On the Stereochemistry of Tethered Intermediates in *p*-Methoxybenzyl-Assisted β-Mannosylation

Matthias Lergenmüller,^[a,b] Tomoo Nukada,^[a,d] Koji Kuramochi,^[a,c] Akihito Dan,^[a,e] Tomoya Ogawa,^{*[a]} and Yukishige Ito^{*[a]}

Keywords: Carbohydrates / Glycoproteins / Mannose / Glycosylation / Mixed acetals / Intramulecular aglycon delivery

We have previously developed a novel method for the stereocontrolled synthesis of β -manno-glycoside. Starting from 2-O-PMB (*p*-methoxybenzyl)-protected mannosyl donor 1, conversion into the mixed acetal 3 under oxidative conditions followed by the activation of the anomeric position affords β -manno-glycoside as a single stereoisomer. Although the utility of this method has been further demonstrated in the synthesis of the core structure of Asnlinked glycan chains, there remained uncertainty with respect to the stereochemistry of the mixed acetal. In order to make a stereochemical assignment of this intermediate,

Introduction

Stereoselective formation of β -manno-glycoside, which constitutes the core structure of asparagine (Asn)-linked glycoprotein oligosaccharides, has been the most challenging task in synthetic carbohydrate chemistry.^[1] The difficulty arises from its unique stereochemical array of C-1/C-2 positions. Namely, 1,2-*cis* relative stereochemistry precludes the use of neighboring group participation and the equatorial orientation of the glycosidic linkage is also disfavored by virtue of an anomeric effect.^[2]

Recently, we reported a novel method for the stereocontrolled synthesis of β -manno-glycoside^[3] as an extension of the concept called intramolecular aglycon delivery (IAD).^{[4][5]} In our approach, the *p*-methoxybenzyl (PMB)^[6] group was utilized as a scaffold for making the tethered intermediate required in the IAD process. Namely, starting from 2-*O*-PMB-protected mannosyl donor **1**, treatment with DDQ in the presence of an aglycon afforded, presumably via a quinonemethide-like species **2**, the mixed acetal **3**.^[7] Subsequent activation of the mannose anomeric position triggers the IAD process to afford 1,2-*cis*(β)-glycoside (Scheme 1).

- E-mail: yukito@postman.riken.go.jp ^[b] Recipient of STA fellowship award (1995–1997). Current address: ROVI GmbH,
- Breitwiesenstraße 1, D-36381 Schluechtern, Germany
 ^[c] Current address: Faculty of Pharmaceutical Sciences, Science University of Tokyo,
- Shinjuku-ku, Tokyo, 162–0826 Japan
- ^[d] Author for correspondence regarding computational studies; E-mail: tnuka@postman.riken.go.jp
 ^[e] Current address: Sumitomo Pharmaceuticals Research Center
- [e] Current address: Sumitomo Pharmaceuticals Research Center, Konohana-ku, Osaka, 554–0022 Japan

Eur. J. Org. Chem. **1999**, 1367–1376 © WI

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999

diastereomeric acetals 14a, 15a and 14b, 15b were prepared from 9 + 10/7 and 11 + 12/13, respectively. Investigations by means of NMR and a computational approach using DADAS 90 for quantifying steric hindrance, resulted in the conclusion that 14a/15a derived from 2-O-PMB-protected 9 has an (*S*) configuration and 14b/15b derived from 2-O-unprotected 11 has an (*R*) configuration. Based on the characteristic ¹H-NMR patterns inherent to the (*S*) isomers, 4,6-O-benzylideneprotected 30–35, derived from thiomannosides 5, 23, 24, 26, 27, were also revealed to have the (*S*) configuration.

Scheme 1. Structures of diastereomeric mixed acetals

Of particular note in this strategy are its compatibility with a variety of protecting groups (acetyl, benzyl, cyclic acetal, silyl, phthalimide, *p*-methoxyphenyl) and its applicability to oligosaccharide fragment coupling. The latter feature clearly distinguishes our strategy from others and allowed us to apply it to the synthesis of the core pentasaccharide structure of the asparagine-(Asn-)linked glycoprotein oligosaccharide in a convergent and fully stereocontrolled manner.^[3b,3c] Selectively protected mono-, di- and trimannosyl thioglycosides **4**,^[3b] **5**,^[3b] and **6**^[3c] proved to be quite suitable for this purpose (Scheme 2). The yields of β -manno-glycosides obtained to date are as fol-

 [[]a] The Institute of Physical and Chemical Research (RIKEN) 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan Fax: (internat.) + 81-48/462-4680
 E. mail: unkite@norteman.rikam.rica

lows: 74% (1 \rightarrow 6-linked disaccharide from **9**)^[3a], 60% (1 \rightarrow 4-linked di- and trisaccharide from **4**),^[3b] 53% (1 \rightarrow 4-linked trisaccharide from **5**)^[3b] and 41% (pentasaccharide from **6**)^[3c] (Table 1).

Scheme 2. Mannosyl donors and acceptors used for synthetic studies on Asn-linked glycans

Table 1. Results of PMB-assisted β -mannosylation

Donor/aglycon ^[a]	Yield of β -manno-glycoside [%] ^[b]	Ref.
4/7	60	[3b]
4/8	60	[3b]
5/7	53	[3b]
5/8	49	[3b]
6/8	41	[3c]
9/10	52	[3a]
9/7	40	[3a]
9/18	74	[3a]

^[a]Donor/aglycon ratios are from ca. 1.3 to ca. 1.5. - ^[b] Yields are calculated as overall from aglycon.

The success of our strategy mainly stems from the smooth formation of the mixed acetal **3** under essentially neutral conditions (DDQ, room temperature). This can be compared favorably with previously reported methods for mixed acetal formation^[4,8–16] in terms of mildness of the reaction conditions, as well as operational simplicity. Additionally, by virtue of having a *p*-methoxyphenyl substituent on an acetal carbon atom, a high degree of charge delocalization can be expected during the course of the IAD process.

