Fast Oxidation of Organic Sulfides by Hydrogen Peroxide by In Situ Generated Peroxynitrous Acid**

Stéphane Vayssié and Horst Elias*

Dedicated to Professor Bernt Krebs on the occasion of his 60th birthday

The oxidation of organic sulfides RSR' by hydrogen peroxide to form sulfoxides and, in a consecutive slower step, sulfones is a well established procedure.^[1] The rate of such oxidations can be enhanced by the use of organic peroxides or peroxy acids instead of H_2O_2 and, catalytically, by the activation of H_2O_2 through coordination to metal centers.^[1] The reaction of H_2O_2 with nitrous acid at low pH leads to peroxynitrous acid ONOOH,^[2] an isomer of nitric acid which is a much more powerful oxidant than H_2O_2 .^[3] The use of ONOOH for the oxidation of organic substrates is limited by the fact, however, that this peroxy acid is an unstable species that isomerizes at ambient temperature with a half-life of about 1 s to form nitric acid. Since ONOOH is also generated by the reaction of superoxide with NO, its role in biological systems is currently of great interest.^[4]

The peroxynitrite anion $ONOO^-$ is considerably more stable than the acid ONOOH. As a result, most of the studies with the oxidant peroxynitrous acid have been carried out in such a way that, after the fast generation of ONOOH from H_2O_2 and HNO_2 at low pH,^[2] the decay of ONOOH was blocked by the addition of alkali. The cooled, stable alkaline peroxynitrite solutions thus prepared were taken as stock material.^[5] The approach presented here is basically different in that the short-lived oxidant ONOOH is generated in situ as a very reactive intermediate according to Equation (1). This

$$HNO_2 + HOOH \xrightarrow{k_{\rm f}} ONOOH + H_2O \tag{1}$$

 $ONOOH \xrightarrow{k_d} HNO_3$

$$A + ONOOH \xrightarrow{k_A} A = O + HNO_2$$
(3)

(2)

reaction is a fast process. After its generation, ONOOH is used for the fast second-order oxidation of suitable organic substrates A [Eq. (3)]. The oxidation competes with the decay of ONOOH [Eq. (2)]. As a consequence, this approach is applicable only when the rate of reaction (3) is higher than that of (2), that is when $k_A[A]$ is much greater than k_d . One should note that reactions (1) and (3) form a catalytic cycle, in which the catalyst HNO₂ converts H₂O₂ into the more powerful oxidant ONOOH. The number of cycles is controlled by the competition between reactions (2) (decay

2088

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998

of ONOOH) and (3) (oxidation of the substrate by ONOOH).

For solubility reasons, organic substrates require organic media. To our knowledge, the generation of ONOOH according to Equation (1) in organic media has not yet been investigated. The time dependence of the absorbance at 260 nm for the reaction of H_2O_2 with HNO₂ in acetonitrile ^[6] at 293 K is shown in Figure 1.^[7] The fast formation of

Figure 1. Time dependence of the absorbance at 260 nm for the reaction of H_2O_2 with nitrous acid in acetonitrile at 293 K ($[H_2O_2] = 5 \text{ mM}$, $[NaNO_2] = 0.5 \text{ mM}$, $[HCIO_4] = 0.1 \text{ M}$, I = 0.6 M (NaClO₄), $[H_2O] = 5 \text{ M}$). The rate constants $k_t = 1.2 \text{ s}^{-1}$ and $k_d = 0.61 \text{ s}^{-1}$ for the formation and decay of peroxynitrous acid were obtained from the sum of two exponentials^[7] (solid line).

ONOOH with an experimental pseudo-first-order rate constant $k_{\rm f} = 1.2 \pm 0.2 \, {\rm s}^{-1}$ is followed by its first-order decay to HNO₃ with $k_{\rm d} = 0.61 \pm 0.05 \, {\rm s}^{-1}$. Under comparable conditions, the rate constant $k_{\rm d}$ for the reaction in water is $1.07 \pm 0.05 \, {\rm s}^{-1}$.^[9] This means that acetonitrile (with an admixture of $5 \,{\rm M} \,{\rm H}_2 {\rm O}$) is suitable for the generation of ONOOH according to Equation (1), and that the rate of decay of ONOOH in acetonitrile is close to that in water.

