

Bioorganic & Medicinal Chemistry Letters 12 (2002) 795–798

## Synthesis and Structure–Activity Relationships of M<sub>2</sub>-Selective Muscarinic Receptor Ligands in the 1-[4-(4-Arylsulfonyl)phenylmethyl]-4-(4-piperidinyl)-piperazine Family

Stuart W. McCombie,<sup>a,\*</sup> Sue-Ing Lin,<sup>a</sup> Jayaram R. Tagat,<sup>a</sup> Dennis Nazareno,<sup>a</sup> Susan Vice,<sup>a</sup> Jennifer Ford,<sup>a</sup> Theodros Asberom,<sup>a</sup> Daria Leone,<sup>a</sup> Joseph A. Kozlowski,<sup>a</sup> Guowei Zhou,<sup>a</sup> Vilma B. Ruperto,<sup>b</sup> Ruth A. Duffy<sup>b</sup> and Jean E. Lachowicz<sup>b</sup>

<sup>a</sup>Department of Chemistry, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA <sup>b</sup>Department of CNS Pharmacology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

Received 19 October 2001; accepted 21 December 2001

Abstract—The synthesis and muscarinic binding properties of compounds based on the 1-[4-(4-arylsulfonyl)phenylmethyl]-4-(1-aroyl-4-piperidinyl)-piperazine skeleton are described. For compounds, substituted with appropriately configured methyl groups at the benzylic center and at the piperazine 2-position, high levels of selective,  $M_2$  subtype affinity could be obtained, particularly when the terminal *N*-aroyl residue was *ortho*-substituted. © 2002 Elsevier Science Ltd. All rights reserved.

Alzheimer's Disease (AD), characterized by a progressive loss of cognitive function, is a serious medical problem. Since AD is largely a disease of the elderly, the percentage of affected persons is expected to grow, as overall life expectancy continues to increase. Currently, therapeutic intervention in AD involves enhancing levels of the key neurotransmitter acetylcholine (ACh)<sup>1</sup> by treatment with inhibitors of acetylcholinesterase, which retard the breakdown of ACh in the synapse. An alternative way to elevate ACh levels is via the cholinergic receptor system. Our approach has been to pursue antagonists of the presynaptic M<sub>2</sub> receptor.<sup>2,3</sup> Selective binding to M<sub>2</sub> relative to the other muscarinic receptor subtypes is an important goal: the postsynaptic M1 receptor is believed to mediate the effects of ACh in learning and memory, and the peripheral M<sub>3</sub> receptor is involved in the regulation of gastro-intestinal functions.

In the accompanying paper,<sup>4</sup> we described novel,  $M_2$ -selective ligands of general structure 1, and showed that

enhanced selectivity over the postsynaptic  $M_1$  receptor is obtained when  $R^2$  and  $R^3$  are (S)-Me and (R)-Me, respectively. Initial modification of the aromatic ring substitution pattern and the piperidine N-substituent led to **2**, which exhibited acceptable selectivity  $[K_i(M_1)/K_i(M_2)=109]$  and also elevated brain acetylcholine levels when administered orally to rats.



In this paper, we describe chemical and biological results which illustrate the optimization of the affinity for the  $M_2$  receptor over the  $M_1$  and  $M_3$ – $M_5$  subtypes, for the diaryl sulfone series. The effects of changes in the aryl ring of the ArSO<sub>2</sub> moiety, the methylation pattern on the piperazine ring, and the 1-substituent on the piperidine ring are described. In the latter position, we

0960-894X/02/\$ - see front matter  $\odot$  2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00024-0

<sup>\*</sup>Corresponding author. Tel.: + 1-908-740-3455; fax: + 1-908-740-7305; e-mail: stuart.mccombie@spcorp.com