Although the utility of this method is quite clear, there remained uncertainty with respect to the stereochemistry of the mixed acetal. Namely, the acetalic carbon atom of **3** is stereogenic and the formation of two diastereomers is possible at this stage. Nucleophilic attack of an alcohol from the *re* and the *si* face of the presumed intermediate **2** should afford **3** as an (*S*) and (*R*) diastereomer, respectively. There-

fore, the questions to be asked are: (1) Is this transformation stereoselective at all? (2) If it is stereoselective, which diastereomer is formed preferentially? (3) If the process is not stereoselective, do both isomers give IAD products with equal efficiency?

Synthesis of Diastereomeric Mixed Acetals

Due to its acyclic nature, as well as the lack of a vicinal hydrogen atom, stereochemical assignment of the mixed acetal **3** was thought to be rather problematic. In the search for a clue to solve this problem, we planned to prepare the mannosyl fluoride based mixed acetal **14** by an alternative route (Route 2). This compound was made from C-2-un-protected mannosyl fluoride **11**^[17] and C-4-PMB-protected **12**. The aim was to compare this product with that obtained previously by Route 1, which was made from C-2-PMB-protected **10**^[18] (Scheme 3). Reactions were performed under conditions identical with those reported for Route 1 (DDQ, 4 Å molecular sieves/CH₂Cl₂, room temperature).

Scheme 3. Formation of diastereomeric mixed acetals

¹H-NMR analysis revealed that mixed acetals (14a,b), prepared as described above, are diastereomeric with each other and that both processes are substantially stereoselective to give each isomer with $\geq 95\%$ diastereomeric purity. There are several characteristic features that clearly distinguish 14a from 14b. Firstly, chemical shifts of the 1-H and 2-H protons of the mannose differ by as much as ca. 1.2 and ca. 0.7 ppm, respectively (Table 2). Compared to the starting materials [$\delta_{1-HMm} = 5.55$ (9), 5.64 (11)], chemical shift deviations of **14b** are relatively small and quite a large low-field shift was observed for **14a** derived from Route 1. In addition, the signal of one of the methylene protons of the benzyl protecting group in **14a** was shifted downfield to as low as $\delta = 5.22$. Similar trends were observed for a pair of acetals bearing a 2-phthalimide unit: **15a** [$\delta_{\rm H} = 6.41 (1-H_{\rm Man})$, 5.40 (benzyl CH₂), 4.32 (2-H_{\rm Man})] and **15b** [$\delta_{\rm H} = 5.21 (1-H_{\rm Man})$, 3.75 (2-H_{Man})].

Table 2. Key ¹H-NMR signal of mixed acetals^[a]

Mixed acetal (fluoride/aglycon) δH	¹ Man	2Man	Acetal CH	1 _{Glc/GlcN}
14a (9/10)	6.37	4.52	5.94	4.6
14b (11/12)	5.19	3.8	5.91	ND ^[b]
15a (9/7)	6.41	4.32	6.01	6.03
15b (11/13)	5.21	3.75	5.94	6.17

^[a] Measured at 270 MHz in C_6D_6 . – ^[b] Not determined.

Acetal **14b** was subjected to IAD (AgOTf, SnCl₂, 2,6-di*tert*-butyl-4-methylpyridine, 4-Å molecular sieves/CH₂Cl₂) to afford β -manno-glycoside **16** in 47% yield, which is a nearly identical yield to that obtained previously by Route 1 (52%^[3a]). This result demonstrates that the efficiency of IAD is rather insensitive to the stereochemistry of the mixed acetal as far as being effected by AgOTf/SnCl₂ is concerned.

A similar set of experiments was performed with the primary alcohol 18^[18] and corresponding PMB ether 19. Thus, 18 and 19 were converted into 20 by treating with 9 (Route 1) and 11 (Route 2), respectively. ¹H-NMR analysis of the acetal 20a, derived from Route 1, again revealed its stereochemical homogeneity and a characteristic downfield shift was observed for a signal assigned as 1-H_{Man}. On the other hand, acetal 20b, derived from Route 2, proved to be a 3:2 mixture of diastereomers, with the compound having the

Scheme 4. Formation of β -1 \rightarrow 6-linked disaccharide

opposite configuration to **20a** predominating. Conversion of **20a** and **20b** into β -mannoside **21** proceeded in 65%^[3a,19] and 74% yield, respectively, providing additional proof that the acetal configuration is not a critical factor in the IAD process.

Stereochemical Assignments of Mixed Acetals

Having the diastereomeric acetals **14a/b** and **15a/b** in hand, these materials were further studied by ¹H-NMR NOE experiments, which gave a clear indication that the spatial arrangements of substituents on the acetalic carbon atoms are markedly different in both cases. In acetals derived from Route 1 (**a** series), strong NOEs were observed between the acetal proton and 1-H_{Man}, 2-H_{Man}, and 4-H_{Glc} as well as aromatic protons of the *p*-methoxybenzyl substituent. For the other isomers (**b** series), NOE could be observed only between the 2-H_{Man} and the acetal proton.

