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Preparation of b-phenylnitroethanes having electron-donating
aryl substitutionI
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Abstract—b-Phenyl-b-hydroxynitroethanes having activating aryl substituents are treated with triethylsilane/trifluoroacetic acid
under solventless conditions to give the corresponding phenylnitroethanes. Substrates having no aryl substituents or substituents
that are only mildly activating or deactivating do not result in appreciable conversion to the title compounds.
� 2007 Elsevier Ltd. All rights reserved.
+
CHO

CHO

NO2 NO2

OH

OH

R

NH2
R

"biogenic amines"

alkaloids

1

(1)

(2)

Scheme 1. Synthetic utility of phenylnitroethanes: Eq. 1, ‘double
Henry’ reaction of phenylnitroethanes 1 with glutaraldehyde giving a
meso nitrodiol; Eq. 2, reduction of 1 to biogenic amines-precursors to
several alkaloid families.
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1. Introduction

Alkylnitro compounds are valuable starting materials
and intermediates in all phases of organic synthesis
whether a complex multistep campaign or a simple start-
ing material preparation.2 The saturated C-nitro func-
tionality can serve as a precursor to other functional
groups such as amines,3a ketones,3b aldehydes3c and car-
boxylic acids3d and the nitro group itself is an excellent
carbon activator for making carbon–carbon bonds
through the many variants of the nitroaldol reaction
or the nitronate Michael addition.4,5 Within the broad
class of alkylnitro compounds are the 2-arylnitro-
ethanes, compounds which can serve as precursors to
a diverse array of b-arylethylamines, and with elabora-
tion, structurally complex alkaloids (Scheme 1).6 We
have demonstrated the usefulness of phenyl-substituted
2-phenylnitroethanes 1 when reacted with glutaralde-
hyde in the so-called ‘double Henry’ reaction. On catal-
ysis with N,N,N 0,N 0-tetramethylguanidine (TMG), the
double nitroaldol thereby provides the meso or the enan-
tiomeric 2-benzyl-2-nitro-1,3-cyclohexanediols depend-
ing on the reaction conditions (Scheme 1). In turn, the
resultant meso cyclohexanediols make excellent sub-
strates for enzymatic desymmetrization.7a,b Typically,
the present routes to 2-arylnitroethanes entail a nitro-
aldol (Henry reaction) of the appropriate substituted
benzaldehyde and nitromethane with promotion by
base. Usually, the intermediate nitroalcohol dehydrates
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under more vigorous Henry conditions and ultimately
provides the nitroolefin as the overall product (Scheme
2). The nitroolefin, in turn, can be partially reduced,
R(n) (n)

Scheme 2. Preparation of b-arylnitroethane intermediates via the
Henry reaction and dehydration/reduction: (a) base, nitromethane; (b)
NaBH4-mediated reagent systems; (c) direct benzylic deoxygenation.
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under carefully controlled conditions, to the b-arylnitro-
ethyl product,7c or with the use of more robust condi-
tions, directly to the b-arylethylamine.

Our goal in preparing b-arylnitroethanes was to bypass
the formation of the nitroolefin thereby excluding any
Table 1. Preparation of b-arylnitroethyl derivatives 1a–i by reaction of b-ar
(TFA)
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b All reactions were run at room temperature.
c Isolated as a chromatographically inseparable 4:1 mixture of desired produ
process involving the reduction of the doubly conju-
gated double bond. Such reductions are problematic
and can lead to complex mixtures of products, including
dimers and carbonyl compounds, as well as the desired
saturated nitro compounds.8 Hence, starting with a b-
aryl-b-hydroxynitroethyl compound, one is only faced
ylnitroalkanols 2a–i with triethylsilane (TES) and trifluoroacetic acid

Conditionsb (h) Yielda (%) Ref.

3 64 13

1 90 13

3 70 18

3.5 76 14

1.75 85 14

16 62 15

16 89 18

16 47 16

5 62c 17

ise specified.

ct/dehydration product.
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with a straightforward deoxygenation of the benzylic
position to a benzylic methine or methylene. A number
of methods are available for the direct deoxygenation of
benzylic alcohols with varied selectivity and include
hydrogenolysis,9a triethylsilane and Lewis9b or Brønsted
acid,9c borane-dimethyl sulfide,9d samarium diiodide/
H2O.9e The direct schemes are exclusive of two step
methods such as radical deoxygenation of preformed
xanthate derivatives or halogenation–reduction.10
2. Results and discussion