Scheme 1. (a) 1,3-dibromo-5,5-dimethylhydantoin, MeSO<sub>3</sub>H, CH<sub>2</sub>Cl<sub>2</sub>, rt, 48 h; *or* (b) PhI(OCOCF<sub>3</sub>)<sub>2</sub>, I<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, rt, 48 h; (c) KOH, MeOH, rt, 2 h; (d) (*S*)-MeCH(OSO<sub>2</sub>CF<sub>3</sub>)CO<sub>2</sub>Et, CH<sub>2</sub>Cl<sub>2</sub>, K<sub>2</sub>CO<sub>3</sub>-H<sub>2</sub>O, rt, 6 h; (e) CICH<sub>2</sub>COCl, 1,2-C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>, 90 °C, 4 h; (f) NH<sub>3</sub>, NaI, DMSO-H<sub>2</sub>O, rt, 24 h; (g) NaBH<sub>4</sub>, BF<sub>3</sub>·Et<sub>2</sub>O, DME, 80 °C, 6 h; (h) 1-(*tert*-butoxy-carbonyl)-4-piperidone, NaBH(OAc)<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, rt, 24 h; (i) *n*-BuLi, THF-hexanes, -70 °C, then ArSO<sub>2</sub>F, -70 to -20 °C; (j) TFA, 1 h; (k) RCOCl, CH<sub>2</sub>Cl<sub>2</sub>, K<sub>2</sub>CO<sub>3</sub>-H<sub>2</sub>O, rt, 2 h *or* RCO<sub>2</sub>H, EDCI, HOBt, *i*-Pr<sub>2</sub>NEt, DMF, rt, 24 h.

show that certain *ortho*-substituted aromatic amides confer exceptional selectivity for the  $M_2$  receptor.

Our initial objective was to develop a versatile synthesis from available 'chiral pool' substances, such that intermediates along the route could be diverted to generate a variety of substitution patterns. We chose diketopiperazines as the key intermediates, with late-stage introduction of the arylsulfonyl substituent, as shown in Scheme 1.

Bromination or iodination of N-trifluoroacetyl-(S)-1phenylethylamine, crystallization to obtain the dominant<sup>5</sup> para isomers and subsequent alkaline hydrolysis gave 4a and 4b, respectively. Sequential N-alkylation with the triflate derived from ethyl (S)-lactate, N-chloroacetylation<sup>6</sup> and final treatment with ammonia gave the crystalline diketopiperazines 5a and 5b, which were converted by reduction followed by reductive amination to 7a and 7b, the first intermediates in the sequence which needed chromatographic purification. The sulfones were prepared by Br(I)-Li exchange followed by reaction with the appropriate arylsulfonyl fluoride.<sup>7</sup> Yields were high except when the aryl residue carried an oxy-substituent, meta to the fluorosulfonyl group. In those cases, substantial amounts of the des-bromo compound (X = H in structure 7a) were formed, and the sulfonyl fluoride was decomposed. We ascribe this to competing H-abstraction by the aryllithium species of the proton between the two electron withdrawing groups (-OR and -SO<sub>2</sub>F). In these cases, yields were improved by adding 1.1 equivalents of anhydrous magnesium bromide to the intermediate aryl lithium, with warming to 0 °C before adding the sulfonyl fluoride. Following diaryl sulfone isolation, the sequence was completed by N-deprotection and amide formation under standard conditions, to afford the target compounds 8.



Scheme 2. (a) 1.1 equiv MeLi, then 1.2 equiv *n*-BuLi, THF-hexanes,  $-70 \,^{\circ}$ C then 1.2 equiv 3,4-(methylenedioxy)-benzenesulfonyl fluoride,  $-70 \, \text{to} -20 \,^{\circ}$ C; (b) steps c–f, Scheme 1; (c) di-*tert*-butyl dicarbonate, Et<sub>3</sub>N, THF, rt, 5 h; (d) MeMgBr, THF, 0  $^{\circ}$ C, 15 min; (e) CCl<sub>3</sub>CO<sub>2</sub>H, NaBH<sub>3</sub>CN, CH<sub>2</sub>Cl<sub>2</sub>, rt, 2 h; (g) NaBH<sub>4</sub>, BF<sub>3</sub>·Et<sub>2</sub>O, DME, 80  $^{\circ}$ C, 6 h.



Scheme 3. (a) KOH, MeOH, rt, 2 h; (b) (*S*)-MeCH(OSO<sub>2</sub>CF<sub>3</sub>)CO<sub>2</sub>Et, CH<sub>2</sub>Cl<sub>2</sub>,  $K_2CO_3$ -H<sub>2</sub>O, rt, 6 h; (c) rac-MeCH(Cl)COCl, 1,2-C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>, 90 °C, 12 h; (d) NaN<sub>3</sub>, DMSO, 80 °C, 6 h; (e) H<sub>2</sub>, Pd/C, EtOH, 50 psi, rt, 2 h; (f) NaBH<sub>4</sub>, BF<sub>3</sub>·Et<sub>2</sub>O, DME, 80 °C, 6 h.