Based on this information, computational studies were performed using the program DADAS (Distance Analysis in Dihedral Angle Space) 90^[20] to make stereochemical assignments of mixed acetals. In order to quantify steric repulsion under the condition that the observed NOEs should be fulfilled, calculations were performed for a pair of diastereomeric acetals **15a/b**, which were calculated as both (*S*) and (*R*) isomers. The following equation was applied to 100 initial structures for every distinct molecule (r = distance between two non-bonded atoms, R_s = a sum of van der Waals radii, R_u and R_1 = upper and lower limitation of distance, A_u and A_1 = upper and lower limitation of dihedral angle) (Equation 1).

$$T_{\rm p} = T_{\rm r} + T_{\rm n} + T_{\rm t} = [W_{\rm r}(R_{\rm s}^2 - r^2)^2] + [W_{\rm n}(R_{\rm u}^2 - r^2)^2 + W_{\rm n}(R_{\rm l}^2 - r^2)^2] + [W_{\rm t}(A_{\rm u}^2 - a^2)^2 + W_{\rm t}(A_{\rm l}^2 - a^2)^2]$$
(1)
soft repulsion term + NOE term + dihedral angle restriction

The soft repulsion term T_r is active when $r < R_s$, R_s being the sum of van der Waals radii of the two atoms. The NOE term T_n represents the observed effects under the condition

Table 3. Results of DADAS 90 calculations

Meo OBn PhthN BnO _H Ha F BnO BnO BnO BnO BnO BnO F BnO BnO F BnO BnO F					
		S Series	R Series		
15	(<i>R</i>)/(<i>S</i>)	NOE restriction ($H_a \rightarrow$)	$\phi \theta T_{p(min)}$	T _{p(max)}	
a a	(<i>R</i>) (<i>S</i>)	2-H _{man} 1-H _{man} , 2-H _{man} , 4-H _{ag} , ar	-70°-135¶36 100° -50° 27	15000 5855	
b b	(<i>R</i>) (<i>S</i>)	$\begin{array}{l} \text{2-}H_{\text{man}}\\ \text{1-}H_{\text{man}}, \text{2-}H_{\text{man}}, \text{4-}H_{\text{ag}}, \text{ar} \end{array}$	32° 78° 0 -15°125° 221	34800 21800	

that $R_1 < r < R_u$, where the lower limit R_1 is 2 Å and the upper limit R_u is 3 Å for **15a** (4 NOEs); for **15b** (1 NOE) the lower limit R_1 was set to be 3 Å. The dihedral angle restriction term T_t deals mostly with the acetal bond, whereas protecting groups were allowed to rotate freely. An anomeric effect was considered for the newly formed acetal bonds and was set the lower limit A_1 and the upper limit A_u of angles ϕ and θ between -90° and 90° . T_p (pseudo energy) should therefore reach a minimum provided that the sterically less hindered conformation is reached under the condition that 4 NOEs for **15a** and 1 NOE for **15b** are exhibited. Table 3 shows the results of the calculations. As clearly seen by comparison of the T_p values, (S)-**15a** is the sterically less hindered diastereomer in comparison to (R)-

Figure 1. Stereochemistry of mixed acetals 14a,b and 15a,b; protons having NOEs to H_a (bold typeface) are marked by dotted circles

Figure 2. Computer-generated view of pseudo-energy minimum conformers of **15a** (top) and **15b** (bottom); protons H_a , 4- H_{GleN} , 1- H_{Man} , 2- H_{Man} , and Ar- H_{PMB} (for **15a**), and H_a and 2- H_{Man} (for **15b**) are depicted as spheres

15a. In contrast, in another diastereomer **15b** a reversal of relative magnitudes of T_p is observed. In this case, all conditions avoiding steric congestion were fulfilled as an (*R*) isomer ($T_p = 0$) in comparison to that of (*S*) isomer (i.e. 136).

These calculations led us to the conclusion that mixed acetals formed by Route 1 and having 4 positive NOEs are (*S*) diasteromers, whilst those obtained by Route 2 and having only 1 NOE are (*R*) diastereomers (Figures 1 and 2). Since the ¹H-NMR patterns of (*S*) and (*R*) isomers are clearly distinct, the assignment of acetal stereochemistry is hereafter possible simply by routine ¹H-NMR measurement (vide infra).

4,6-*O*-Benzylidene-protected thiomannosides 4 and 5 proved to be highly useful in the stereoselective synthesis of Asn-linked glycans^[3b] and the stereochemistry of corresponding mixed acetals is of particular interest. For this reason, detailed NMR studies were performed with mixed acetals 30-33 (Table 4), obtained from 5, 23, 24, 26, which were in turn prepared from 22 as a key intermediate (Scheme 5). In the cases of 30-33, mixed acetals were purified to give spectroscopically homogeneous compounds and isolated in 65-88% yield.^[21] As summarized in Table 4, uniformly strong downfield shifts were observed for $1-H_{Man}$ and one benzyl methylene proton, and this fact allowed us to conclude that all of these mixed acetals have an (*S*) con-

Scheme 5. Precursors of mixed acetals 30-35

Eur. J. Org. Chem. 1999, 1367-1376

FULL PAPER

Table 4. Key ¹H-NMR chemical sifts of thioglycoside-derived mixed acetals^[a]

^[a] Measured at 270 MHz in CDCl₃. – ^[b] Assignments for **30** and **32** were confirmed by H-H and C-H COSY experiments and those for other compounds were made by analogy.

figuration. The assignment was also supported by NOE studies for compound 30-32. Namely, strong NOEs were observed between the acetal proton and 1- and 2-H of mannose and 4-H of glucosamine. In addition, in the case of polymer-supported thioglycoside 27,^[3e] the corresponding acetals 34 and 35 consist of a single stereoisomer and their configurations were assigned as (*S*).

Among the compounds listed in Table 4, mixed acetals **32** and **33** were transformed into tetrasaccharides **36a** and **36b**, respectively,^[3b] by the action of methyl trifluoromethanesulfonate (MeOTf)/DBMP (Scheme 6). Compound **36**, having a 4,5-dichlorophthaloyl group as an amine-protecting group,^[22] was designed to be an advanced intermediate for the synthesis of complex oligosaccharides.

More recently it was discovered that the efficiency of β mannoside formation can be further improved by using 4,6-

Scheme 6. Stereocontrolled synthesis of tetrasaccharide

cyclohexylidene-protected thioglycoside **37** (Scheme 7). Reaction with glucosamine-derived acceptor **4** afforded disaccharide **39**, via acetal **38**, in 83% yield.^[23] Inspection of the ¹H-NMR spectrum [$\delta_{\rm H} = 5.59$ (1-H_{Man})] revealed that the stereochemistry of the acetalic carbon atom is again (*S*).

