Chem. Pharm. Bull. 35(5)2136-2139(1987)

> SYNTHESIS OF DIBEKACIN (3',4'-DIDEOXYKANAMYCIN B) FROM D-GLUCOSAMINE AND D-GLUCOSE

Masayuki Yoshikawa, Masahiro Torihara, Takahiko Nakae, Bae Cheon Cha, and Isao Kitagawa*

Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan

An aminoglycoside antibiotic, dibekacin (=3',4'-dideoxykanamycin B)(22), has been synthesized from D-glucosamine and D-glucose using an oxidative decarboxylation reaction with lead tetraacetate and a reductive deacetoxylation reaction with sodium borohydride as keyreactions.

KEYWORDS — dibekacin; 3',4'-dideoxykanamycin B; aminoglycoside antibiotic; aminocyclitol; D-glucosamine; D-glucose; nitromethane cyclization; oxidative decarboxylation; reductive deacetoxylation; selective glycosidation

Using an oxidative decarboxylation reaction with lead tetraacetate and a reductive deacetoxylation reaction with sodium borohydride as key-reactions, we have been developing a versatile new synthetic method for synthesizing aminocyclitols and their glycosides from monosaccharides.¹⁾ As an application of this method, we reported a synthesis of ribostamycin, an aminoglycoside antibiotic, which comprises two monosaccharide residues attached one each to C-4 and C-5 hydroxyl groups of the central 2-deoxystreptamine moiety.²⁾ In this paper, we report a synthesis of dibekacin (=3',4'-dideoxykanamycin B) (22) using D-glucosamine and D-glucose as the starting materials.³⁾ Dibekacin is a clinically important aminoglycoside antibiotic prepared by the chemical modification of kanamycin B.⁴⁾ It comprises two monosaccharide residues attached to C-4 and C-6 hydroxyls of the 2-deoxystreptamine moiety.

N-Carbobenzyloxy (Cbz) -D-glucosamine (1)⁵⁾ was converted to 2 (an anomeric mixture in a 3:2 ratio) by successive treatment with *p*-anisylchlorodiphenylmethane (MMTrCl) and methanesulfonyl chloride, both in pyridine.⁶⁾ Two mesyloxy residues in 2 were removed with Zn-NaI and the resulting olefin was subjected to detritylation and benzoylation to provide 3 quantitatively from 2. 3 thus obtained was a 3:2 mixture of α -anomer, C₂₂H₂₃NO₆,⁷⁾ mp 152-154°C, $[\alpha]_D$ -18°, and β -anomer, C₂₂H₂₃NO₆, mp 149-151°C, $[\alpha]_D$ -40°. Catalytic hydrogenation (PtO₂, H₂ 3.5 atm) of 3 and subsequent treatment of the product with 2,4-dinitrofluorobenzene (DNFB) and Na₂CO₃ furnished 4 (88%): a mixture of α -anomer, C₂₀H₂₇N₃O₈, yellow oil, $[\alpha]_D$ +14°. Alkaline deacylation of 4, followed by acidic hydrolysis (70°C), acetylation, and anomeric bromination (5°C, 5 min), provided α -bromide (5) (73% from 4).

Glycosidation of 6 (0.9 mmole)^{1b,5)} with 5 (1.8 mmole) in the presence of AgClO₄ and sym-collidine in benzene-dioxane (2:1) (27°C, 15 min) furnished 7 (68%),⁸⁾ $C_{36}H_{40}N_4O_{14}$, yellow oil, $[\alpha]_D + 22^\circ$, with a recovery of 6 (23%). The ¹³C NMR spectrum (22.5 MHz, CDCl₃) of 7 showed signals due to two α -anomeric carbons [δ c 100.3 (1-C), 97.9 (1'-C)]. Removal of the DNP and acetyl residues in 7 with Dowex 1x2 (OH⁻) (25°C) and subsequent carbobenzyloxylation (2°C) yielded 8, $C_{36}H_{42}N_2O_{11}$, mp 182-183°C, $[\alpha]_D + 26^\circ$ (80% from 7). Tosylation of 8 followed by azide formation, reduction, and acetylation furnished 9, $C_{38}H_{45}N_3O_{11}$, mp 187-189°C, $[\alpha]_D + 38^\circ$ (93% from 8). Removal of the benzylidene group in 9 and subsequent treatment with MMTrCl and acetylation, gave 10, $C_{53}H_{59}N_3O_{13}$, colorless oil, $[\alpha]_D + 33^\circ$ (95% from 9).

