

Available online at www.sciencedirect.com

INORGANIC CHEMISTRY COMMUNICATIONS

Inorganic Chemistry Communications 8 (2005) 41-43

www.elsevier.com/locate/inoche

Preparation and characterization of carboximidate iron(II) complexes

Liyi Chen^a, Wen Zhang^a, Shuping Huang^b, Xianglin Jin^c, Wen-Hua Sun^{a,*}

^a Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials, The Chinese Academy of Sciences,

Institute of Chemistry, Zhongguancun, Beiyijie, Beijing 100080, PR China

^b School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China

^c Institute of Physical Chemistry, Peking University, Beijing 100871, PR China

Received 4 January 2004; accepted 24 October 2004 Available online 24 November 2004

Abstract

The reactions of $C_5H_4NCH=NNHC(=O)Ph$ (1) with Fe(II) chloride gave $[Fe_2(C_5H_4NC(OEt)=NNHC(=O)Ph)_2(\mu-OEt)_2Cl_2]$) (2) in ethanol and $[Fe_2(C_5H_4NC(OMe)=NNHC(=O)Ph)_2(\mu-OMe)_2Cl_2]$ (3) in methanol as well as $[Fe(C_5H_4NCH=NNHC(=O)Ph)Cl_2]$ (4) in tetrahydrofuran, respectively. The X-ray diffraction analysis reveals their structures and complex 4 is proposed as an intermediate of formation of complexes 2 and 3.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Carboximidate; Fe(II) complex; Crystal structure

Imino-containing compounds have drawn much attention due to their biological activities and organic synthesis considerations [1–3]. Because of the pharmaceutical applications, the structure unit of carboximide ester has recently been explored as a useful intermediate in organic syntheses [4–7]. A distinct example was forming copper complexes containing benzoylpyridin-2-ylmethylene-hydrazide derivatives [8]. In this paper, the extensive reactions of $C_5H_4NCH=NNHC(=O)Ph$ (1) [9] with Fe(II) chloride in various solvents give three complexes 2–4 (Scheme 1).

Benzoylpyridin-2-yl-methylene-hydrazide (1) reacted with stoichiometric amount of $FeCl_2 \cdot 4H_2O$ to form complexes 2 in ethanol, 3 in methanol and 4 in tetrahydrofuran (THF), respectively. The complex 4 reacted with alcohol to form the complexes 2 and 3. Their crystals were obtained by diffusing ethyl ether into the reactant solution.

E-mail address: whsun@iccas.ac.cn (W.-H. Sun).

All complexes were carefully investigated by elemental analysis, spectral characterization as well as singlecrystal determination. According to complexes 2^{1} and 3^{2} , the infrared spectra showed the lower frequency

² Complex **3**. Brown crystals, 33%. $C_{30}H_{32}N_6O_6Fe_2Cl_2$ Calc. (found): C, 47.71 (47.72); H, 4.27 (3.98); N, 11.13 (11.02). IR (cm⁻¹, KBr): 2958 (w), 2922 (w), 2818 (w, CH₃), 1631 (s, C=O), 1511 (m, C=N), 1375 (s), 1335 (s, C–O–C). M_p : >300 °C. μ_{eff} = 4.46 μ_B M = 755.22, monoclinic, a = 11.125(2), b = 9.2402(18), c = 16.402(3) Å, β = 100.67(3), V = 1656.9(6) Å³, T = 293(2) K, Space group P2(1)/c, Z = 2, number of collected reflections = 5076, number of independent reflections = 2887, R (F^2) = 0.0291, wR = 0.0232. Full crystallographic detail was deposited at the Cambridge Crystallographic Data Centre with number CCDC 220811.

^{*} Corresponding author. Tel.: 86 10 62557955; fax: +86 10 62618239.