The protocol for deoxygenation of the aryl-substituted
nitroalcohol substrates to the nitroalkanes is rapid, sim-
ple and straightforward (Eq. 3).
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After preparation of the Henry products,11 the proce-
dure entails the direct treatment of these intermediates
with triethylsilane and concentrated trifluoroacetic acid
under solventless conditions (Table 1). The crude reac-
tion mixtures are then directly submitted to flash-chro-
matography or distillation after reagent removal with
high vacuum or extractive workup. The reactions are
easily monitored by thin layer chromatography and usu-
ally require 1–16 h of reaction time under nitrogen at
room temperature (20–25 �C). Running the reaction
under solventless conditions is dictated more by neces-
sity than by choice. The employment of chlorinated sol-
vents retard the reaction while the use of solvents such
as toluene or benzene at higher temperatures contribute
to dehydration, which yields the nitroolefin. The results
listed in Table 1 demonstrate that substrates, which
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Figure 1. Selected substrate nitroalkanols treated with TES/TFA.
yield product, are those bearing one or more electron
releasing groups, for example, the methoxy or the
methylenedioxy group. In cases where the phenyl group
in the nitroalcohol is unsubstituted (2j, Fig. 1) or has
only mildly activating or deactivating groups (2k–n,
Fig. 1), no desired product is recovered and the reaction
mixture only affords unreacted starting material or
dehydration product. The only exception is the ortho-
methyl-substituted substrate 2m (Fig. 1), which gave a
12% yield of the corresponding phenylnitroethane.19

Furthermore, at least one activating substituent (even
in the case of multiple substitution) should be at the
ortho or para positions in the substrates for the reagent
system to be effective. Such substrate selectivity is evi-
denced by 2o (Fig. 1), which has the methoxy group in
the meta position and afforded only unreacted starting
material and no product. Substrates, which bear pro-
tecting groups on the phenolic hydroxyls, give variable
results depending on the reactivity of the protecting
group. Substrates such as 2h give appreciable conversion
to the expected product 1h (Table 1) while a similar ana-
logue having the more sensitive 4-methoxybenzyl (PMB)
group 2r (Fig. 1) affords a 25% yield of deoxygenated
deprotected (phenolic) product. Similar to 2h, substrate
2s was converted to the corresponding product 1s hav-
ing the 4-benzyloxy group intact in 58% yield.20 Treat-
ment of 4-O- and 2-N-acetyl-protected 2p and 2q
(Fig. 1) under normal conditions gave complete cleavage
of the acetyl group, respectively, and afforded none
of the desired O- or N-derivatized product. From a
mechanistic point of view, the substrates bearing
electron-donating substituents yielded the expected
reduced products despite the presence of the electron-
withdrawing b-nitro group. Presumably, the promotion
of the benzylic carbenium ion by the Brønsted acid, with
further facilitation by the electron-donating substitu-
ents, is the overwhelming factor. Ionic reduction of the
carbenium ion through hydride reduction from the
silane then takes place thereby affording the products.12
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3. Conclusion

In summary, we have described a protocol for direct
conversion of ring-activated b-aryl-b-hydroxynitro
compounds to the corresponding b-arylnitroethanes.
Although the direct ionic reduction of activated benzylic
alcohols with TES/TFA is well-precedented, the appli-
cation of this reaction to benzylic b-nitroalkanols repre-
sents a new and useful extension of this transformation
and thus provides intermediates, which can be easily
transformed to the corresponding amines. Though lim-
ited to aryl rings bearing electron donating substituents,
the reaction is a reasonable alternative to both the
nitroaldol/dehydration/reduction sequence and the
Kornblum reaction, which utilizes b-arylhaloethanes
and nitrite ion.
4. Experimental

4.1. Typical procedure for the TES/TFA reduction of
nitroalcohols

4.1.1. 1,2,3-Trimethoxy-5-(2-nitroethyl)benzene (1f,
Table 1). To a stirred suspension containing 1-(3,4,5-
trimethoxy-phenyl)-2-nitroethanol (2f, Table 1)
(32.5 mg, 0.13 mmol) and triethylsilane (200 lL,
1.25 mmol) at 0 �C, was added trifluoroacetic acid
(50 lL, 0.67 mmol) dropwise. As the reaction pro-
ceeded, the suspension turned into a clear solution.
The reaction mixture was stirred from 0 �C to room
temperature for 16 h, after which the reaction mixture
was quenched by the slow addition of saturated aqueous
sodium bicarbonate (2 mL). The product was extracted
with dichloromethane (3 · 2 mL) and the combined or-
ganic layers were washed with brine (2 mL), dried over
sodium sulfate and concentrated. The crude oily residue
was purified by flash column chromatography eluting
first with hexane then followed by hexane/diethyl ether
(1:1) to yield the pure arylalkylnitro compound (1f,
Table 1) as an off-white amorphous solid (19.0 mg,
62%): Rf: 0.18 (petroleum ether/diethyl ether, 1:1); mp:
80–81 �C (lit.:15 82–83 �C).
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