We have tested the practical applicability of in situ generated peroxynitrous acid as an oxygen-transfer agent in acetonitrile for several classes of organic substrates under standardized conditions.^[10] These conditions were such that there was a 2.5-fold excess of organic substrate relative to H_2O_2 , and the reaction was monitored cerimetrically by the loss of H₂O₂. Houk et al.^[11] reported recently the results of calculations suggesting that oxygen transfer from ONOOH to ethylene is energetically feasible. This led us to study the epoxidation of several olefins according to reaction sequence (1)-(3) at $[HNO_2]$: $[H_2O_2] = 1:4.4$. The result was negative in the sense that the consumption of H2O2 for substrate oxidation was zero for cyclohexene and allyl alcohol, and very minor for 2-methoxypropene, ethylvinyl ether, and 2,3dimethyl-2-butene. Under the given conditions, the reaction of these olefins with ONOOH is apparently too slow to compete with the isomerization of ONOOH to HNO3 [Eq. (2)]. It was not surprising to find that N-oxidation of amines such as pyridine and substituted pyridines was not to be observed. In the given acidic medium, protonation reduces the concentration of free amine to a minimum.

^[*] Prof. Dr. H. Elias, Dipl.-Ing. S. Vayssié Institut für Anorganische Chemie der Technischen Universität Petersenstrasse 18, D-64287 Darmstadt (Germany) Fax: (+49)6151-166-040 E-mail: elias@hrz1.hrz.tu-darmstadt.de

^[**] This work was supported by the Deutsche Forschungsgemeinschaft, the Verband der Chemischen Industrie, and the Otto-Röhm-Stiftung. This contribution presents the main results of the Dr.-Ing. Dissertation to be submitted to the Technische Universität Darmstadt, D17, by S.V.

Organic sulfides RSR' turned out to be very suitable substrates for the fast sulfoxidation with in situ generated ONOOH [Eq. (4)]. As shown in Figure 2 for the system

$$RSR' + ONOOH \rightarrow RSOR' + HNO_2$$
 (4)

PhSMe/H₂O₂/NaNO₂, the sulfoxidation of PhSMe in the absence of nitrite is a rather slow process.^[12] The addition of 15 mM of nitrite triggers an instantaneous, partial oxidation of

Figure 2. Time dependence of the concentration of H_2O_2 for the reaction of PhSMe with H_2O_2 in acidified acetonitrile at variable concentrations of HNO₂ under standard conditions^[10] ([H₂O₂] = constant = 0.2 M; [NaNO₂] = 0 M (a), 0.015 M (b), 0.020 M (c), 0.030 M (d)).

PhSMe, as monitored by a sharp drop in the H_2O_2 concentration. The size of this instantaneous drop increases with the concentration of nitrite. For $[NaNO_2] = 30 \text{ mM}$ (which corresponds to $[H_2O_2]$: $[NaNO_2] = 6.7:1$), all of the H_2O_2 oxidant is consumed within one minute. This means that, in terms of catalysis, one molecule of HNO₂ passes almost seven cycles according to reactions (1) and (3), thus "activating" seven molecules of H_2O_2 by the formation of ONOOH. Owing to the greater reactivity of ONOOH relative to that of H_2O_2 , the sulfoxidation of PhSMe is drastically accelerated.

The sulfoxidation of dimethyl sulfide according to Equations (1) - (3) is accelerated by nitrite in an analogous manner. The noncatalyzed oxidation in the absence of nitrite is faster by a factor of 19 than that of PhSMe. Correspondingly, a nitrite concentration of only 10 mM ([H₂O₂]:[NaNO₂] = 20:1) is sufficient to make the oxidation of Me₂S complete within one minute. These data mean that the catalyst HNO₂ cycles twenty times. As outlined above, the condition for a maximum number of cycles in the system Me₂S/H₂O₂ is given by $k_{\text{Me}}[\text{Me}_2\text{S}] \gg k_{\text{d}}.^{[14]}$ The validity of this condition was tested by a series of experiments with variable concentrations of Me₂S and constant concentrations of H₂O₂ and NaNO₂. As shown in Figure 3, in the absence of Me₂S there is an initial loss of 10% of H_2O_2 . This loss corresponds to the conversion of HNO₂ into ONOOH, which decays to HNO₃ with the rate constant k_{d} .^[16] At [Me₂S] = 5 mM the oxidation of Me₂S by ONOOH begins to compete with the decay of ONOOH, an indication that the size of $k_{Me_2S}[Me_2S]$ is getting closer to that of k_d . This effect is more pronounced at $[Me_2S] =$ 10 mm. Finally, at $[Me_2S] = 50 \text{ mm}$ the peroxynitrous acid formed reacts preferentially with Me₂S; the condition

