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The silica gel absorbed amino acid salt catalyzed asymmetric

intramolecular Robinson annulation reaction has been developed;

up to 97% ee was obtained with this readily recoverable

organocatalyst.

Organocatalysis has emerged as an important method for

asymmetric syntheses of chiral molecules.1 While the majority

of current research efforts are directed toward providing useful

synthetic building blocks, more and more applications for

tandem reaction sequences and complex molecular constructions

have recently appeared.2

We have previously reported the application of proline

mediated intramolecular Robinson annulation for the

asymmetric formal synthesis of a novel antibiotic agent

platensimycin.3 The current communication documents the

development of an amino acid salt catalyzed asymmetric

intramolecular Robinson annulation,4 which provides a

convenient route to a tricyclic ring structure resembling

platencin, another antibiotic agent.5

The Robinson annulation precursor is synthesized via a

straightforward sequence (Scheme 1) starting from trans-1,4-

cyclohexanedimethanol. Formation of the mono-TBS ether,

and then the tosylate, substitution to give a cyanide, and then

DIBAL-H reduction, provides an aldehyde intermediate.

Wadsworth–Emmons reaction gives the unsaturated ketone.

Deprotection of silyl ether, followed by oxidation, then

furnishes the desired compound 1.

We then started screening the optimal organocatalysts for

converting compound 1 to the Robinson annulation product 2.

Some representative results are shown in Scheme 2. While

proline and its derivatives provided poor yields and ee’s, the

combination of a catalytic amount of trifluoroacetic acid and a

stoichiometric amount of prolinol TBS ether gave better

results (79% ee). Higher conversion (63% yield) was also

obtained when a catalytic amount of chiral phosphoramide6

and a stoichiometric amount of pyrrolidine were used. It

should be noted that when sterically more bulky pyrrolidine

derivatives, including the widely employed a,a-diphenylprolinol
TMS ether,7 were used, no reaction took place. Optimization

of these catalyst systems turned out to be fruitless. Considering

that our substrate contains the a-branched aldehyde moiety,

which is relatively poor for enamine formation, and the

b-substituted a,b-unsaturated ketone as a poor electrophile,

these unsatisfactory results were not so unexpected.8

At this point, our attention turned to alkali metal/quaternary

ammonium salts of primary amino acids. These catalysts

were initially studied by Yamaguchi and co-workers for the

conjugate addition of malonates to a,b-unsaturated ketones or

a,b-unsaturated aldehydes;9 later, by Feng and co-workers for

cyanosilylation of ketones;10 and more recently, by Yoshida

and co-workers for conjugate addition of isobutyraldehyde to

b-nitroalkenes.11 It was expected that enamine activation of an

a-branched aldehyde could be easier with primary amines,

while Lewis acid activation of a,b-unsaturated ketone moiety

was expected from either alkali metal or quaternary ammonium

cations. If such intramolecular dual activation is in operation,

high enantioselectivity of this Robinson annulation reaction

should be expected.

We were thus very pleased to find that while the parent

amino acid phenylalanine did not promote the reaction

(Table 1, entry 1), good to excellent ee’s were obtained with

those alkali metal/quaternary ammonium salt catalysts.

Scheme 1 Synthesis of Robinson annulation precursor 1.

Scheme 2 Selected organocatalysts from preliminary screening.
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Aromatic substituted alanine derived salt provided the best

results (entries 2–10); leucine derived lithium salt was also

active (entry 11), while tert-leucine (entry 12) and tryptophan

(entry 13) derived lithium salt gave no conversion. Ether-type

solvents were found to give the highest yields and ee’s, while

the enantioselectivity varied when different counter cations

were used (entries 2–7), suggesting that Lewis acid strength

and steric effects of corresponding solvated cations are

important factors for asymmetric induction. The yield of this

reaction was significantly improved (84% yield, 97% ee) when

amino acid salt catalysts were absorbed on silica gel (entry 7).

More importantly, such silica gel absorbed catalysts could be

recovered very easily by filtration or centrifugation/decantation,

and reused for three repeated runs without significant loss of

catalytic activity or enantioselectivity (entry 7, 1st run, 84%

yield, 97% ee; 2nd run, 71% yield, 96% ee; 3rd run, 80% yield,

96% ee). This merit should be attributed to the ionic nature of

these amino acid salt catalysts, making it readily separable

along with the absorbent silica gel from the organic reaction

mixture.12

In summary, an amino acid salt catalyzed intramolecular

Robinson annulation reaction has been developed, which

provides a simple route to a tricyclic ring structure resembling

the important antibiotic compound platencin. By using silica

gel as absorbent, this type of catalyst is readily recoverable and

reusable. We believe this type of silica gel absorbed amino acid

salt catalyst could find lots of applications in organocatalytic

reactions. Research along these lines, as well as the application

of current methodology to the asymmetric synthesis of

platencin, is currently underway in this laboratory.
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