Alternatively, the same organolithium species could be reacted with the appropriate aryl disulfide, and the resulting product oxidized (HOAc,  $H_2O_2$  or NaBO<sub>3</sub>) to the sulfone. The same sulfides could also be obtained from the iodocompound **7b** and ArSH/K<sub>2</sub>CO<sub>3</sub>/CuI. Direct reactions of **7b** with ArSO<sub>2</sub>Na/CuI, a satisfactory process in simple systems,<sup>8</sup> gave low yields of the sulfones.

Diketopiperazines were also the key to obtaining different piperazine ring methylation patterns. The route to the *cis*-2,3-dimethyl compound is shown in Scheme 2. Activation of the lactam carbonyl permitted the highly selective addition of methyl magnesium bromide to give a stable, *N-tert*-butoxycarbonyl hemiaminal. Mild reduction, *N*-deprotection, and final reduction of the remaining carbonyl group with borane afforded **10**, for further elaboration. Only the *cis* isomer was produced in the acyliminium ion reduction step, reflecting attack of the hydride donor *anti* to the 2-methyl group.

To access 2,5-dimethylpiperazines (Scheme 3), the chloroacetyl chloride in Scheme 2 was replaced with racemic 2-chloropropionoyl chloride. Reaction of the resulting amide **11** with ammonia was unsatisfactory, but displacement with azide followed by catalytic reduction gave the separable, diastereoisomeric 2,5-di-substituted diketopiperazines. Final reduction with borane afforded the piperazines **12** and **13**, for further elaboration.

Using cloned human  $M_1-M_5$  receptors,  $K_i$  values for receptor binding were determined as previously described.<sup>9</sup> Briefly, membranes were incubated with [<sup>3</sup>H]-*N*-methyl scopolamine and test compounds for 1 h at room temperature, followed by rapid filtration and scintillation counting to measure bound radioactivity. Values shown are averages of four determinations; inter-replicate variability was below 10%.

The results shown in Table 1, selected from a large panel of amides, in which the 3,4-(methylenedioxy)-phenylsulfonyl moiety, the methylation pattern and the absolute stereochemistry were kept constant, highlight the structure–activity relationships.

Although the M<sub>2</sub> affinity was not unduly sensitive to the nature of the N-acyl group, the receptor subtype selectivity was dramatically affected. Simple, aliphatic amides (typified by 14) were not selective. In the aromatic amides, the substitution pattern proved to be the key: a variety of ortho substituents conferred a high degree of selectivity for  $M_2$  versus the  $M_1$  and  $M_3$ receptors, and acceptable selectivity versus M<sub>5</sub> (entries 18–21). In general, relatively non polar substituents were preferred, although the 2-hydroxy benzamide (23) and particularly the 2-amino benzamide (21) were also M<sub>2</sub>-selective. Compounds 24 and 25 show that large substituents were tolerated with respect to binding affinity, but did not affect selectivity in a consistent fashion. For more highly substituted amides, 2,4- and 2,6-disubstitution (17 and 27, respectively) were not helpful, but the 2,3-(methylenedioxy)-benzamide 26 had excellent selectivity. We also evaluated heterocyclic amides, with mixed results. The thiophene analogue 28 of the o-chlorobenzamide demonstrated high affinity and selectivity, whereas the pyridine analogue 29 of the o-toluamide was nonselective, and a relatively weak binder.

Having established those structural requirements in the terminal amide residue, which maximized  $M_2$  selectivity,