Scheme 7. Use of cyclohexylidene-protected mannosyl donor

Discussion

Isopropylidene mixed acetals and mixed silaketals were introduced by Baressi and Hindsgaul^[4] and Stork and coworkers^[5] as intermediates for IAD in β -D-mannosylation. These compounds were formed by bridging two alcohols under the action of dichlorodimethylsilane, or by addition of an alcohol to a vinyl ether protected carbohydrate. An *n*-pentenyl glycoside derived silaketal^[24] and a glucose-derived mixed acetal^[25] were used for similar purposes. Compared to the previously reported preparations of mixed acetals, the DDQ-mediated process described here seems to be operationally simpler and has applicability to a wider range of oligosaccharide structures.^[26]

As far as the issue of the stereochemistry of mixed acetals **3** is concerned, it is now clear that the mixed acetal formation from the 2-O-PMB mannosyl donor proceeds with a uniformly high degree of diastereofacial selectivity, with attack at the *re* face of the cationic intermediate **2**. On the

other hand, 2-*O*-unprotected fluoride **11** gave the (*R*) isomer **14/15b** when treated with 4-*O*-PMB-protected Glc/ GlcN derivatives (**12/13**). Although the origins of these selectivities are obscure for the moment, these results strongly suggest that the stereochemical outcomes are the result of kinetic control. Additionally, it was demonstrated that IAD processes proceed with nearly equal efficiency for both diastereomers, as far as relatively reactive aglycon-derived acetals (**14, 20**) are concerned. That the IAD process is effective for both stereoisomers, which are available by separate routes (i.e. Route 1 and Route 2 in Scheme 3), may well further broaden the flexibility of PMB-assisted β -mannosylation.

Experimental Section

General Methods: Melting points were determined with a Yanagimoto micro-melting point apparatus and are not corrected. - Optical rotations were measured with a JASCO DIP 370 Polarimeter at ambient temperature (20±3°C). - NMR spectra were recorded with a JEOL EX-270 spectrometer using Me₄Si as internal standard for CDCl₃ and C₆D₆ solutions. - TLC on silica gel 60 F₂₅₄ (Merck, Darmstadt) was used to monitor the reactions and to ascertain the purity of the products. Silica gel column chromatography was performed with Merck silica gel 60 (63-200 µm) or Cica silica gel 60 N (spherical, 40-100 or 100-210 µm). - Silver trifluoromethanesulfonate (AgOTf) was recrystallized from hot toluene/n-hexane. All other reagents were used as received. Dichloromethane was distilled from CaH2. All other solvents were dried and stored over freshly activated molecular sieves (3 or 4 Å). Molecular sieves were activated by heating to 180°C in vacuo for 24 h prior to use. All reactions were performed under N2 or Ar.

Benzyl 2,3,6-Tri-O-benzyl-4-O-p-methoxybenzyl-β-D-glucopyranoside (12): To an ice/water-cold solution of compound 10 (1.47 g, 2.72 mmol) in DMF (15 mL) was added NaH (60%, 160 mg, 40 mmol) under a positive pressure of N₂ and the mixture was stirred for 10 min. p-Methoxybenzyl chloride (0.48 mL, 3.5 mmol) was added dropwise and the mixture was gradually warmed to ambient temperature. After being stirred for 18 h, the reaction was quenched with MeOH (ca. 0.5 mL) at 0°C, diluted with diethyl ether, washed successively with water and brine, dried with MgSO4 and the solvent evaporated in vacuo. The residue was crystallized from cold hexane to afford 1.66 g (93%) of 12, m.p. 98-99°C. - $[\alpha]_{\rm D} = -16.7 \ (c = 0.72, \text{ CHCl}_3). - {}^{1}\text{H} \text{ NMR} \ (270 \text{ MHz}, \text{ CDCl}_3):$ $\delta = 3.78$ (s, 3 H, OMe), 4.51 (d, 1 H, 1-H), 6.80 (d, 2 H, PMB), 7.07 (d, 2 H, PMB), 7.2–7.45 (m, 20 H, Ar), $J_{1,2} = 7.6$, $J_{PMB} =$ 8.6 Hz. $- {}^{13}$ C NMR (67.8 MHz, CDCl₃): $\delta = 55.3$ (MeO), 68.9, 71.1, 73.5, 74.6, 74.9, 74.9, 75.7, 77.6, 82.3, 84.8, 102.6 (C-1). C42H44O7 (660.8): calcd. C 76.34, H 6.71; found C 76.18, H 6.70.

p-Methoxyphenyl 3,6-Di-*O*-benzyl-2-deoxy-4-*O*-*p*-methyloxybenzyl-2-phthalimido- β -D-glucopyranoside (13): To an ice/water-cold solution of compound 7 (176 mg, 0.29 mmol) in DMF (3 mL) was added NaH (60%, 16 mg, 0.44 mmol) under a positive flush of N₂ and the mixture was stirred for 10 min. *p*-Methoxybenzyl chloride (60 µL, 0.44 mmol) was added dropwise and the mixture was gradually warmed to ambient temperature over 1 h. After being stirred for additional 2 h, the reaction was quenched with MeOH (ca. 0.1 mL) at 0°C, diluted with diethyl ether, successively washed with water and brine, dried with MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/AcOEt, 2:1) to afford 124 mg (59%) of **13**, [α]_D = +62.1 $(c = 1.9, \text{ CHCl}_3)$. − ¹H NMR (CDCl}3): δ = 3.72 (s, 3 H, MeO), 3.80 (s, 3 H, MeO), 5.63 (d, 1 H, 1-H), 6.6−7.4 (m, 18 H, Ar), 7.5−7.9 (br., 4 H, Phth); $J_{1,2} = 8.3 \text{ Hz}$. − ¹³C NMR (CDCl}3) δ = 55.26, 55.53, 55.80, 68.59, 73.48, 74.70, 74.84, 75.24, 77.22, 79.16, 79.18, 97.56 (C-1). − $C_{43}H_{41}N_1O_9$ (715.8): calcd. C 72.15, H 5.77, N 1.96; found C 71.65, H 5.76, N 1.91.