Treatment of 10 with BF_3 -etherate followed by Jones oxidation provided a uronide, which, by decarboxylative acetoxylation with Pb(OAc)₄ in benzene-pyridine (5:1) (reflux for 1.5 h),¹⁾ was converted to 11, a 1:3 mixture of 5α- and 5β-OAc isomers (65% from 10). Treatment of 11 with 1.7% NaOMe-MeOH/CH₃NO₂ (1:1) (26°C, 48 h) furnished 12 (44%) (a mixture of *scyllo* and *myo* isomers) and 13 (13%, *muco*), $C_{30}H_{38}N_4O_{12}$, white powder, $[\alpha]_D$ +15°, which, on acetylation with Ac₂O-BF₃ etherate, was converted to the acetate (13a). The ¹H NMR spectrum (500 MHz, CDCl₃) of 13a substantiated the structure with signals due to three O-acetyl groups [δ 1.93 (6H), 1.98(3H)] and protons attached to the nitrocyclitol moiety: δ 4.82 (dd, J=9.5, 9.5 Hz, 1-H), 5.31 (dd, J=4.8, 9.5 Hz, 2-H), 3.99 (ddd, J=4.5, 4.8, 10.0 Hz, 3-H), 3.92 (dd, J=4.3, 4.5 Hz, 4-H), 5.52 (dd, J=4.3, 4.8 Hz, 5-H), 5.26 (dd, J=4.8, 9.5 Hz, 6-H). Thus, the *muco* configuration of 13 was ascertained.

Treatment of 12 with isopropenyl methyl ether in DMF in the presence of d-locamphorsulfonic acid (CSA) and subsequent acetylation, afforded 14. NaBH₄ reduction of 14 in 95% EtOH (5°C, 30 min) yielded 15 (56%), $C_{33}H_{42}N_4O_{11}$, colorless oil, $[\alpha]_D$ +32°, and 16 (14%), $C_{33}H_{42}N_4O_{11}$, colorless oil, $[\alpha]_D$ +19°. The ¹H NMR spectrum (500 MHz, CDCl₃) of 15 corroborated the structure with signals due to protons on the cyclitol moiety: δ 4.63 (ddd, J=4.3, 9.8, 9.8 Hz, 1-H), 3.92 (dd, J=9.8, 9.8 Hz, 6-H), and 3.47 (dd, J=9.8, 9.8 Hz, 5-H). Comparison in detail of the ¹H and ¹³C NMR data for 15 and 16 revealed that 16 was a 6-epimer of 15. Catalytic hydrogenation [Raney Ni (T-4), H₂ 1 atm] of 15 followed by carboethoxylation and removal of the isopropylidene group, furnished 17 (62%), $C_{23}H_{40}N_4O_{11}$, white powder, $[\alpha]_D$ +33°.

On the other hand, a bromide (19) was prepared from 18^{99} via DNP protection, O-benzylation, acidic hydrolysis, and anomeric bromination. Glycosidation of 17 (0.08 mmole) with 19 (0.16 mmole) in the presence of AgClO₄ and sym-collidine in benzene-dioxane (2:1)(24°C, 30 min) furnished 20 (77%), $C_{56}H_{71}N_7O_{19}$, yellow powder, [α]_D +75°. The ¹³C NMR spectrum (22.5 MHz, d₅-pyridine) of 20 showed the presence of two α -linkages with signals due to anomeric carbons (δ C 97.9, 97.0). Furthermore, comparison of the ¹³C NMR data for 17 and 20 indicated a glycosidation shift of the C-6 signal of 20. Thus, it became clear that selective glycosidation at the C-6-OH of 17 probably occurred due to the steric congestion on the C-5-OH of 17 caused by the neighboring C-4 glycosyloxy moiety.