Figure 3. Time dependence of the concentration of H_2O_2 for the reaction of Me_2S with H_2O_2 in acidified acetonitrile at various concentrations of Me_2S at 20 °C ($[H_2O_2] = 0.005 \text{ M}$, $[NaNO_2] = 0.0005 \text{ M}$, $[H_2SO_4] = 0.08 \text{ M}$, $[H_2O] = 5 \text{ M}$; $[Me_2S] = 0 \text{ M}$ (a), 0.005 M (b), 0.010 M (c), 0.050 M (d)).

 $k_{\text{Me}_2\text{S}}[\text{Me}_2\text{S}] \gg k_d$ is fulfilled and all of the H₂O₂ is consumed by substrate oxidation within one minute. These results allow the estimate^[17] that $k_{\text{Me}_2\text{S}}$ is greater than $10^2 \text{ M}^{-1} \text{ s}^{-1}$. This means that, compared to the second-order rate constant k for the noncatalyzed Me₂S oxidation by H₂O₂ (Table 1), the reactivity

Table 1. Kinetic data for the sulfoxidation of organic sulfides by H_2O_2 in acidified acetonitrile in the absence and presence of nitrous acid.

Sulfide	$10^4 k^{[a]} \ [{ m m}^{-1}{ m s}^{-1}]$	([HNO ₂]:[H ₂ O ₂]) _{lim} ^[b] [mм]:[mм]	Catalytic cycles
PhSMe	31 ± 3	30:200	6.7
(PhCH ₂) ₂ S	70 ± 6	20:200	10
Me ₂ S	580 ± 50	10:200	20

[a] Second-order rate constant k for the sulfoxidation at 293 K in the absence of the catalyst under standard conditions.^[10] [b] Limiting concentration ratio at which (and above which) catalyzed sulfoxidation is complete within one minute under standard conditions.^[10]

of ONOOH is more than three orders of magnitude greater than that of H_2O_2 .

Product formation in the systems PhSMe/H₂O₂/NaNO₂ and Me₂S/H₂O₂/NaNO₂ was additionally controlled by GC analysis.^[18] Under standard conditions ([substrate] > [H₂O₂]),^[10] the sulfoxides PhSOCH₃ and CH₃SOCH₃ were the only products. Further oxidation to the corresponding sulfones is slower by several orders of magnitude than the sulfoxidation [Eq. (4)],^[3] and is only observed when the substrate concentration is less than that of H₂O₂ and with long reaction times.

The sulfoxidation of dibenzyl sulfide was also studied in detail. It follows from the data summarized in Table 1 that, at $[H_2O_2]$: $[NaNO_2] = 10:1$, formation of dibenzyl sulfoxide is complete within one minute. $(PhCH_2)_2S$ was chosen as a model compound to test the synthetic potential of the method for the fast preparation of sulfoxides at the gram level. An aqueous solution of NaNO₂ was quickly added to an acidified, well-stirred acetonitrile solution of $(PhCH_2)_2S$ containing an excess of H_2O_2 .^[19] After a reaction time of only five minutes at ambient temperature, pure dibenzyl sulfoxide was isolated in a yield of 91 %.

In conclusion, the present approach provides an experimentally simple and time-saving method for the fast and convenient preparation of sulfoxides. The method is based on

COMMUNICATIONS

nonexpensive, commercial chemicals $(H_2O_2, NaNO_2, H_2SO_4, and CH_3CN)$ and can be classified as a sulfoxidation reaction with "activated" H_2O_2 . The activation consists of the fast reaction of H_2O_2 with HNO₂ in acidified CH₃CN to form the unstable, yet highly reactive, oxidant peroxynitrous acid ONOOH as an intermediate species in situ. The experimental conditions can be easily set in such a way that the reaction of the electrophile ONOOH with the nucleophile RSR' is fast enough to compete successfully with the decay of ONOOH to nitric acid. Under these optimized conditions, HNO₂ acts as a catalyst, quickly carrying oxygen atoms from H_2O_2 to the sulfide in the form of ONOOH.