Benzyl 2,3,4-Tri-*O*-benzyl-6-*O*-*p*-methoxybenzyl-β-D-glucopyranoside (19): Compound 18 (545 mg, 1.01 mmol) was treated with NaH (60%, 60 mg, 1.5 mmol) and *p*-methoxybenzyl chloride (180 µL, 1.3 mmol) in DMF (3 mL) in the same manner as described for 12. Purification by silica gel column chromatography (hexane/ AcOEt, 5:1) afforded 629 mg (94%) of 19, m.p. 57–58 °C. – $[\alpha]_D =$ 6.3 (*c* = 0.8, CHCl₃). – ¹H NMR (270 MHz, CDCl₃): $\delta =$ 3.77 (s, 3 H, MeO), 6.85 (d, 2 H, PMB), 7.1–7.45 (m, 22 H, Ar); *J*_{PMB} = 8.6 Hz. – ¹³C NMR (67.8 MHz, CDCl₃): $\delta =$ 55.2 (MeO), 68.5, 71.1, 73.1, 74.9, 74.9, 75.7, 76.2, 77.2, 77.9, 82.3, 84.7, 102.6 (C-1). – C₄₂H₄₄O₇ (660.8): calcd. C 76.34, H 6.71; found C 76.16, H 6.67.

Benzyl O-(3,4,6-Tri-O-benzyl-β-D-mannopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (16). - From 11 and 12: To a stirred mixture of DDQ (26 mg, 0.11 mmol) and 4-Å molecular sieves (0.26 g) in CH₂Cl₂ (2 mL) were added compounds 11 (33.2 mg, 0.073 mmol) and 12 (60.3 mg, 0.091 mmol) as a solution in CH_2Cl_2 (3 mL) at 0°C. The mixture was stirred at 0°C for 10 min and at room temperature for 60 min. The resulting mixture was quenched with a solution of ascorbic acid (0.7%)/citric acid (1.3%)/NaOH (0.9%) in water (3 mL), diluted with AcOEt, and filtered through Celite. The filtrate was successively washed with water, aq. NaHCO₃ and brine, and then dried with Na₂SO₄. The solvent was evaporated, coevaporated with toluene in vacuo and the material exposed to high vacuum (ca. 1 h) to afford crude 14b. To a flask containing 4-A molecular sieves (0.3 g) and 2,6-di-tert-butyl-4methylpyridine (DBMP, 25 mg, 0.12 mmol) was added AgOTf (30 mg, 0.12 mmol) and SnCl₂ (22 mg, 0.12 mmol) followed by CH₂Cl₂ (1 mL) and the mixture was cooled to ice/water temperature. 14b was then added as a solution in CH₂Cl₂ (4 mL) and the mixture was stirred at ambient temperature for 18 h. The reaction mixture was quenched with aq. NaHCO₃/ice, diluted with AcOEt, and filtered through Celite. The filtrate was successively washed with water and brine, dried with MgSO4, and the solvent evaporated in vacuo. The residual syrup was purified by silica gel column chromatography (hexane/AcOEt, 5:1 \rightarrow 2:3) to afford 33.7 mg (47%) of 16, m.p. 94–96°C. – $[\alpha]_D = +3.0$ (c = 0.8, CHCl₃). – ¹H NMR (270 MHz, CDCl₃): δ = 2.65 (br., 1 H, OH), 3.50 (dd, 1 H, 2-H), 3.98 (br. s, 1 H, 2'-H), 4.51 (d, 1 H, 1-H), 4.64 (s, 1 H, 1'-H), 7.1–7.5 (m, 35 H, Ar); $J_{1,2} = 7.9$, $J_{2,3} = 8.9$ Hz. – ¹³C NMR $(67.8 \text{ MHz}, \text{ CDCl}_3): \delta = 67.7, 69.0, 71.0, 71.1, 73.3, 73.4, 73.9,$ 74.4, 74.9, 75.1, 75.3, 75.5, 75.7, 81.5, 82.0, 83.1, 99.8 (${}^{1}J_{CH} =$ 159 Hz), 102.6 (${}^{1}J_{CH} = 159$ Hz). - C₆₁H₆₄O₁₁ (973.2): calcd. C 75.29, H 6.62; found C 75.34, H 6.62. - In a separate experiment, 14b was prepared from 37.1 mg (0.08 mmol) of 11 and 64.9 mg (0.098 mmol) of 12 and purified by size exclusion chromatography on Bio-Beads S-X4 (toluene); yield 85.0 mg (93%). - From 9 and 10: Compounds 9 (87.0 mg, 0.15 mmol) and 10 (56.3 mg) were treated with DDQ (36 mg, 0.16 mmol) in CH₂Cl₂ (3 mL), as described above, to afford crude 14a. This material was treated with AgOTf (53 mg, 0.21 mmol)/SnCl₂(39 mg, 0.21 mmol)/DBMP (50 mg, 0.24 mmol) in 8 mL of CH₂Cl₂ (room temp., 5 h) and subsequent purification by silica gel column chromatography afforded 52.5 mg (52%) of 16.

