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Abstract: Regioselective and stereoselective radical additions of
arenethiols to various ynamides have been developed. Mixing yn-
amides and arenethiols in the presence of a catalytic amount of tri-
ethylborane affords the corresponding adducts, (Z)-1-amino-2-thio-
1-alkenes, in excellent yields with high selectivities. The products
can be reduced by means of trifluoroacetic acid and triethylsilane to
yield 1-amino-2-thioalkanes.
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Because of the high importance of organosulfur com-
pounds, development of new reactions to introduce sulfur
atoms to organic molecules is indispensable.1 Radical ad-
dition of thiols to unsaturated bonds is one of the most ba-
sic and concise methods to achieve the purpose.2,3

Although radical additions of thiols to terminal alkynes
are well known, examples of additions to internal alkynes
are limited.2c,4 Furthermore, additions to heteroatom-sub-
stituted internal alkynes have scarcely been reported.5

We have focused on N-alkynylamides (ynamides),6 as
heteroatom-substituted internal alkynes in the radical ad-
dition reaction. Here we report radical hydrothiolation of
ynamides,7,8 which yields synthetically useful (Z)-1-ami-
no-2-thio-1-alkene derivatives9 regio- and stereoselec-
tively.10

Under air, a catalytic amount of triethylborane11 was add-
ed to a solution of N-benzyl-N-(1-octynyl)-p-toluene-
sulfonamide12 (1a) and benzenethiol (2a, 1.2 equiv) in
dichloromethane at –30 °C. After the mixture was stirred
for 30 minutes at the same temperature, the mixture was
concentrated. NMR analysis of the crude mixture indicat-
ed the formation of N-benzyl-N-(2-phenylthio-1-octenyl)-
p-toluenesulfonamide (3aa, 94%, Z/E > 99/1). We con-
firmed by NOE experiments that the Z-isomer was exclu-
sively formed. Silica gel column chromatography
afforded 3aa in 89% yield (Scheme 1).13
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This reaction would proceed as follows (Scheme 2). Ini-
tially, an ethyl radical, generated from triethylborane with
a trace amount of molecular oxygen, abstracts hydrogen
atom from benzenethiol to form thiyl radical 4. The elec-
tron-deficient radical14 immediately reacts with ynamide
1a, an electron-rich alkyne, to furnish vinyl radical 5. The
carbon–sulfur bond formation occurs regioselectively at
the 2-position of ynamide 1a, where the higher electron
density resides. The Z-isomer of vinyl radical 5 selective-
ly abstracts hydrogen atom from benzenethiol.15 Product
3aa is thus formed, and thiyl radical 4 is regenerated to
complete the radical chain.

Scheme 1 Triethylborane-initiated hydrothiolation of ynamide 1a
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Scheme 2 Plausible reaction mechanism

Electron-deficient arenethiol participated smoothly in this
radical reaction (Table 1, entries 2 and 3). On the other
hand, additions of electron-rich arenethiols were not effi-
cient (entries 4–6). These poor yields would be due to the
low reactivity of the electrophilic thiyl radicals that are
stabilized by electron-donating aryl groups. Addition of a
catalytic amount of TEMPO (2,2,6,6-tetramethylpiperi-
dine-N-oxyl) to the reaction system or the absence of tri-
ethylborane almost prevented the reaction (entries 7 and
8). These results strongly support that the reaction would
proceed via the radical chain mechanism.

The addition of dodecanethiol (2g) to ynamide 1a did not
proceed at –30 °C. The reaction in boiling benzene with
AIBN [2,2¢-azobis(isobutyronitrile)] instead of triethyl-
borane proceeded, although the yield and stereoselectivity
were unsatisfactory (Scheme 3).

