1 Hz), 5.13 (1H) (*cis*), 5.24 (1H) (*trans*) (dd, CH₂CH=CH₂) (${}^{3}J_{cis}({}^{1}H-{}^{1}H)$ 10.0, ${}^{3}J_{trans}({}^{1}H-{}^{1}H)$ 17.1 Hz), 6.06 (m, 1H, CH₂CH=CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 12.4, 12.5, 14.6, 15.4 (C₅Me₄), 19.9 (CH₂CH=CH₂), 92.3, 121.6, 122.6, 134.5, 134.7 (C₅Me₄), 116.4 (CH₂CH=CH₂), 131.9 (CH₂CH=CH₂). ²⁹Si NMR (79.49 MHz, CDCl₃): δ –36.6 (doublet of multiplets) $({}^{1}J({}^{29}Si-{}^{1}H) 208.9 \text{ Hz})$. MS electron impact (m/e (relative intensity)): 560 (40) [M⁺], 519 (53) $[M^+ - CH_2CH = CH_2]$, 504 (20) $[M^+ - Me, -CH_2CH =$ CH₂]. Anal. Calc. for C₂₁H₃₀Cl₂HfSi: C, 45.04; H, 5.40. Found: C, 45.02; H, 5.36%.

The experimental procedure described for 22–24 relates to the optimized synthesis of the monohydrosilylation product.

5.33. Synthesis of $[Zr {(CH_2=CH)_3SiCH_2CH_2(Et)Si-(\eta^5-C_5H_4)_2}Cl_2]$ (22b)

Two drops of the Karstedt catalyst (divinyltetramethylsiloxane Pt(0) in xylene (3-3.5%)) were added to a solution of tetravinylsilane (0.059 g, 0.43 mmol) in toluene (5 mL) and the mixture was stirred for 5 min at room temperature. To this solution was added dropwise $[Zr{Et(H)Si(\eta^5-C_5H_4)_2}Cl_2]$ (16b) (0.15 g, 0.31 mmol) in toluene (10 mL) and the reaction mixture was stirred for 40 h at 100 °C and then allowed to cool to room temperature. The mixture was filtered and volatiles were removed from the filtrate under reduced pressure to give the title product as a dark yellow oil (0.19 g, 92%). IR (KBr): v_{CH} 3046, $v_{CH=CH_2}$ 1599 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 1.31 (3H), 1.43 (2H) (m, SiEt), 0.95 (2H), 1.28 (2H) (m, CH₂CH₂), 5.96 (2H), 6.00 (2H), 6.98 (4H) (m, C₅H₄), 5.86 (m, 3H, CH₂=CH), 6.19 (m, 6H, CH_2 =CH). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): δ 1.5, 7.5 (SiEt), 2.9, 4.3 (CH₂CH₂), 108.3 (C^{ipso}), 114.3, 115.0, 133.2, 136.0 (C_5H_4) , 133.5, 135.3 $(CH=CH_2)$. ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ –18.2 $(SiCH=CH_2)$, -10.7 (SiC_5H_4) . MS electron impact (*m/e* (relative intensity)): 484 (15) [M⁺], 447 (7) $[M^+ - Cl]$, 310 (40) $[M^+ - Cl, -CH_2CH_2Si(CH=$ CH_{2}_{3}], 109 (100) $[M^{+}-Zr\{CH_{2}CH_{2}Si(Et)(C_{5}H_{4})_{2}\}$ -Cl₂]. Anal. Calc. for C₂₀H₂₆Cl₂Si₂Zr: C, 49.56; H, 5.41. Found: C, 49.09; H, 5.36%.

The preparation of 23–26 was carried out in an identical manner to 22b.