**Table 1.** Effects of the terminal amide on receptor binding and selectivity

| Entry | R                                                                   | $K_{i}$ (M <sub>2</sub> ) (nM) | $M_1/M_2$ | $M_3/M_2$ | $M_4/M_2$ | M <sub>5</sub> /M <sub>2</sub> |  |
|-------|---------------------------------------------------------------------|--------------------------------|-----------|-----------|-----------|--------------------------------|--|
| 14    | cvclo-C <sub>3</sub> H <sub>5</sub>                                 | 1.3                            | 12        | 23        | 3         | 23                             |  |
| 15    | C <sub>6</sub> H <sub>5</sub>                                       | 0.6                            | 32        | 29        | 4         | 15                             |  |
| 16    | 3.4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                   | 0.8                            | 8         | 11        | 2         | 7                              |  |
| 17    | 2.4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                   | 0.3                            | 66        | 17        | 7         | 5                              |  |
| 18    | 2-ClC <sub>6</sub> H <sub>4</sub>                                   | 0.1                            | 298       | 69        | 4         | 25                             |  |
| 19    | $2-MeC_6H_4$                                                        | 0.2                            | 255       | 74        | 6         | 23                             |  |
| 20    | 2-MeOC <sub>6</sub> H <sub>4</sub>                                  | 0.1                            | 333       | 176       | 12        | 72                             |  |
| 21    | $2-H_2NC_6H_4$                                                      | 0.5                            | 239       | 70        | 7         | 24                             |  |
| 22    | 2-AcNHC <sub>6</sub> H <sub>4</sub>                                 | 4.4                            | 13        | 5         | 3         | 5                              |  |
| 23    | 2-HOC <sub>6</sub> H <sub>4</sub>                                   | 1.0                            | 84        | 15        | 7         | 18                             |  |
| 24    | $2-PhOC_6H_4$                                                       | 0.1                            | 22        | 33        | 6         | 6                              |  |
| 25    | 2-(PhCO <sub>2</sub> CH <sub>2</sub> )C <sub>6</sub> H <sub>4</sub> | 0.2                            | 266       | 73        | 9         | 47                             |  |
| 26    | $2.3-(OCH_2O)C_6H_3$                                                | 0.1                            | 330       | 38        | 17        | 80                             |  |
| 27    | 2.6-Me <sub>2</sub> C <sub>6</sub> H <sub>2</sub>                   | 0.8                            | 37        | 57        | 8         | 2                              |  |
| 28    | 3-Cl-2-thienvl                                                      | 0.3                            | 413       | 83        | 7         | 45                             |  |
| 29    | 3-Me-2-pyridyl                                                      | 77                             | 8         | 0.3       | 4         | 3                              |  |
| -/    | 5 mie 2 pynayi                                                      | , ,                            | 0         | 0.5       | 7         |                                |  |

we then investigated diverse substitution patterns on the aromatic ring of the arylsulfonyl group. Representative compounds are shown in Table 2.

In general, we were not able to significantly improve upon the affinity-selectivity profile exhibited by the best compounds shown in Table 1, but some interesting trends emerged. Comparison of entries 19 and 30 shows that for o-toluamides, like sulfonamides, the 3,4-(methylenedioxy)-phenylsulfonyl compounds have greater affinity than their *p*-methoxy counterparts. 2,4-Dimethoxy substitution (entry 31) also conferred acceptable selectivity, but 2,3,4-trisubstitution was tolerated only when the substituents adjacent to the sulfonyl group were tied back to form a bicyclic system (entry 33 vs 32 and 35). Although earlier results<sup>3</sup> had suggested that strongly electron-donating substituents were important when the piperidine carries an N-sulfonyl substituent, this was not true for the corresponding o-toluamides, where a m-methyl or

**Table 2.** Effects of the arylsulfonyl group on receptor binding and selectivity



| Entry | $\mathbb{R}^2$ | $\mathbb{R}^3$ | $\mathbb{R}^4$ | $\mathbb{R}^6$ | $K_i(M_2)(nM)$ | $M_{1}\!/M_{2}$ | $M_3/M_2$ |
|-------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------|
| 19    | Н              | -OCI           | H2O-           | Н              | 0.2            | 255             | 74        |
| 30    | Н              | Н              | ÕMe            | Н              | 2.6            | 245             | 118       |
| 31    | OMe            | Н              | OMe            | Н              | 0.6            | 147             | 157       |
| 32    | OMe            | OMe            | OMe            | Н              | 442            | 1               |           |
| 33    | -OCI           | $H_2O-$        | OMe            | Н              | 4.7            | 121             | 188       |
| 34    | OMe            | -OCI           | $H_2O-$        | Н              | 3.0            | 27              | _         |
| 35    | Н              | -OCI           | $H_2O-$        | OMe            | 53             | 2               |           |
| 36    | Н              | Me             | H              | Н              | 0.4            | 305             | 107       |
| 37    | Н              | $CF_3$         | Н              | Н              | 1.8            | 170             | 108       |

*m*-trifluoromethyl group was also compatible with high levels of selectivity (entries **36** and **37**).