Received: February 23, 1998 [Z11508IE] German version: *Angew. Chem.* **1998**, *110*, 2246–2249

Keywords: homogeneous catalysis \cdot O-O activation \cdot oxidations \cdot peroxides \cdot synthetic methods

- S. Uemura in *Comprehensive Organic Synthesis*, Vol. 7 (Eds: B. M. Trost, I. Fleming, S. V. Ley), Pergamon, Oxford, **1991**, pp. 762–769.
- [2] W. G. Keith, R. E. Powell, J. Chem. Soc. A 1969, 90.
- [3] P. Amels, H. Elias, K.-J. Wannowius, J. Chem. Soc. Faraday Trans. 1997, 93, 2537–2544.
- [4] In vivo, the reaction of O₂⁻ with NO leads to the anion ONOO⁻, which is in equilibrium with the acid ONOOH. The reaction of superoxide with NO is faster than that with superoxide dismutase (SOD). For the biological relevance of ONOOH see, for example, W. A. Pryor, G. L. Squadrito, *Am. J. Physiol.* **1995**, *268*, L699–L722.
- [5] See, for example, a) R. Radi, J. S. Beckman, K. S. Bush, B. A. Freeman, *J. Biol. Chem.* 1991, 266, 4244–4250; b) W. A. Pryor, X. Jin, G. L. Squadrito, *Proc. Natl. Acad. Sci. USA* 1994, 91, 11173–11177; c) A. Al-Ajlouni, E. S. Gould, *Inorg. Chem.* 1996, 35, 7892–7896; d) S. Goldstein, G. Czapski, *Inorg. Chem.* 1995, 34, 4041–4048.
- [6] The use of commercial H₂O₂ as a reagent necessarily introduces some water into the system. The solvent acetonitrile with a constant admixture of water (5 M) was therefore taken as the standard reaction medium.
- [7] The absorbance/time data shown in Figure 1 were obtained with a multi-wavelength stopped-flow spectrophotometer described earlier.^[8] The absorptivity of ONOOH in the range 250–350 nm is greater than that of nitrous and nitric acid. The initial increase in absorbance *A* at 260 nm corresponds therefore to the formation of ONOOH, the consecutive decrease to its decay. The rate constants $k_{\rm f}$ and $k_{\rm d}$ were obtained from Equation (5) using the *A*/*t* data (a₁, a₂= amplitudes).

$$A = a_1 \exp(-k_f t) + a_2 \exp(-k_d t) + A_{\infty}$$
(5)

- [8] C. Drexler, H. Elias, B. Fecher, K. J. Wannowius, *Fresenius J. Anal. Chem.* 1991, 340, 605–615.
- [9] D. J. Benton, P. J. Moore, J. Chem. Soc. A 1970, 3179-3182.
- [10] Standard procedure and conditions: A solution of H_2O_2 , H_2SO_4 , and H_2O in CH₃CN (1 mL) was quickly mixed with a solution of the organic substrate A and NaNO₂ in CH₃CN (1 mL) to obtain the reaction mixture with $[H_2O_2] = 0.2 \text{ M}$, $[HNO_2] = 0.45 \text{ mM}$, [A] = 0.5 M, $[H_2SO_4] = 0.08 \text{ M}$, and $[H_2O] = 5 \text{ M}$ (the pK_a of HNO₂ is 3.3; to liberate HNO₂ from NaNO₂, the condition $-lg[H^+] < 3$ has to be fulfilled). The mixture was stirred at ambient temperature. At adequate time intervals, samples (0.2 mL) were taken and diluted with water for the cerimetric determination of H_2O_2 .
- [11] K. N. Houk, K. R. Condroski, W. A. Pryor, J. Am. Chem. Soc. 1996, 118, 13002-13006.
- [12] The value of $k = (31 \pm 3) \times 10^{-4} \text{ m}^{-1} \text{ s}^{-1}$ (see Table 1) was obtained by fitting of the $[\text{H}_2\text{O}_2]/t$ data shown in Figure 2 a to Equation 6. This $[\text{H}_2\text{O}_2] = [\text{H}_2\text{O}_2]_\circ \exp(-k [\text{PhSMe}]t)$ (6)

 $[11_2O_2] = [11_2O_2]_0 \exp(-\kappa [110MC]t)$ (0)

value is very close to $k = 37.3 \times 10^{-4} \text{ m}^{-1} \text{ s}^{-1}$ as reported for the sulfoxidation of PhSMe with H₂O₂ in EtOH (6 % H₂O).^[13]

[13] G. Modena, L. Maiola, Gazz. Chim. Ital. 1957, 87, 1306-1316.