5.34. $[Ti\{(CH_2=CH)_3SiCH_2CH_2(Et)Si(\eta^5-C_5Me_4)-(\eta^5-C_5H_4)\}Cl_2]$ (23*a*)

From Si(CH=CH₂)₄ (0.056 g, 0.41 mmol) and [Ti{Et(H)Si(η⁵-C₅Me₄)(η⁵-C₅H₄)}Cl₂] (17a) (0.15 g, 0.41 mmol). Yield: 0.20 g, 98%. IR (KBr): v_{CH} 3050, $v_{CH}=_{CH_2}$ 1592 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 1.31 (3H), 1.41 (2H) (m, SiEt), 0.99 (2H), 1.25 (1H), 1.35 (1H) (m, CH₂CH₂), 1.84 (3H), 1.88 (3H), 2.14 (3H), 2.15 (3H) (s, C₅Me₄), 5.55 (1H), 5.58 (1H), 7.18 (2H) (m, C₅H₄), 5.84 (m, 3H, CH₂=CH), 6.18 (m, 6H, CH₂=CH). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): δ 4.0, 4.9 (SiEt), 4.3, 7.0 (CH₂CH₂), 13.6, 13.7, 16.2, 16.3 (C₅Me₄), 103.8 (C^{ipso}), 116.0, 116.3, 132.8, 133.5 (C₅H₄), 98.5, 131.1, 131.7, 144.0, 144.3 (C₅Me₄), 133.3, 135.3 (CH=CH₂). ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ –18.2 $(SiCH=CH_2)$, -7.8 (SiC_5H_4) . MS electron impact (*m/e* (relative intensity)): 496 (23) [M⁺], 460 (13) [M⁺ - Cl], 109 (100) [M⁺ - Ti{CH_2CH_2Si(Et)-(C_5Me_4)(C_5H_4)}Cl_2]. *Anal.* Calc. for C_24H_34Cl_2Si_2Ti: C, 57.94; H, 6.89. Found: C, 57.88; H, 6.85%.

5.35. $[Zr\{(CH_2=CH)_3SiCH_2CH_2(Et)Si(\eta^5-C_5Me_4)-(\eta^5-C_5H_4)\}Cl_2]$ (23b)

From $Si(CH=CH_2)_4$ (0.051 g, 0.37 mmol) and $[Zr{Et(H)Si(\eta^{5}-C_{5}Me_{4})(\eta^{5}-C_{5}H_{4})}Cl_{2}]$ (17b) (0.15 g, 0.37 mmol). Yield: 0.20 g, 99%. IR (KBr): v_{CH} 3050, $v_{CH} = _{CH_2} 1591 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 1.30 (3H), 1.40 (2H) (m, SiEt), 0.96 (2H), 1.23 (1H), 1.33 (1H) (m, CH₂CH₂), 1.93 (3H), 1.96 (3H), 2.05 (3H), 2.06 (3H) (s, C₅Me₄), 5.66 (1H), 5.70 (1H), 7.01 (2H) (m, C₅H₄), 5.85 (m, 3H, CH₂=CH), 6.18 (m, 6H, CH₂=CH). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): δ 4.0, 4.6 (SiEt), 4.4, 6.9 (CH_2CH_2) , 12.4, 15.1, 15.2 (C_5Me_4) , 106.4 (C^{ipso}), 112.6, 112.9, 126.6, 127.0 (C_5H_4), 98.0, 125.8, 126.2, 135.9, 136.1 (C₅Me₄), 133.6, 135.2 $(CH=CH_2)$. ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -18.2 (SiCH=CH₂), -8.7 (SiC_5H_4) . MS electron impact (*m/e* (relative intensity)): 538 (25) $[M^+]$, 503 (8) $[M^+ - Cl]$, 109 (100) $[M^+ - Zr \{CH_2CH_2Si(Et)(C_5Me_4)(C_5H_4)\}Cl_2].$ Anal. Calc. for C₂₄H₃₄Cl₂Si₂Zr: C, 53.30; H, 6.34. Found: C, 53.10; H, 6.31%.

5.36. $[Ti\{(CH_2=CH)Me_2SiCH_2CH_2(Et)Si(\eta^5-C_5Me_4)-(\eta^5-C_5H_4)\}Cl_2]$ (24*a*)