Removal of the DNP group and the Cbe group (100°C, 4 h) of 20 and subsequent N-acetylation and catalytic hydrogenation (5% Pd-C, H_2 2.5 atm), yielded penta-N-acetyldibekacin (21, 90%), which was found to be identical with the authentic

(a) MMTrCl / Py.; MsCl / Py. (b) Zn / NaI / DMF (100°C,4.5 h); p-TsOH·H₂O / Et₂O; BzCl / Py. (c) H₂ / PtO₂ / AcOH; 2,4-dinitrofluorobenzene / Na₂CO₃ / H₂O-acetone (1:2) (d) 1% NaOMe-MeOH; 6N.aq.HCl-AcOH (1:4,70°C); Ac₂O / Py.; 25% HBr-AcOH / CHCl₃ (5°C) (e) AgClO₄ / sym-collidine / benzene-dioxane (2:1) (f) Dowex 1x2 (OH⁻form) / acetone-H₂O (10:1); carbobenzoxy chloride / NaHCO₃ / dioxane-H₂O (2:1) (g) p-TsCl / Py.; NaN₃ / DMF (80°C); Zn / 90% aq.AcOH / DMF (2°C); Ac₂O / Py. (h) 60% HClO₄-acetone (1:60); MMTrCl / Py.; Ac₂O / 4-dimethylaminopyridine / Py. (i) BF₃-Et₂O / THF; Jones oxid.; Pb(OAc)₄ / benzene-Py. (5:1) (j) CH₃NO₂ / 1.7% NaOMe-MeOH (k) Ac₂O / BF₃-Et₂O (1) isopropenyl methyl ether / CSA / DMF; Ac₂O / NaOAc (m) NaBH₄ / 95% EtOH (5°C)

(n) H_2 / Raney Ni (T-4); ethyl chloroformate / Na_2CO_3 / H_2O -dioxane; 80% aq.AcOH (60°C) (o) 2,4-dinitrofluorobenzene / Na_2CO_3 / H_2O -acetone (4:1); BnBr / BaO / Ba(OH)₂·8H₂O / DMF; 6N.aq.HCl-AcOH (90°C); 25% HBr-AcOH / CHCl₃ (5°C) (p) AgClO₄ / sym-collidine / benzene-dioxane (2:1) (q) Dowex 1x2 (OH⁻form) / acetone-H₂O (10:1); Ba(OH)₂·8H₂O / dioxane-H₂O (2:1); Ac₂O / MeOH; H₂ / Pd-C / AcOH (r) 80% aq.NH₂NH₂·H₂O

sample¹⁰⁾ by mixed mp determination and by $[\alpha]_D$, TLC, IR (KBr), and ¹³C NMR (CD₃OD) comparisons. Finally, deacetylation of 21 with 80% aq. NH₂NH₂ in a sealed tube (100°C, 72 h) furnished dibekacin (22, 70%) identical with the authentic sample⁴⁾ [TLC, IR (KBr), $[\alpha]_D$].

ACKNOWLEDGEMENT The authors are grateful to the Ministry of Education, Science, and Culture of Japan for a Grant-in-Aid for Special Project Research (Grant No. 61211021).

REFERENCES AND NOTES

- a) M. Yoshikawa, Y. Ikeda, H. Kayakiri, and I. Kitagawa, Heterocycles, <u>17</u>, 209 (1982);
 b) M. Yoshikawa, Y. Ikeda, H. Kayakiri, K. Takenaka, and I. Kitagawa, Tetrahedron Lett., <u>23</u>, 4717 (1982).
- M. Yoshikawa, Y. Ikeda, K. Takenaka, M. Torihara, and I. Kitagawa, Chem. Lett., 1984, 2097.
- 3) M. Yoshikawa, Y. Ikeda, K. Takenaka, M. Torihara, T. Nakae, and I. Kitagawa, presented at the 3rd International Kyoto Conference on the New Aspects of Organic Chemistry, Abstract Papers p. 65 (Nov. 1985, Kyoto).
- 4) T. Yoneta, S. Shibahara, T. Matsuno, S. Tohma, S. Fukatsu, S. Seki, and H. Umezawa, Bull. Chem. Soc. Japan, 52, 1131 (1979).
- 5) P. F. Lloyd and M. Stacey, Tetrahedron, 9, 116 (1960).
- 6) All reactions were carried out under an ${\rm N}_2$ atmosphere with stirring unless stated otherwise.
- The molecular composition of the new compounds and their chemical formulae were determined by elemental analysis.
- 8) The yield was calculated on the basis of 6.
- 9) H. H. Baer, Chem. Ber., <u>93</u>, 2865 (1960).
- 10) Prepared from authentic dibekacin⁴⁾, mp 251-252°C, $[\alpha]_{D}$ +128°.