Benzyl *O*-(3,4,6-Tri-*O*-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- β -D-glucopyranoside (21). — From 11 and 19: Compounds 11 (32.4 mg, 0.072 mmol) and 19 (57.8 mg, 0.087 mmol) were trans-

formed into 20b in the same manner as described for 14b in the preparation of 16. In short, treatment of 11 and 19 with DDQ (25 mg, 0.087 mmol) in CH₂Cl₂ (5 mL) at room temperature for 70 min afforded crude **20b** (93 mg). $- {}^{1}$ H NMR (270 MHz, C₆D₆) $\delta = 4.3$ [m, 2'-H, (R) isomer], 4.6 [m, 2'-H, (S) isomer], 5.88 [3/5 H, s, acetal CH, (R) isomer], 6.03 [dd, 3/5 H, J = 50 and < 1 Hz, 1'-H, (R) isomer], 6.04 [2/5 H, s, acetal CH, (S) isomer], 6.25 [d, 2/ 5 H, J = 50 Hz, 1'-H, (S)isomer]. – Subsequent transformation into 21 was performed using AgOTf (30 mg, 0.12 mmol), SnCl₂ (22 mg, 0.12 mmol), DBMP (25 mg, 0.12 mmol) and 4-A molecular sieves (0.3 g) in 5 mL of CH₂Cl₂ (0°C, 10 min, room temp., 75 min). Purification by silica gel column chromatography afforded 52.0 mg (75%) of compound **21**, m.p. 115–117°C. – $[\alpha]_D = -3.0$ $(c = 1.1, \text{CHCl}_3)$. - ¹H NMR (270 MHz, CDCl₃): $\delta = 3.88$ (t, 1) H, J = 9.2 Hz), 4.03 (d, 1 H, 2'-H), 4.22 (1 H, d, J = 9.9 Hz), 4.31 (s, 1 H, 1'-H), 4.50 (d, 1 H, 1-H), 7.1–7.5 (m, 35 H, Ar); $J_{1,2} =$ 7.6, $J_{2',3'} = 2.6$ Hz. $- {}^{13}$ C NMR (67.8 MHz, CDCl₃): $\delta = 68.2$, 68.7, 69.1, 71.2, 71.4, 73.5, 74.1, 74.4, 74.79, 74.83, 75.1, 75.2, 75.7, 78.0, 81.3, 82.2, 84.7, 100.3 (${}^{1}J_{CH} = 159 \text{ Hz}$), 102.4 (${}^{1}J_{CH} =$ 160 Hz). $- C_{61}H_{64}O_{11}$ (973.2): calcd. C 75.29, H 6.62; found C 75.26, H 6.58. - From 9 and 18: Compounds 9 (122.3 mg, 0.21 mmol) and 18 (80.2 mg, 0.15 mmol) were treated with DDQ (50 mg, 0.23 mmol) in 4 mL of CH₂Cl₂ to afford 20a. This material was converted into 21 with AgOTf (74 mg, 0.29 mmol)/SnCl₂ (55 mg, 0.29 mmol)/DBMP (60 mg, 0.29 mmol) in 8 mL of CH₂Cl₂. Yield 94.0 mg (65%).

Mixed Acetals 14a/b and 15a/b for NOE Studies: These compounds were prepared from anomerically pure α -fluorides 9 and 11. A typical experimental procedure is given for the preparation of 14a: To a flask containing DDQ (16 mg, 0.070 mmol) and 4-Å molecular sieves (0.1 g) in CH_2Cl_2 was added a mixture of compounds 9 (30.2 mg, 0.0527 mmol) and 12 (34.1 mg, 0.063 mmol) as a solution in CH₂Cl₂ (1.5 mL) under ice/water cooling. The mixture was stirred at 0°C for 10 min and at room temperature for 130 min, and then quenched with a mixture of ascorbic acid (0.7%)/citric acid (1.3%)/NaOH (0.9%) in water (3 mL). The lemon-yellow suspension was diluted with AcOEt, filtered through Celite and the filtrate was successively washed with aq. NaHCO3, water, and brine, dried with Na₂SO₄, and the solvent evaporated in vacuo. The residue was subjected to size exclusion chromatography on a column of Bio-Beads S-X3 (Bio-Rad) to afford 14a (44.5 mg, 76%). $- {}^{1}$ H-NMR data (270 MHz, C₆D₆): 14a: $\delta = 3.25$ (s, 3 H, OMe), 3.9 (t, 1 H, 4-H), 4.52 (d, 1 H, 2'-H), 5.96 (s, 1 H, acetal CH), 6.38 (d, 1 H, 1'-H); $J_{3,4} = J_{4,5} = 9$, $J_{2'3'} = 2$, $J_{CH2} = 12.5$ Hz, ${}^{1}J_{1',F} =$ 51.1 Hz. - **14b**: $\delta = 3.24$ (s, 3 H, MeO), 3.75 (dd, 1 H, 2'-H), 5.19 (dd, 1 H, 1'-H), 5.22 (s, 1 H, benzyl CH₂), 5.91 (1 H, s, acetal CH); $J_{1'2'} < 1, J_{2',3'} = 2, J_{1',F} = 50$ Hz. - **15a**: $\delta = 3.19$ and 3.32 (2 s, each 3 H, OMe), 4.32 (d, 1 H, 2'-H), 4.5 (4-H), 5.05 (dd, 1 H, 2-H), 5.40 and 4.90 (ABq, each 1 H, benzylic CH₂), 6.00 (d, 1 H, 1-H), 6.02 (s, 1 H, acetal CH), 6.40 (1 H, d, 1'-H); $J_{1,2} = 8.6, J_{2,3} =$ 10.6, $J_{1,F} = 50.9$, $J_{2,3''} = 2$, $J_{CH2} = 12.5$ Hz. - **15b**: $\delta = 3.17$ and 3.26 (2 s, each 3 H, OMe), 3.78 (d, 1 H, 2'-H), 4.4 (4-H), 5.21 (d, 1 H, 1'-H), 5.94 (s, 1 H, acetal CH), 6.17 (d, 1 H, 1-H); $J_{1,2} = 8.6$, $J_{1',F} = 50.8, J_{2',3'} = 2$ Hz.