From SiMe₂(CH=CH₂)₂ (0.037 g, 0.41 mmol) and $[Ti{Et(H)Si(\eta^{2}-C_{5}Me_{4})(\eta^{2}-C_{5}H_{4})}Cl_{2}]$ (17a) (0.15 g, 0.41 mmol). Yield: 0.18 g, 93%. IR (KBr): v_{CH} 3050, $v_{CH} = CH_2 1599 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 0.18 (s, 6H, SiMe₂), 1.30 (3H), 1.41 (2H) (m, SiEt), 0.82 (2H), 1.28 (1H), 1.38 (1H) (m, CH₂CH₂), 1.86 (3H), 1.88 (3H), 2.15 (3H), 2.16 (3H) (s, C₅Me₄), 5.56 (1H), 5.58 (1H), 7.18 (2H) (m, C₅H₄), 5.76 (m, 1H, CH₂=CH), 6.11 (m, 2H, CH₂=CH). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) (for the major isomer): $\delta - 3.8$ (SiMe₂), 3.9, 4.4 (SiEt), 7.0, 7.1 (CH₂CH₂), 13.6, 13.7, 16.2, 16.3 (C₅Me₄), 104.0 (C^{ipso}), 116.1, 116.3, 132.8, 133.3 (C_5H_4), 98.6, 131.1, 131.7, 144.0, 144.2 (C5Me4), 132.5, 137.7 $(CH=CH_2)$. ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -7.9 (Si C₅H₄), -3.4 (SiCH=CH₂). MS electron impact (m/e (relative intensity)): 472 (38) $[M^+]$, 436 (40) $[M^+ - Cl]$, 85 (100) $[M^+ - Ti{CH_2CH_2Si(Et)(C_5Me_4)(C_5H_4)}Cl_2], 59 (87)$ $[M^+ - CH = CH_2, -Ti\{CH_2CH_2Si(Et)(C_5Me_4)(C_5H_4)\}$ -Cl₂]. Anal. Calc. for C₂₂H₃₄Cl₂Si₂Ti: C, 55.81; H, 7.24. Found: C, 55.55; H, 7.14%.

5.37. $[Zr\{(CH_2=CH)Me_2SiCH_2CH_2(Et)Si-(\eta^5-C_5Me_4)(\eta^5-C_5H_4)\}Cl_2]$ (24b)

From SiMe₂(CH=CH₂)₂ (0.042 g, 0.37 mmol) and $[Zr{Et(H)Si(\eta^{5}-C_{5}Me_{4})(\eta^{5}-C_{5}H_{4})}Cl_{2}]$ (17b) (0.15 g, 0.37 mmol). Yield: 0.19 g, 98%. IR (KBr): v_{CH} 3047, $v_{CH} = _{CH_2} 1591 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 0.18 (s, 6H, SiMe₂), 1.30 (3H), 1.41 (2H) (m, SiEt), 0.80 (2H), 1.22 (1H), 1.31 (1H) (m, CH_2CH_2), 1.94 (3H), 1.97 (3H), 2.06 (6H) (s, C_5Me_4), 5.67 (1H), 5.71 (1H), 7.02 (2H) (m, C_5H_4), 5.75 (m, 1H, CH₂=CH), 6.13 (m, 2H, CH₂=CH). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): $\delta - 3.8$ (SiMe₂), 4.1, 4.5 (SiEt), 6.9, 7.0 (CH₂CH₂), 12.4, 12.5, 15.0, 15.1 (C₅Me₄), 106.0 (C^{ipso}), 112.6, 112.9, 126.5, 127.0 (C5H4), 98.2, 125.7, 126.3, 135.9, 136.1 (C_5Me_4) , 132.4, 137.8 $(CH=CH_2)$. ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -8.8 (SiC_5H_4) , -3.5 (SiCH=CH₂). MS electron impact (*m/e* (relative intensity)): 516 (17) $[M^+]$, 478 (5) $[M^+ - Cl]$, 85 (100) $[M^+ - Zr{CH_2CH_2Si(Et)(C_5Me_4)(C_5H_4)}Cl_2],$ 59 (89) $[M^+ - CH = CH_2, -Zr \{CH_2CH_2Si(Et)(C_5Me_4) - CH_2Si(Et)(C_5Me_4) - CH_2Si($ (C₅H₄)}Cl₂]. Anal. Calc. for C₂₂H₃₄Cl₂Si₂Zr: C, 51.13; H, 6.63. Found: C, 51.09; H, 6.61%.