Scheme 3 Hydrothiolation of 1a with dodecanethiol

A wide range of ynamides were subjected to the radical
addition of benzenethiol (2a; Table 2). Not only 1a but
also ynamides bearing an acid-sensitive THP ether moiety
and a base-sensitive ester moiety underwent the addition
reactions without loss of the functional groups (entries 2
and 3). Benzenethiol added to ynamide 1d substituted
with a secondary alkyl group in lower yield with slightly
lower selectivity (entry 4). Ynamide 1e having a tertiary
alkyl group resisted the addition reaction (entry 5).16 Re-
placement of the benzyl group of 1a by a methyl group
slightly decreased the regioselectivity of the reaction (en-
try 1 vs. entry 6). The allyl group of 1g remained un-
changed under the reaction conditions (entry 7). N-Phenyl
ynamide 1h was less reactive than the N-benzyl analogue
1a (entry 8). Not only p-toluenesulfonamides 1a–h but
also camphorsulfonamides 1i and 1j and Boc-protected
ynamide 1k underwent the radical addition smoothly
(Scheme 4).

The addition reactions to N-(1-alkynyl)oxazolidinones led
to the exclusive formation of the corresponding Z adducts
in excellent yields (Scheme 5). In these cases, 2.4 equiva-
lents of benzenethiol and a larger amount of triethylbo-
rane were needed.

Table 1 Hydrothiolation of 1a with Various Arenethiols

Entry Ar Product Isolated yield (%) [Z/E]

1 Ph (2a) 3aa 89 [>99:1]

2 p-BrC6H4 (2b) 3ab 88 [>99:1]

3 C6F5 (2c) 3ac 93 [>99:1]

4 o-MeC6H4 (2d) 3ad 31a [n.d.b]

5 p-MeC6H4 (2e) 3ae 23a [n.d.b]

6c p-MeOC6H4 (2f) 3af 35 [>99:1]

7d Ph (2a) 3aa 6a [59:41]

8e Ph (2a) 3aa <2a [n.d.b]

a NMR yield.
b Not determined.
c The reaction was performed at r.t.
d The reaction was performed with TEMPO (0.10 mmol).
e The reaction was performed without triethylborane.
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Table 2 Radical Hydrothiolation of p-Toluenesulfonyl-Substituted 
Ynamides with Benzenethiol

Entry R1 R2 1 Product Isolated yield (%) [Z/E]

1 n-C6H13 Bn 1a 3aa 89 [>99:1]

2 THPOCH2 Bn 1b 3ba 90 [>99:1]

3 EtO2C(CH2)4 Bn 1c 3ca 97 [>99:1]

4 c-C6H11 Bn 1d 3da 73 [97:3]

5 t-Bu Bn 1e 3ea 15a [n.d.b]

6 n-C6H13 Me 1f 3fa 97 [96:4]

7 n-C6H13 allyl 1g 3ga 84 [>99:1]

8 n-C6H13 Ph 1h 3ha 60 [>99:1]

a NMR yield.
b Not determined.
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Hydrogenation of the double bonds of adducts 3 could
provide interesting structures having a phenylthiolated
chiral center. We hence tried to reduce alkenylamides 3.
Many attempts to reduce the double of 3aa in the presence
of various transition metal complexes under hydrogen at-
mosphere resulted in failure, suffering from no conver-
sions.

On the other hand, treatment of 3aa with triethylsilane in
trifluoroacetic acid reduced the alkene moiety17 to afford
the desired N-(2-phenylthioalkyl)amide 6aa in good yield
(Scheme 6).18 Unfortunately, attempted diastereoselec-
tive reduction of chiral N-(1-alkenyl)oxazolidinones 3ma
and 3na resulted in the formation of 1:1 mixtures of dias-
tereomers. However, the diastereomers were separable
from each other by flash column chromatography on silica
gel.

Scheme 6 Reduction of double bonds of adducts 3

In summary, we have developed a concise method to syn-
thesize (Z)-1-amino-2-thio-1-alkene derivatives in high
yields with excellent regio- and stereoselectivity. The
products can be hydrogenated by the action of triethylsi-
lane in trifluoroacetic acid. Since reduced products 6 have
asymmetric carbons, they can be useful as chiral building
blocks19 and chiral bidentate N,S-ligands of transition
metal catalysts.20
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