Additional methyl groups on the piperazine ring had a deleterious effect on selectivity. Reductive amination of the 2,3-dimethyl piperazine derivative 10, and the 2,5-dimethylcompounds 12 and 13 with both cyclohexanone and 1-(o-toluoy)-4-piperidinone gave the corresponding piperidinyl-piperazines, which proved to have high affinity, but poor subtype selectivity.

In conclusion, we have demonstrated that selective, high affinity  $M_2$  receptor ligands may be obtained by manipulation of the substituent pattern on the two, terminal aromatic rings in a series of 1-[*1S*-(4-[4-arylsulfonyl]-phenyl)-ethyl]-*2R*-methyl-4-(1-aroyl-4-piperidinyl)-piperazines. Compounds with > 100-fold selectivity for the  $M_2$  receptor, relative to both the  $M_1$  and  $M_3$  subtypes, were obtained, particularly when the piperidine nitrogen bears an *ortho* substituted benzoyl group. Additional methyl groups in the piperazine ring reduced the receptor subtype selectivity.

## Acknowledgements

The authors wish to thank the SPRI Physical-Analytical Department for spectroscopic and analytical data, and Drs. J. C. Clader, A. K. Ganguly, and C. Strader for support and discussions.

## **References and Notes**

1. (a) For reviews describing potential approaches to the treatment of Alzheimer's Disease by modifying acetylcholine levels via the inhibition of acetylcholinesterase, agonizing the

M<sub>1</sub> receptor, or antagonizing the M<sub>2</sub> receptor, see: Brinton, R. D.; Yamazaki, R. S. *Pharm. Res.* **1998**, *15*, 386. (b) Bartus, R. T.; Dean, R. L. III; Beer, B.; Lippa, A. S. *Science* **1982**, *217*, 408. (c) Doods, H. N. *Drugs Fut.* **1995**, *20*, 157. (d) Jaen, J. C.; Davis, R. E. *Annu. Rep. Med. Chem.* **1994**, *29*, 23. (e) Clader, J. W. *Curr. Opin. Drug Discov. Develop.* **1999**, *2*, 311. (f) Baker, R.; Saunders, J. *Annu. Rep. Med. Chem.* **1989**, *24*, 31. 2. Kozlowski, J. A.; Lowe, D. B.; Guzik, H. S.; Zhou, G.; Ruperto, V. B.; Duffy, R. A.; McQuade, R. A.; Crosby, G., Jr.; Billard, W.; Binch, H.; Lachowicz, J. E. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2255.

3. Wang, Y.; Chackalamannil, S.; Hu, Z.; Clader, J. W.; Greenlee, W.; Billard, W.; Binch, H.; Crosby, G., Jr.; Ruperto, V. B.; Duffy, R. A.; McQuade, R. A.; Lachowicz, J. E. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2247.

4. Kozlowski, J. A.; Zhou, G.; Tagat, J. R.; Lin, S.; McCombie, S. W.; Ruperto, V. B.; Duffy, R. A.; McQuade, R. A.; Crosby, G. Jr.; Taylor, L. A.; Billard, W.; Binch, H. III; Lachowicz, J. E. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 791.

5. In the crude products, the *p*- to *o*- ratios were approximately 5:2 for bromination and 6:1 for iodination; small amounts of di-halo compounds were also present.

6. *N*-Acylation of these hindered, moderately nucleophilic aminoesters was slow, and proceeded poorly in the presence of base, presumably because of more rapid formation and subsequent polymerization of chloroketene. Heating as indicated, to dissociate intermediate hydrochloride salts, gave quantitative conversion to the desired amides. After washing with aqueous sodium bicarbonate solution and evaporation, the crude amide was used directly in the next step.

7. The arylsulfonyl fluorides were obtained in excellent yields by treating the corresponding chlorides with potassium fluoride in aqueous acetone: Aitken, R.; Drysdale, A.; Ferguson, M. G.; Lough, A. J. J. Chem. Soc., Perkin Trans. 1 **1998**, 875. Convenient routes to the non-commercial arylsulfonyl chlorides will be detailed elsewhere.

8. Suzuki, H.; Abe, H. Tetrahedron Lett. 1995, 36, 6239.

9. Lachowicz, J. E.; Lowe, D.; Duffy, R. A.; Ruperto, V.; Taylor, L. A.; Guzik, H.; Brown, J.; Berger, J. G.; Tice, M.; McQuade, R.; Kozlowski, J.; Clader, J.; Strader, C. D.; Murgolo, N. *Life Sci.* **1999**, *64*, 535.