5.38. $[Zr\{(Et_3SiCH_2CH_2)_3SiCH_2CH_2(Et)Si-(\eta^5-C_5-Me_4)(\eta^5-C_5H_4)\}Cl_2]$ (25b)

From HSiEt₃ (0.098 g, 0.84 mmol) and $[Zr{(CH₂=$ CH)₃SiCH₂CH₂(Et)Si(η^{5} -C₅Me₄)(η^{5} -C₅H₄))Cl₂] (23b) (0.15 g, 0.28 mmol). Yield: 0.24 g, 97%. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 0.55 (q, 18H, SiCH₂CH₃), 0.97 (t, 27H, SiCH₂CH₃), 1.28 (3H), 1.42 (2H) (m, CpSiEt), 0.4–1.4 (m, 16H, SiCH₂CH₂Si), 1.97 (3H), 1.98 (3H), 2.07 (6H) (s, C₅Me₄), 5.66 (1H), 5.72 (1H), 7.02 (2H) (m, C_5H_4). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): δ 3.6, 4.9 (CpSiEt), 3.0, 7.7 (SiEt₃), 2.9, 3.3, 3.6, 6.9 (CH₂CH₂), 12.4, 15.0, 15.1 (C₅Me₄), 106.6 (C^{ipso}), 112.5, 113.0, 125.5, 126.2 (C5H4), 98.3, 125.6, 127.0, 135.8, 136.2 (C_5Me_4) . ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -9.1 (SiC₅H₄), 8.1 (SiEt₃), 9.6 (SiCH₂CH₂). MS chemical ionization with CH₄ (m/e (relative intensity)): 886 (1) $[M^+]$, 121 (34) $[M^+ Zr{Et_3Si(CH_2CH_2)_3SiCH_2CH_2(Et)Si(C_5H_4)}Cl_2],$ 115 (100) $[SiEt_3^+]$, 87 (33) $[SiEt_2^+]$. Anal. Calc. for C42H82Cl2Si5Zr: C, 56.70; H, 9.29. Found: C, 56.66; H, 9.30%.

5.39. $[Zr\{(Et_3SiCH_2CH_2)Me_2SiCH_2CH_2(Et)Si-(\eta^5-C_5Me_4)(\eta^5-C_5H_4)\}Cl_2]$ (26b)

From HSiEt₃ (0.034 g, 0.29 mmol) and [Zr{(CH₂= CH)Me₂SiCH₂CH₂(Et)Si(η^{5} -C₅Me₄)(η^{5} -C₅H₄)}Cl₂] (**24b**) (0.15 g, 0.29 mmol). Yield: 0.17 g, 91%. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 0.07 (s, 6H, SiMe₂), 0.54 (q, 6H, SiCH₂CH₃), 0.96 (t, 9H, SiCH₂CH₃), 1.27 (3H), 1.40 (2H) (m, CpSiEt), 0.4–1.1 (m, 8H, SiCH₂CH₂Si), 1.96 (3H), 1.97 (3H), 2.06 (6H) (s, C_5Me_4), 5.67 (1H), 5.70 (1H), 7.02 (2H) (m, C_5H_4). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) (for the major isomer): $\delta - 4.3$ (SiMe₂), 4.0,4.6 (CpSiEt), 3.0, 7.6 (SiEt₃), 3.3, 6.1, 6.8, 6.9 (CH₂CH₂), 12.3, 12.4, 15.0, 15.1 (C_5Me_4) , 106.7 (C^{ipso}) , 112.6, 112.9, 126.5, 126.0 (C_5H_4) , 98.3, 125.6, 126.3, 135.9, 136.1 (C_5Me_4) . ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -9.0 (SiC₅H₄), 6.3 (SiCH₂CH₂), 8.2 (SiEt₃). MS electron impact (*m/e* (relative intensity)): 630 (1) [M⁺], 595 (2) $[M^+ - Cl]$, 515 (2) $[M^+ - Et_3Si]$, 481 (4) $[M^+ - Cl, -Et_3Si], 115 (74) [SiEt_3^+], 93 (100)$ $[M^+ - Zr(C_5Me_4)Cl_2, -CH_2CH_2SiMe_2(CH_2CH_2SiEt_3),$ -Et]. Anal. Calc. for C28H50Cl2Si3Zr: C, 53.12; H, 7.96. Found: C, 53.44; H, 8.08%.