^{1387-7003/\$ -} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.inoche.2004.10.019

¹ Complex **2**. Brown crystals, 11%. $C_{34}H_{40}N_6O_6Fe_2Cl_2$ Calc. (found): C, 50.33 (50.27); H, 4.97 (4.74); N, 10.36 (10.34). IR (cm⁻¹, KBr): 2964 (w), 2931 (w), 2878 (w, CH₃, CH₂), 1632 (s) (C=O), 1511 (m, C=N), 1371 (s), 1322 (s, C–O–C). M_p : >300 °C. μ_{eff} = 4.40 μ_{B} . M = 811.32, orthorhombic, a = 18.535(4), b = 10.503(2), c = 18.433(4) Å, V = 3588.4(12) Å³, T = 293(2) K, Space group Pbcn, Z = 4, number of collected reflections = 21837, number of independent reflections = 4060, R (F^2) = 0.0388, wR = 0.0552. Full crystallographic detail was deposited at the Cambridge Crystallographic Data Centre with number CCDC 220810.

Scheme 1. Synthesis of compounds.

and intensity for v(C=0) of the complexes (1632 cm⁻¹ for **2**; 1631 cm⁻¹ for **3**) compared to the ligand **1** (1684 cm⁻¹), this confirmed the coordination of C=O with Fe(II). Due to the coordination of nitrogen atom in the both complexes, the bands of v(C=N) also shift (1532 cm⁻¹ for **1**; 1511 cm⁻¹ for **2**; 1511 cm⁻¹ for **3**). In addition, several new absorptions appeared between 2800 and 2960 cm⁻¹ ($v(-CH_3, -CH_2)$) and 1320–1375 cm⁻¹ (v(C=O)) for the complexes. In their single crystal

Fig. 1. Structure of complex **2**, 30% probability ellipsoids, H atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Fe(1)–O(3) 1.9642(18), Fe(1)–O(3A) 2.0639(19), O(1)–C(7) 1.290(3), O(2)–C(6) 1.318(3), O(2)–C(14) 1.441(3), N(1)–C(6) 1.284(3), N(1)–N(2) 1.386(3), N(2)–C(7) 1.319(3) and O(1)–Fe(1)–N(1) 74.41(9), O(3)–Fe(1)–N(3) 102.69(9), N(1)–Fe(1)–N(3) 74.02(10), O(3A)–Fe(1)–Cl(1), 169.41(6).

structures, the complexes 2 and 3 both contained the two six-coordinated Fe(II) cations bridged by two alkoxy groups (Figs. 1 and 2).

Looking at the ligand moiety, a substitution reaction happens at C(6) atom by alkoxy group which is *trans* to Fe(II) ion due to the coordination of pyridine moiety. In the complex **2**, as the example, the bond between C(6) and N(1) atoms remains double bond (C(6)=N(1), 1.284(3) Å). Interestingly, the O(2)–C(6) bond length is 1.318(3) Å, much shorter than the single bond length of O(2)–C(14) (1.441(3) Å). The similar phenomena were previously observed in carboximide ester [10].

Fig. 2. Structure of complex **3**, 30% probability ellipsoids, H atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Fe(1)–O(2) 1.936(2), Fe(1)–O(2A) 2.058(3), O(1)–C(8) 1.299(5), O(3)–C(6) 1.344(5), O(3)–C(16) 1.464(4), N(2)–C(6) 1.257(5), N(2)–N(3) 1.384(5), N(3)–C(8) 1.332(6) and O(2)–Fe(1)–O(1) 106.40(12), O(1)–Fe(1)–N(2) 76.66(15), O(2)–Fe(1)–N(1) 102.46(14), N(2)–Fe(1)–N(1) 72.83(16), O(2A)–Fe(1)–Cl(1), 169.95(9).

Fig. 3. Structure of complex **4**, 30% probability ellipsoids, H atoms omitted for clarity. Selected bond lengths (Å) and bond angles (°): Fe(1)-O(1) 2.003(3), Fe(1)-N(2) 2.106(3), Fe(1)-O(2) 2.113(3), Fe(1)-N(3) 2.137(3), Fe(1)-Cl(1) 2.2335(12), Fe(1)-Cl(2) 2.3217(14), O(1)-C(1) 1.274(4), N(1)-C(1) 1.330(5), N(1)-N(2) 1.373(4), N(2)-C(8) 1.272(5) and O(1)-Fe(1)-N(2) 74.23(12), N(2)-Fe(1)-N(3) 74.35(13), O(2)-Fe(1)-Cl(1) 88.72(9).