Methyl 3-O-Acetyl-4,6-O-benzylidene-2-O-p-methoxybenzyl-1-thio- α -D-mannopyranoside (23): Acetic anhydride (2.5 mL) was added at 0 °C to a solution of 22 (300 mg, 0.72 mmol) in CH₂Cl₂ (5 mL) and pyridine (2.5 mL) and stirred for 3 d at room temperature. The solution was poured into ice/water (50 mL), stirred for 30 min and diluted with CH₂Cl₂ (100 mL). The organic phase was washed with 2 N HCl (20 mL), satd. NaHCO₃ solution (20 mL), water (20 mL) and dried (Na₂SO₄). Removal of volatile mateials in vacuo gave 323 mg of crude product as a clear syrup. Purification by silica gel column chromatography with toluene/AcOEt (10:1) afforded 295 mg (89%) of **23** as a colorless foam, $[\alpha]_{D} = +59.6$ (c = 1.0, CHCl₃). $-^{1}$ H NMR (270 MHz, CDCl₃): $\delta = 2.01$, 2.13 (2 s, each 3 H, CH₃S, CH₃CO), 3.81 (s, 3 H, CH₃OC₆H₄CH₂), 3.89 (m, 1 H, 6-H_a), 4.05 (dd, 1 H, 2-H), 4.18 (dd, 1 H, 4-H), 4.21–4.31 (m, 2 H, 5-H, 6-H_b), 4.48, 4.63 (2 d, 1 H each, CH₃OC₆H₄CH₂), 5.20 (d, 1 H, 1-H), 5.21 (dd, 1 H, 3-H), 5.56 (s, 1 H, C₆H₅CH), 6.89, 7.28 (2 d, 2 H each, CH₃OC₆H₄CH₂), 7.32–7.48 (m, 5 H, C₆H₅CH); $J_{1,2} = 1.3$, $J_{2,3} = 3.6$, $J_{3,4} = 9.7$, $J_{4,5} = 9.6$, $J_{CH2} = 11.9$ Hz. – C₂₄H₂₈O₇S (460.5): calcd. C 62.59, H 6.13; found C 62.73, H 6.13.

Methvl 4,6-O-Benzylidene-2-O-p-methoxybenzyl-1-thio-3-O-pmethylbenzoyl- α -D-mannopyranoside (24): To a solution of 22 (548 mg, 1.31 mmol) in anhydrous CH₂Cl₂ (10 mL) and pyridine (10 mL) were added at 0°C p-toluoyl chloride (208 µL, 1.57 mmol) and 4-dimethylaminopyridine (DMAP, 8 mg, 0.07 mmol) and the solution stirred for 20 h at room temperature. The reaction was quenched with MeOH (1 mL), stirred for 1 h and concentrated to dryness. The residue (940 mg) was purified by elution from silica gel with toluene/AcOEt, $1:0 \rightarrow 10:1$ to afford 475 mg (68%) of 24 as a colorless foam, $[\alpha]_D = +9.2$ (c = 1.0, CHCl₃). - ¹H NMR $(270 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 2.15$ (s, 3 H, CH₃S), 2.41 (s, 3 H, CH₃OC₆H₄CO), 3.73 (s, 3 H, CH₃OC₆H₄CH₂), 3.94 (m, 1 H, 6-H_a), 4.18 (dd, 1 H, 2-H), 4.24-4.40 (m, 3 H, 4-H, 5-H, 6-H_b), 4.48 and 4.60 (2 d, 1 H each, CH₃OC₆H₄CH₂), 5.24 (d, 1 H, 1-H), 5.46 (dd, 1 H, 3-H), 5.62 (s, 1 H, C₆H₅CH), 6.70 (m, 2 H, CH₃OC₆*H*₄CH₂), 7.16–7.46 (m, 9 H, C₆*H*₅CH, CH₃OC₆*H*₄CH₂, CH₃OC₆ H_4 CO), 7.93 (d, 2 H, CH₃OC₆ H_4 CO); $J_{1,2} = 1.2$, $J_{2,3} = 1.2$ 3.5, $J_{3,4} = 9.7$, $J_{6a,b} = 9.9$, $J_{CH2} = 11.7$ Hz. $-C_{30}H_{32}O_7S$ (536.6): calcd. C 67.15, H 6.01, S 5.97; found C 67.00, H 6.02, S 5.96.

O-(2-O-Acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-Methyl $(1\rightarrow 3)$ -4,6-*O*-benzylidene-2-*O*-*p*-methoxybenzyl-1-thio- α -D-mannopyranoside (5): Methyl thiomannopyranoside 22 (1.15 g, 2.75 mmol) and 2,6-di-tert-butyl-4-methylpyridine (DBMP, 1.02 g, 4.95 mmol) were dissolved in anhydrous CH₂Cl₂ (25 mL) and stirred for 30 min under Ar and exclusion of light with AgOTf (1.27 g, 4.95 mmol) over freshly activated 4-Å molecular sieves (5.0 g). After cooling to -15°C, 2-O-acetyl-3,4,6-tri-O-benzyl-α-Dmannopyranosyl chloride (25,^[27] 1.97 g, 3.85 mmol) was added as a solution in CH₂Cl₂ (15 mL). The mixture was gradually warmed up to room temperature, stirred for 90 min and diluted with CH₂Cl₂ (100 mL). The suspension was filtered through Celite and the filtrate was washed with satd. NaHCO₃ solution (30 mL), 10% Na₂S₂O₃ solution (30 mL), and dried (Na₂SO₄). Removal of the solvent in vacuo gave a colorless foam (3.79 g), which was purified by elution from silica gel with toluene/AcOEt (10:1) to afford 2.10 g (86%) of **5** as a colorless foam, $[\alpha]_{D} = +57.0$ (*c* = 1.1, CHCl₃). ¹H NMR (270 MHz, CDCl₃): δ = 2.07, 2.09 (2 s, 3 H each, CH₃S and CH₃CO), 3.63 (s, 3 H, CH₃OC₆H₄CH₂), 3.64-3.79 and 4.10-4.26 (2 m, 3 H and 4 H, 3-H, 5-H, 6-H₂, 5'-H, 6'-H₂), 3.84 (dd, 1 H, 4'-H), 3.86 (dd, 1 H, 2-H), 3.88 (dd, 1 H, 4-H), 3.97 (dd, 1 H, 3'-H), 4.47 (d, 3 H, $C_6H_5CH_2$ and $CH_3OC_6H_4CH_2$), 4.60 (s, 2 H, C₆H₅CH₂), 4.66, 4.70, 4.87 (3 d, 1 H each, C₆H₅CH₂ and CH₃OC₆H₄CH₂), 5.15 (br. s, 1 H, 1-H), 5.30 (d, 1 H, 1'-H), 5.60 (dd, 1 H, 2'-H), 5.61 (s, 1 H, C₆H₅CH), 6.77 (m, 2 H, CH₃OC₆H₄CH₂), 7.03-7.47 (m, 22 H, C₆H₅CH₂, C₆H₅CH, and CH₃OC₆ H_4 CH₂); $J_{1,2} < 0.5$, $J_{3,4} = J_{4,5} = 9.7$, $J_{1',2'} = 1.8$, $J_{2',3'} = 1.8$ 3.3, $J_{3',4'} = 8.9$ Hz. $- C_{51}H_{56}O_{12}S$ (893.1): calcd. C 68.59, H 6.32; found C 68.63, H 6.36.