5.40. Synthesis of $[Ti\{Cl_2MeSiCH_2CH_2(Me)Si-(\eta^5-C_5Me_4)_2\}Cl_2]$ (29a)

Two drops of the Karstedt catalyst (divinyltetramethylsiloxane Pt(0) in xylene (3-3.5%)) were added to a solution of $[Ti{CH_2=CH(Me)Si(\eta^5 C_5Me_{4}_{2}Cl_{2}$ (0.30 g, 0.70 mmol) in toluene (10 mL) and the mixture was stirred for 10 min at room temperature. To this solution was added dropwise HSiMeCl₂ (0.08 g, 0.70 mmol) and the reaction mixture was stirred for 2 h. The mixture was filtered and volatiles removed from the filtrate under reduced pressure to give the title product as a red crystalline solid (0.37 g, 97%). ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 0.43 (s, 3H, CpSiMe), 0.55 (s, 3H, Cl₂SiMe), 1.00 (2H), 1.31 (2H) (m, CH₂CH₂), 1.64 (6H), 1.65 (6H), 2.06 (6H), 2.09 (6H) (s, C_5Me_4). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): $\delta 0.0$ (CpSiMe), 2.4 (Cl₂SiMe), 4.4, 9.5 (CH₂CH₂), 14.1, 14.2, 16.3, 16.5 (C₅Me₄), 92.1, 128.5, 128.7, 143.2, 143.4 (C_5 Me₄). ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -9.5 (CpSiMe), 33.0 (Cl₂SiMe). MS electron impact (*m/e* (relative intensity)): 546 (11) [M⁺], 508 (23) $[M^+ - Cl], 493 (100) [M^+ - Cl, -Me], 349 (13)$ $[M^+ - CH_2CH_2SiMeCl_2, -Cl, -Me], 321$ (22) $[M^+ CH_2CH_2SiMeCl_2$, -Cl, $-3 \times Me$], 286 (22) $[M^+ CH_2CH_2SiMeCl_2$, $-2 \times Cl_1$, $-3 \times Me$]. Anal. Calc. for C₂₂H₃₄Cl₄Si₂Ti: C, 48.54; H, 6.30. Found: C, 48.33; H, 6.28%.

The preparation of **29b** and **30** was carried out in an identical manner to **29a**.

5.41. [$Zr \{Cl_2MeSiCH_2CH_2(Me)Si(\eta^5 - C_5Me_4)_2\}Cl_2$] (29b)

From HSiMeCl₂ (0.11 g, 0.10 mmol) and $[Zr{CH_2}=CH(Me)Si(\eta^5-C_5Me_4)_2]Cl_2]$ (0.45 g, 0.10 mmol). Yield: 0.55 g, 96%. ¹H NMR (400 MHz, CDCl₃) (for the major

isomer): δ 0.42 (s, 3H, CpSiMe), 0.55 (s, 3H, Cl₂SiMe), 0.99 (2H), 1.32 (2H) (m, CH₂CH₂), 1.75 (6H), 1.76 (6H), 1.99 (6H), 2.02 (6H) (s, C_5Me_4). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): δ 0.1 (CpSiMe), 0.5 (Cl₂SiMe), 4.6, 10.0 (CH₂CH₂), 13.0, 13.1, 15.5, 15.6 (C₅Me₄), 93.0, 124.5, 125.2, 136.1, 136.2 (C_5Me_4). ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -11.0 (CpSiMe), 33.1 (Cl₂SiMe). MS electron impact (*m/e* (relative intensity)): 586 (35) $[M^+]$, 549 (12) $[M^+ - Cl]$, 535 (23) $[M^+ - Cl]$, -Me], 445 (15) $[M^+ - CH_2CH_2SiMeCl_2]$, 304 (100) $[M^+ - Zr(C_5Me_4)Cl_2]$, 280 (40) $[M^+ - C_5Me_4Si(Me)-$ CH₂CH₂SiMeCl₂]. Anal. Calc. for C₂₂H₃₄Cl₄Si₂Zr: C, 44.96; H, 5.83. Found: C, 44.58; H, 5.76%.