The bond length of O(1)-C(7) (1.290(3) Å) is between the typical single bond $C(sp^3)-O$ (1.34 Å) and double bond $C(sp^2) = (1.21 \text{ Å})$ [11]. In addition, the N(1)-N(2) (1.386(3) Å) and N(2)-C(7) (1.319(3) Å) have part characters of double bonds, which is similar to its Cu(II) analogue reported by Pal et al. [8]. Therefore extended conjugated system is present in the resultant iron complex.

The complex 4³ (Fig. 3) was formed in the stoichiometrical reaction of the ligand 1 with FeCl₂ in THF. The complex 4 is mononuclear with a coordinated water molecule. The complex 4 reacted with ethanol or methanol to yield the complexes 2 and 3. Therefore complex 4 is postulated as an intermediate in forming complexes 2 and 3 with nucleophilic attack of alkoxy on -CH=Nof complexes 4. The effective magnetic moment μ_{eff} of complexes 2, 3 and 4 were measured with the values of 4.40, 4.46 and 5.46 $\mu_{\rm B}$, respectively. It proved that those iron complexes were all high-spin species having the configuration $(t_{2g})^4 (e_g)^2$.

In general, hydrazine-derived Schiff-base ligands could easily coordinated with transition metals, and the polarity of H—C bond in H—C=N—M is increased for easy substitution with alkoxy group. This helps to understand the formation of carboximide ester in the copper complexes [8], and more importantly the extensiveness to other transition metals. Therefore this provides a convenient method for the transformation of —CH=N group into carboximide ester.

Acknowledgement

The project was supported by NSFC No. 20272062.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version at doi:10.1016/j.inoche.2004.10.019.

References

- [1] R. Bloch, Chem. Rev. 98 (1998) 1407.
- [2] S. Kobayashi, H. Ishitani, Chem. Rev. 99 (1999) 1069.
- [3] G.K. Friestad, Tetrahedron 57 (2001) 5461.
- [4] R.H.B. Galt, P.B. Hitchcock, S.J. Mccarthy, D.W. Young, Tetrahedron Lett. 37 (1996) 8035.
- [5] K. Unegama, J. Hao, H. Amii, Tetrahedron Lett. 39 (1998) 4079.
- [6] S. Kim, C.J. Lim, C. Song, W. Chung, J. Am. Chem. Soc. 124 (2002) 14306.
- [7] P.E. Maligres, S.A. Weissman, V. Upadhyay, S.J. Cianciosi, R.A. Reamer, R.M. Purick, J. Sager, K. Rossen, K.K. Eng, D. Askin, R.P. Volante, P.J. Reider, Tetrahedron 52 (1996) 3327.
- [8] S. Pal, N.R. Sangeetha, S.N. Pal, Polyhedron 19 (2000) 2713.
- [9] D.G. Paschalidis, I.A. Tossidis, M. Gdaniec, Polyhedron 19 (2000) 2629.
- [10] C.S. Chin, D. Chong, B. Lee, H. Jeong, G. Won, Y. Do, Y.J. Park, Organometallics 19 (2000) 638.
- [11] J. March, Advanced Organic Chemistry, fourth ed., Wiley-Interscience, New York, 1992, p. 21.

³ Complex 4. Red crystals, 20%. C₁₃H₁₁N₃OFeCl₂ Calc. (found): C, 44.36 (44.28); H, 3.15 (3.25); N, 11.94 (11.84). IR (cm⁻¹, KBr): 1624(s, C=O), 1523 (s, C=N). $M_{\rm p}$: 132 °C (Dec.). $v_{\rm eff} = 5.46 v_{\rm B}$. C₁₃H₁₁Cl₂Fe N₃O · H₂O, M = 370.01, monoclinic, a = 14.390(3), b = 7.1480(14), c = 15.002(3) Å, $\beta = 106.70(3)^\circ$, V = 1478.0(5) Å³, T = 123(2) K, Space group P2(1)/n, Z = 4, number of collected reflections = 5827, number of independent reflections = 2593, R (F^2) = 0. 0491, wR = 0.0867. Full crystallographic detail was deposited at the Cambridge Crystallographic Data Centre with number CCDC 220812.