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AbsWact: Upon exposure to methoxymethylamine and BOP, the stable hydroxybenzotriazolyl amide of 
TrPbeOH was isolated instead of the expected Weinreb amide. "Ibis amide behaves as an active amide 
similar to the Weinreb amide and could be used, among others, for the synthesis of t-Bu esters. Reaction 
of N-trityl seine and threonine led to the corresponding ~-laclones in unprecedented high yields. 
Copyright © 1996 Elsevier Science Ltd 

In our ~ h  on peptidomimetics containing alkene dipeptide isosteres, we were interested in the synthesis of 
the alkene dipeptide isostere of Phe-Phe. This dipeptide sequence is e.g. found in the neuropeptide Substance 
p l .  Previously, we have employed the [2,3]-Wittig-Still rearrangement as the key reaction step in the 
preparation of alkene dipeptide isosteres of Phe-Gly and Gly-Ala 2. In a retrosynthetic approach (Scheme 1) 

towards the synthesis of the alkene dipeptide isostere of Phe-Phe viz, Phev[E-CH--CH]Phe, we envisioned 

using the Weinreb amide 13 of N-trityl phenylalanine as a starting material. 

Phe~[E-CH=CHIPhe 

[2,3]-Watig rearrangement 
,~, 

H OH H O H O 

Scheme 1. Retrosynthesis of Phe~[E-CH=CHIPhe via a [2,31-Wittig rearrangement. 

Since synthesis of the Weinreb amide of Boe-phenylalanine has been described in the literature 'l, we did not 
anticipate any problems in the preparation of the corresponding amide derived from Tr-phenylalanine. We 
preferred to use the trityl group as an amino protecting group, since it has proved to be advantageous in our 
approach to the earlier reported alkene dipeptide isosteres 2. Unfortunately, treatment of TrPheOH with 
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methoxymethylamine by the method of Fehrentz 4 using BOP/Et3N in dichloromethane did not result in the 
desired methoxymethylamide 1. Instead, after workup, a mixture of two products was obtained, which were 
separated by column chromatography and identified as the hydroxybenzotriazole ester 2 and the 
hydroxybenzotriazolyl amide 3 of N-trityi phenylalanine 5. Reaction of TrPheOH with BOP/Et3N in 
dichloromethane in the absence ofmethoxymethylamine furnished the same products in a combined yield of 
80% (Scheme 2). After column chromatography one compound was obtained as a yellow oil (45%) whereas the 
other formed nice crystalline needles (55%, Scheme 2). 

H F H 0 N:-N H 0 B'~3N T~v]~o. BOPIEI3N I TIll ..v~,l~, ~ T~.~N + 
O 

2 3 

Scheme 2 

Since it was not possible to assign unambiguously the structure of either the HOBt-ester 2 or amide 3 to the 
thus obtained compounds using NMR and IR spectroscopy and literature data are confusing in this respect 6, we 
decided to subject the crystalline compound to an X-ray crystallographic analysis. It was found that this 
compound was the HOBt-amide 3 (Figure 1) and - as expected - the thermodynamically more stable compound, 
since upon storage (1-3 weeks) the ester completely rearranged to the amide. Therefore, after a second 
purification step hydroxybenzotriazolyl amide 3 could be obtained in an overall yield of 76%. 

Figure 1. X-ray structure of the HOBt-amide 3 

Indeed, when hydroxybenzotriazole is present, as part of the reagent or as an additive in the reaction mixture, 
amino acid HOBt-esters or HOBt-amides are likely intermediates during peptide coupling reactions. However, 
in the case of Cbz- or Boc-protected amino acids these reactive species were never isolated because of their 
instability during workup 7. The relative stability of the HOBt-ester and amide derived from N-trityl amino 
acids, as compared to the corresponding derivatives from N-Boc or N-Cbz amino acids, is rather remarkable. It 
seems that the electron donating properties of the trityl group are sufficient for a decrease of the positive charge 
of the carbonyl-carbon to the extent that the HOBt-esters or amides of N-trityl amino acids are "armed" against 
attacks of nucleophiles like for example methoxymethylamine. By the same token, the Boc and Cbz group, by 
the virtue of their electron withdrawing properties, "disarm" Boc- or Cbz amino acids and the corresponding 
HOBt-ester or amides will be more sensitive for nucleophilic attack 8. 