5.42. $[Zr \{Cl_2MeSiCH_2CH_2CH_2(Me)Si(\eta^5-C_5Me_4)_2\}$ - Cl_2] (30b)

From HSiMeCl₂ (0.12 g, 0.11 mmol) and [Zr{CH₂= CHCH₂(Me)Si(η^{5} -C₅Me₄)₂Cl₂] (0.52 g, 0.11 mmol). Yield: 0.61 g, 92%. ¹H NMR (400 MHz, CDCl₃) (for the major isomer): δ 0.38 (s, 3H, CpSiMe), 0.67 (s, 3H, Cl₂SiMe), 0.91 (2H), 0.93 (2H), 1.27 (2H) (m, CH₂CH₂CH₂), 1.75 (6H), 1.82 (6H), 2.00 (6H), 2.01 (6H) (s, C_5Me_4). ¹³C{¹H} NMR (100 MHz, CDCl₃) (for the major isomer): $\delta 0.2$ (CpSiMe), 2.2 (Cl₂SiMe), 17.2, 22.2, 25.9 (CH₂CH₂CH₂), 13.0, 13.1, 15.6, 15.7 (C_5Me_4) , 93.0, 124.5, 125.3, 136.1, 136.2 (C_5Me_4) . ²⁹Si{¹H} NMR (79.49 MHz, CDCl₃) (for the major isomer): δ -13.5 (CpSiMe), 31.5 (Cl₂SiMe). MS electron impact (m/e (relative intensity)): 598 (100) [M^+], 564 (14) $[M^+ - Cl]$, 549 (24) $[M^+ - Cl, -Me]$, 486 (13) $[M^+ - SiMeCl_2], 445$ (23) $[M^+ - CH_2CH_2CH_2SiMe-$ Cl₂]. Anal. Calc. for C₂₃H₃₆Cl₄Si₂Zr: C, 45.91; H, 6.03. Found: C, 45.44; H, 6.00%.

5.43. Polymerization of ethylene

The zirconocene catalyst (6 µmol), MAO (10% in toluene) (1800 µmol) and toluene (200 mL) were mixed together for 15 min in a 1 L glass autoclave. The N_2 pressure inside the autoclave was reduced by applying a vacuum. Ethylene pressure of 2 bar was then applied and maintained to the autoclave and stirring of the mixture commenced (1000 rpm). After exactly 15 min, stirring was halted and the ethylene pressure released. Excess MAO was then destroyed by adding cautiously a mixture of methanol/HCl (90:10). The polymer was isolated by filtration and washed with ethanol and dried under vacuum at 90 °C for 16 h.

5.44. X-ray structure determination of [Zr {CH2=CH- $CH_{2}(H)Si(\eta^{5}-C_{5}Me_{4})_{2}Cl_{2}$ (21b)

Data were collected on a Bruker SMART CCDbased diffractometer operating at 50 kV and 30 mA, using $\omega/2\theta$ scan-technique. Absorption corrections were applied using the SADABS program (maximum and minimum transmission coefficients 0.9608 and 0.7384). The structure was solved using the Bruker SHELXTL-PC software by direct methods and refined by full-matrix least-squares methods on F^2 . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions (except H(1) which was located in a difference map), and refined in the riding mode. Weights were optimized in the final cycles. Crystallographic data are given in Table 4.

5.45. X-ray structure determination of [Hf{CH2=CH- $CH_2(H)Si(\eta^5 - C_5Me_4)_2 Cl_2 (21c)$

Data were collected on a Bruker SMART CCDbased diffractometer operating at 50 kV and 100 mA, using $\omega/2\theta$ scan-technique. The structure was solved using the shelxs-97 software by direct methods and refined by full-matrix least-squares methods on F^2 . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions, and refined in the riding mode. Weights were optimized in the final cycles. Crystallographic data are given in Table 4.