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998

- [14] The reaction between Me₂S and ONOOH in water was recently shown to be second-order, first-order in both reactants.^[3] The oxidation of organic sulfides by hydroperoxides is generally found to be a second-order process.^[15]
- [15] J. O. Edwards in *Peroxide Reaction Mechanisms* (Ed.: J. O. Edwards), Wiley-Interscience, New York, **1962**, pp. 67–106.
- [16] It was confirmed by experiment that ONOOH, when generated according to Equation (1), does not decompose H_2O_2 according to the reaction ONOOH + $H_2O_2 \rightarrow HNO_2 + H_2O$.
- [17] At the lowest Me₂S concentration, $[Me_2S] = 5 \text{ mM}$, almost half of the H₂O₂ is consumed for the fast Me₂S oxidation by ONOOH (see Figure 3). This means that the Me₂S concentration at which $k_{\text{Me}S}[Me_2S] = k_{\text{d}}$ is smaller than 5 mM and, hence, $k_{\text{Me}S} > 0.61/0.005 = 122 \text{ m}^{-1} \text{ s}^{-1}$.
- [18] GC analysis was carried out with an Auto System Gas Chromatograph with FI detector (Perkin-Elmer) and a 15-m capillary column (Alltech; Heliflex AT-1000) at 150°C (Me₂S) and 170°C (PhSMe). The samples were neutralized with NaOH before injection.
- [19] Concentrated H₂SO₄ (1 mL, 98%) and technical grade, stabilized 35% H₂O₂ (4 mL, 47 mmol) were added to a well-stirred solution of (PhCH₂)₂S (5.3 g, 25 mmol) in CH₃CN (250 mL) at ambient temperature. To start the fast catalyzed reaction, a solution of NaNO₂ (320 mg, 4.7 mmol) in water (2 mL) was added in one portion (caution: the reaction is exothermic! In the case of larger batches the reaction mixture should be efficiently thermostated). After a reaction time of five minutes the solution was set to pH 7 with a solution of NaOH (1M) diluted with water (70 mL) and extracted with chloroform (3 × 130 mL). The chloroform phase was dried with MgSO₄ and taken to dryness in vacuo. The residue was recrystallized from EtOH. Yield: 5.1 g (91%). M.p. 133 °C (134–135 °C^[20]). ¹H NMR and IR spectroscopy as well as C,H,N analysis proved the identity of the product as dibenzyl sulfoxide.
- [20] Handbook of Chemistry and Physics, 51st ed., The Chemical Rubber Co. 1970 – 1971.

Synthesis, Structure, and Reactivity of a Palladium Hydrazonato Complex: A New Type of Reductive Elimination Reaction To Form C–N Bonds and Catalytic Arylation of Benzophenone Hydrazone**

John F. Hartwig*

Reductive elimination reactions which form C–N bonds in amines^[1-4] are important primary reactions in practical catalytic cycles for the synthesis of arylamines from aryl halides.^[1, 5-8] Reductive elimination reactions that result in *N*-arylhydrazones would be an important new method for C–N bond formation by means of reductive elimination. The hydrazone products could be used in Fischer indole syntheses or, after conversion into the *N*-arylhydrazine, in condensation reactions to produce *N*-arylpyrazoles and *N*-arylpyrazolones.

[*] Prof. J. F. Hartwig
 Department of Chemistry, Yale University
 P.O. Box 208107, New Haven, CT 06520-8107 (USA)
 Fax: (+1)203-432-6144
 E-mail: john.hartwig@yale.edu

[**] I thank the Department of Energy and the NIH for supporting portions of this work. I also appreciate support through a National Science Foundation Young Investigator Award, a Camille Dreyfus Teacher-Scholar award, and the Eli Lilly Grantee Program. J.F.H. is a fellow of the Alfred P. Sloan Foundation.