Since the HOBt-amides of N-trityi amino acids are both sufficiently stable and reactive, we consider 
them as interesting and possibly versatile alternatives of the Weinreb active amide. Therefore, a few 
preliminary experiments were carried out to corroborate this. For instance, the traditional use of Weinreb 
amides derived from amino acids for selective reduction to the corresponding et-amino aldehydes prompted us 
to reduce HOBt-amide 3 with DIBALH. Indeed, we obtained N-tritylphenylalaninal in 70% yield along with 
30% of N-tritylphenylalaninol. Methanolysis of HOBt-amide 3 with Tesser's base resulted in quantitative 
formation of N-tritylphenylalanine methylester. More interestingly, treatment of HOBt-amide with two 
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equivalents of KOtBu in THF gave the t-Bu ester in 90% yield. (Scheme 3). This represents a valuable addition 
to the existing methods for the preparation of t-Bu esters, many of which take place under acidic condtions 9. 
Disappointingly, although TLC of the reaction of the lithium derivative of 3-phenyl-l-propyne with the 
hydroxybenzotriazolyl amide 3 indicated a clean conversion, the desired alkyne 4 (Scheme 1) turned out to be 
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unstable upon work-up 10. 
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Scheme 3. Scheme 4. 

Although similar results were obtained for alanine, in attempts to prepare the HOBt-amide of N-trityl serine 

and threonine for further conversion to the corresponding t-Bu ester, we isolated quite unexpectedly the ~- 
lactones of serine and threonine in very high yield, viz. 95 and 92% respectively II (Scheme 4). Unfortunately, 
treatment of the ~-lactone of serine with KOtBu in THF did not afford the corresponding t-Bu ester but led to 
formation of the dehydroalanine derivative. Deprotection of 7 with TFA/CH2C12 in the presence of one 
equivalent of p-TsOH according to the procedure described by Vederas 15 yielded the stable TsO-salt of serine- 

~-lactone in a quantitative yield. 

The need for a high yielding synthesis of the I]-lactones 7 and 8 is demonstrated by a number of recent 
publications in which these compounds are used as key synthons. They are important starting materials in the 
synthesis of natural products 12 and of p-substituted alanines 13. In addition, they are used as monomers in 
polymer chemistry 14. 

Vederas and coworkers have described the synthesis of N-Boc and N-Cbz protected serine-~-lactone in 

60-80% yield using the Mitsunobu reaction. It was only possible to prepare N-sulfene protected [3-1actones of 
threonine and allo-threonine, in a moderate yield of 45 - 55%, by activating the carboxylgroup with 4- 

bromobenzenesulfonyl chloride in pyridine followed by ring closure 15. The N-trityl protected serine-[~-lactone 
has been described by Sheehan 16, who established cyclisation using DIC in 15% yield. To our knowledge, 
higher yields were never reported, which was one of the reasons to disclose these rather unexpected results. 

In summary, in attempts to synthesize the Weinreb active amide of N-trityl protected amino acids, we 
have isolated an equilibrium mixture of a HOBt-ester and HOBt-amide. The equilibrium can be shifted towards 
the amide, which can be considered as a versatile alternative of the Weinreb active amide. In addition to the 
usual reactions of the Weinreb active amide, the HOBt-amide can be used for the preparation of t-butyl esters. 
Reaction of N-trityl serine or N-trityl threonine with BOP led to the highest yields of the corresponding [3- 

lactones reported thus far. 
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