Table 4

Crystal data and structure refinement for 21b and 21c

	21b	21c
Formula	C21H30Cl2SiZr	C24.5H34Cl2HfSi
Formula weight	472.66	606.022
<i>T</i> (K)	298(2)	100(2)
Crystal system	monoclinic	monoclinic
Space group	C2/c	P2(1)/c
a (Å)	30.62(3)	18.43380(10)
b (Å)	8.851(10)	10.01510(10)
<i>c</i> (Å)	17.175(18)	26.2604(2)
β (°)	110.58(7)	91.9560(10)
$V(Å^3)$	4357(8)	4845.27(7)
Ζ	8	8
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.441	1.650
$\mu (\mathrm{mm}^{-1})$	0.807	10.513
<i>F</i> (000)	1952	2376
Crystal dimensions (mm)	$0.40\times0.15\times0.05$	$0.25 \times 0.20 \times 0.12$
θ range (°)	2.41 to 25.92	2.40 to 70.48
hkl ranges	$-37 \leqslant h \leqslant 36$,	$-19 \leq h \leq 22$,
	$-9 \leq k \leq 10$,	$-10 \leq k \leq 11$,
	$-14 \leqslant l \leqslant 21$	$-30 \leq l \leq 30$
Data/parameters	4177/256	8816/495
Goodness-of-fit on F^2	0.987	1.026
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0465,$	$R_1 = 0.0509,$
	$wR_2 = 0.1026$	$wR_2 = 0.1146$
R indices (all data)	$R_1 = 0.0905,$	$R_1 = 0.0543,$
	$wR_2 = 0.1182$	$wR_2 = 0.1171$
Largest difference peak and hole (e $Å^{-3}$)	0.507/-0.375	5.825/-4.816

$$\begin{split} R_{1} &= \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \\ wR_{2} &= \{ \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{0.5}. \end{split}$$

6. Supplementary material

Crystallographic data for the structural analyses of **21b** and **21c** have been deposited with the Cambridge Crystallographic Data Centre, CCDC 261467 and 261468. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgements

We gratefully acknowledge financial support from the Ministerio de Educación y Ciencia, Spain (Grants No. BQU2002-04638-C02-01 and MAT2003-05345), the Junta de Comunidades de Castilla-La Mancha (PAC-02-003 and PAI-02-010), the Comunidad de Madrid (GR/MAT/0929/2004) and the Universidad Rey Juan Carlos (GVC-2004-12). We also thank Repsol-YPF for their assistance in the polymer analysis.

References

- [1] See for example: (a) H.G. Alt, A. Köppl, Chem. Rev. 100 (2000) 1205;
 - (b) G.W. Coates, Chem. Rev. 100 (2000) 1223;
 - (c) L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 100 (2000) 1253;
 - (d) H.H. Brintzinger, D. Fischer, R. Mülhaupt, B. Reiger, R.M. Waymouth, Angew. Chem., Int. Ed. Engl. 36 (1995) 1143.
- [2] (a) E.W. Abel, F.G.A. Stone, G. Wilkinson, M.F. Lappert (Eds.), 2nd ed., Comprehensive Organometallic Chemistry, 4, Pergamon Press, Oxford, 1995;

(b) B. Rieger, G. Jany, R. Fawzi, M. Steimann, Organometallics 13 (1994) 647.

- [3] See for example: (a) S.L.J. Conway, T. Dijkstra, L.H. Doerrer, J.C. Green, M.L.H. Green, A.H.H. Stephens, J. Chem. Soc., Dalton Trans. (1998) 2689;
 - (b) J.H. Shin, G. Parkin, Chem. Commun. (1999) 887;

(c) H. Lee, B.M. Bridgewater, G. Parkin, J. Chem. Soc., Dalton Trans. (2000) 4490;

- (d) P.J. Shapiro, Coord. Chem. Rev. 231 (2002) 67;
- (e) C.E. Zachmanoglou, A. Docrat, B.M. Bridgewater, G. Parkin,
- C.G. Brandow, J.E. Bercaw, C.N. Jardine, M. Lyall, J.C. Green, L.B. Keisten, J. Am. Cham. Soc. 124 (2002) 0525.
- J.B. Keister, J. Am. Chem. Soc. 124 (2002) 9525;
- (f) L. Labella, A. Chernega, M.L.H. Green, J. Chem. Soc., Dalton Trans. (1995) 395.

