New Reactions of Precious Metals and their Binary Compounds in Solvents containing Carbon Halides Neale R. C. Jackson, W. David Harrison, and David C. Goodall* Department of Inorganic and Structural Chemistry, University of Leeds, Leeds LS2 9JT, U.K. Several precious metals and their binary compounds react with CCl₄, CBr₄, CPh₂Cl₂, CPhCl₃, or C(CN)₂Cl₂ in dimethyl sulphoxide, dimethylformamide, or dimethylacetamide, and with carbon halides in ethanol or acetaldehyde containing added ligand. Precious metals are well known for their general resistance to attack by solvents. We report several new reactions which precious metals and their binary compounds undergo with the solvents dimethyl sulphoxide (dmso), dimethylformamide (dmf), and dimethylacetamide (dma) containing dissolved CCl₄, CBr₄, CPh₂Cl₂, CPhCl₃, or C(CN)₂Cl₂. Parker¹ has described how redox reactions involving copper(II) or iron (III) allow the ready dissolution of silver and gold in dmso or dmf. We find that addition of CCl₄ speeds up the reaction of Ag or Ag₂O with oxidants Cu^{II}, Fe^{III}, Ru^{III}, Rh^{III}, and Ir^{IV} in dmso or dmf in the presence of added halide. The oxidant is continuously regenerated under such conditions, even in the absence of added halide, with consumption of CCl₄, according to Scheme 1. In the case of Ag₂O, oxygen is evolved. Solutions of CCl₄ in a range of solvents oxidise Cu^I to Cu^{II} (see ref. 2) and also oxidise many base metals.³ At slightly elevated temperatures, we have found that solutions containing carbon halides react directly with several precious metals and their compounds. Ag reacts readily with CCl₄ or CBr₄ in dmso at 80 °C to form AgX₂⁻ (X = Cl, Br), but Au reacts only with CBr₄ in dmso, forming AuBr₄⁻. Pd reacts slowly with CCl₄ in dmso, forming PdCl₂·2dmso, and with CBr₄ in dmf, forming PdBr₂·2dmf. The carbon halide solutions do not react with Ru, Rh, or Pt. PdO and PtO₂ react slowly with CBr₄ in dmf at 100 °C, forming PdBr₂·2dmf and PtBr₄·2dmf, respectively. Ag₂O, Ag₂S, Ag₂Se, and Ag₂Te react with CBr₄ in dmf, forming AgBr₂⁻. Au₂O₃ also reacts with CBr₄ in dmf, to form AuBr₄⁻. No reaction was observed between CCl₄ in dmf $$Ag + \underbrace{M^x \xrightarrow{dmso}} AgX_2^- + \underbrace{M^y}$$ Scheme 1. For Cu, $x = \Pi$, y = I; for Fe, Ru, $x = \Pi I$, $y = \Pi$; for Rh, $x = \Pi I$, y = I; for Ir, x = IV, y = III. and Ru, Rh, Rh₂O₃, Rh₂S₃, Ir₂S₃, PdO, PdS, PtO₂, PtS₂, Ag₂S, Ag₂Se, or Ag₂Te, or between CBr₄ in dmf and Rh₂O₃, Rh₂S₃, Ir₂O₃, Ir₂S₃, PdS, or PtS₂. CPh₂Cl₂ in dma at 110 °C reacts with Rh, Pd, Pt, and Ag, forming RhCl₃·3dma, PdCl₂·2dma, PtCl₂·2dma, and AgCl₂-, respectively. This system also reacts with PdO and PtO₂, forming PdCl₂·2dma and PtCl₄·2dma, but no reaction was observed with Ru, Rh₂O₃, or Ir₂O₃. CPh₂Cl₂ in dma at 60 °C reacts readily with Ag₂O, Ag₂S, and Au₂O₃. CPh₂Cl₂ in dmf reacts readily with Ag₂Se and Ag₂Te, forming AgCl₂-, but no reaction was observed with Rh₂S₃, Ir₂S₃, PdS, or PtS₂. Pd dissolves in a solution of CPh₂Cl₂ in thiophene, forming PdCl₂·2(C₄H₄S), but no reaction occurs when a solution of CPh₂Cl₂ in tetrahydrofuran is used. Ag_2O reacts very readily with CPhCl₃ in dma, but not with CPh₃Cl in dma. $C(CN)_2Cl_2$ in dmf at 100 °C reacts with Rh, PdO, Pt, and PtO₂, forming RhCl₃·3dmf, PdCl₂·2dmf, PtCl₂·2dmf, and PtCl₄·2dmf, respectively, but no reaction occurs with Ru, Rh₂O₃, or Ir_2O_3 . PdO, PtO₂, and Ag₂O dissolve in solvents such as EtOH or MeCHO containing CCl₄ and a ligand such as 1,10-phenanthroline (phen) or triphenylphosphine (tpp), forming complexes PdCl₂·tpp, PtCl₂·2tpp, AgCl·tpp, PdCl₂·phen, PtCl₄·phen, and 2AgCl·phen. No reaction was observed in the case of RuO₂, RuS₂, Rh₂O₃, Rh₂S₃, Ir₂O₃, Ir₂S₃, PdS, PtS₂, Ag₂S, or Ag₂Se. Kleinberg² originally referred to the possible involvement of a carbene in the reaction of copper(1) with dmso-CCl₄, and Tezuka⁴ recently supported this idea. We have isolated tetraphenylethylene from reactions of metals with dma-CPh₂Cl₂ and *trans*-dichlorostilbene from reactions of metals with dma-CPhCl₃, in the absence of oxygen. This indicates that reaction proceeds through a carbene intermediate. In the presence of oxygen or air, reaction products include CO and CO₂, Ph₂CO, and PhCOCl from solvents containing CCl₄, CPh₂Cl₂, and CPhCl₃, respectively. We are grateful to the S.E.R.C. for the award of a CASE studentship (to N. R. C. J.), and to the British Petroleum Company P.L.C. for their support as the Co-operating Body. Received, 28th January 1988; Com. 8/00312B ## References - A. J. Parker, Australian Patent PCT/AU81/00096. R. R. Lavine, R. T. Iwamoto, and J. Kleinberg, J. Am. Chem. Soc., 1966, 88, 4304. - 3 I. P. Lavrentev and M. L. Khidekel, Inst. Khim. Fiz. Cherngalavka, 1983, 52, 337. - 4 Y. Tezuka, M. Miya, A. Hashimoto, and K. Imai, J. Chem. Soc., Chem. Commun., 1987, 1642.