- [4] (a) G.C. Hlatky, Chem. Rev. 100 (2000) 1347;
 (b) B.Y. Lee, J.S. Oh, Macromolecules 33 (2000) 3194;
 (c) M. Galan-Fereres, T. Koch, E. Hey-Hawkins, M.S. Eisen, J. Organomet. Chem. 580 (1999) 145;
 (d) B.Y. Lee, J.S. Oh, J. Organomet. Chem. 552 (1998) 313.
- [5] See for example: (a) J. Tian, Y. Soo-Ko, R. Metcalf, Y. Feng, S. Collins, Macromolecules 34 (2001) 3120;
 (b) L.K. Van Looveren, D.F. Geysen, K.A. Vercruysse, B.H. Wouters, P.J. Grobet, P.A. Jacobs, Angew. Chem., Int. Ed. 37 (1998) 517;
 (c) J. Tudor, D. O'Hare, Chem. Commun. (1997) 603;
 (d) N. Suzuki, J. Yu, N. Shioda, H. Asami, T. Nakamura, T. Huhn, A. Fukuoka, M. Ichikawa, M. Saburi, Y. Wakatsuki, Appl. Catal. A 224 (2002) 63;
 (e) C.J. Miller, D. O'Hare, Chem. Commun. (2004) 1710.
- [6] (a) H.G. Alt, R. Ernst, I. Böhmer, J. Mol. Catal. A 191 (2003) 177;
 - (b) H.G. Alt, R. Ernst, Inorg. Chim. Acta 350 (2003) 1;
 (c) H.G. Alt, R. Ernst, J. Mol. Catal. A 195 (2003) 11.
- [7] D. Seyferth, R. Wyrwa, US Pat. 5969073, 1999.
- [8] (a) A. Antiñolo, I. López-Solera, I. Orive, A. Otero, S. Prashar, A.M. Rodríguez, E. Villaseñor, Organometallics 20 (2001) 71; (b) A. Antiñolo, I. López-Solera, A. Otero, S. Prashar, A.M. Rodríguez, E. Villaseñor, Organometallics 21 (2002) 2460; (c) C. Alonso-Moreno, A. Antiñolo, I. López-Solera, A. Otero, S. Prashar, A.M. Rodríguez, E. Villaseñor, J. Organomet. Chem. 656 (2002) 129; (d) A. Antiñolo, R. Fernández-Galán, I. Orive, A. Otero, S. Prashar, Eur. J. Inorg. Chem. (2002) 2470; (e) A. Antiñolo, M. Fajardo, S. Gómez-Ruiz, I. López-Solera, A. Otero, S. Prashar, A.M. Rodríguez, J. Organomet. Chem. 683 (2003) 11; (f) A. Antiñolo, R. Fernández-Galán, B. Gallego, A. Otero, S. Prashar, A.M. Rodríguez, Eur. J. Inorg. Chem. (2003) 2626; (g) A. Antiñolo, R. Fernández-Galán, A. Otero, S. Prashar, I. Rivilla, A.M. Rodríguez, M.A. Maestro, Organometallics 23 (2004) 5108. [9] A. Antiñolo, M. Fajardo, S. Gómez-Ruiz, I. López-Solera, A.
- Otero, S. Prashar, Organometallics 23 (2004) 4062. [10] T. Koch, S. Blaurock, F.B. Somoza, A. Voigt, R. Kirmse, E.
- Hey-Hawkins, Organometallics 19 (2000) 2556. [11] C. Takayama, Y. Yamaguchi, T. Mise, N. Suzuki, J. Chem. Soc.,
- Dalton Trans. (2001) 948.
- [12] N. Suzuki, Y. Masubuchi, Y. Yamaguchi, T. Kase, T.K. Miyamoto, A. Horiuchi, T. Mise, Macromolecules 33 (2000) 754.
- [13] (a) J.L. Speier, Adv. Organomet. Chem. 17 (1979) 407;
 (b) L.N. Lewis, J. Am. Chem. Soc. 112 (1990) 5998.
- [14] S.W. Krska, D. Seyferth, J. Am. Chem. Soc. 120 (1998) 3604.
- [15] S. Gómez-Ruiz, Doctoral Thesis, Univ. Rey Juan Carlos, 2004.
- [16] R. Andrés, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, Eur. J. Inorg. Chem. (2002) 2281.
- [17] H. Zhu, G.-X. Jin, N. Hu, J. Organomet. Chem. 655 (2002) 167.
- [18] T.K. Panda, M.T. Gamer, P.W. Roesky, Organometallics 22 (2003) 877.