Methyl O-(3,4,6-Tri-O-benzyl-2-O-levulinoyl-1-thio- α -D-mannopyranosyl)-(1 \rightarrow 3)-4,6-O-benzylidene-2-O-p-methoxybenzyl-1-thio- α -D-mannopyranoside (26): A solution of dimannoside 5 (1.03 g, 1.16 mmol) in anhydrous CH₂Cl₂/methanol (1:1, 50 mL) was

treated at 0°C with 28% NaOMe solution in methanol (20 µL, 0.1 mmol), gradually warmed to room temperature and stirred for 30 h. Concentration to dryness and coevaporation with CH₂Cl₂ (10 mL) left a brownish foam, which was levulinoylated by dissolving the intermediate in pyridine (10 mL), adding a 1 м levulinic anhydride solution in CH₂Cl₂ (5.5 mL, 5.5 mmol) and stirring the mixture for 4 d at room temperature. The solution was poured into ice/water (100 mL), stirred for 30 min and extracted with CH₂Cl₂ (250 mL). The organic layer was washed with 2 N HCl ($2 \times 50 \text{ mL}$), satd. NaHCO₃ solution (50 mL), dried (Na₂SO₄), and concentrated to give a brown syrup (1.4 g). Elution from silica gel with toluene/ AcOEt (5:1) afforded 905 mg (82%) **26** as a colorless foam, $[\alpha]_{D} =$ +50.4 (*c* = 1.0, CHCl₃). - ¹H NMR (270 MHz, CDCl₃): $\delta = 2.07$ (s, 3 H, CH₃S), 2.10 (s, 3 H, CH_{3Lev}), 2.64 (m, 4 H, CH_{2Lev}), 3.63 (s, 3 H, CH₃OC₆H₄CH₂), 3.66-3.91 and 4.10-4.27 (2 m, 6 H and 4 H, 2-H, 3-H, 4-H, 5-H, 6-H₂, 4'-H, 5'-H, 6'-H₂), 3.96 (3'-H), 4.45, 4.48 (3 d, 1 H each, C₆H₅CH₂ and CH₃OC₆H₄CH₂), 4.59 (s, 2 H, C₆H₅CH₂), 4.64, 4.67, 4.87 (3 d, 1 H each, C₆H₅CH₂ and CH₃OC₆H₄CH₂), 5.15 (d, 1 H, 1-H), 5.27 (d, 1 H, 1'-H), 5.56 (dd, 1 H, 2'-H), 5.61 (s, 1 H, C₆H₅CH), 6.77 (m, 2 H, CH₃OC₆H₄CH₂), 7.16-7.47 (m, 22 H, C₆H₅CH₂, C₆H₅CH, and CH₃OC₆H₄CH₂); $J_{1,2} = 1.0, J_{1',2'} = 1.8, J_{2',3'} = 3.2, J_{3',4'} = 8.4$ Hz. $- {}^{13}$ C NMR $(67.80 \text{ MHz}, \text{ CDCl}_3): \delta = 13.7 \text{ (CH}_3\text{S}), 28.1 \text{ (CH}_{2\text{Lev}}), 29.7$ (CH_{3Lev}), 38.0 (CH_{2Lev}), 55.0 (CH₃OC₆H₄CH₂), 68.3 (C-2'), 68.5, 68.8 (C-6, C-6'), 71.3, 72.5, 73.3, 75.1 (C₆H₅CH₂, CH₃OC₆H₄CH₂), 77.7 (C-3'), 84.7 (C-1), 98.7 (C-1'), 101.2 (C₆H₅CH), 113.9 126.0-138.4 $(CH_3OC_6H_4CH_2),$ $(C_6H_5CH_2, C_6H_5CH_3)$ CH₃OC₆H₄CH₂), 159.3 (CH₃OC₆H₄CH₂), 171.6 (CH₂COO), 206.0 (CH₃CO), 64.4, 72.0, 73.3, 74.3, 78.3, 79.0 (C-2, C-3, C-4, C-5, C-4', C-5'). - C₅₄H₆₀O₁₃S (949.1): calcd. C 68.34, H 6.37; found C 67.93, H 6.28.

(S)-p-Methoxybenzaldehyde [p-Methoxyphenyl 3,6-di-O-benzyl-2,4-dideoxy-2-(4,5-dichlorophthalimido)-β-D-glucopyranosid-4-yl (Methyl 3-O-acetyl-4,6-O-benzylidene-2-deoxy-1-thio-α-D-mannopyranosid-2-yl) Acetal (30): A solution of compounds 28 (100 mg, 0.15 mmol) and 23 (83 mg, 0.18 mmol) in anhydrous CH₂Cl₂ (1.5 mL) was stirred in the presence of freshly activated 4-Å molecular sieves for 30 min under exclusion of light at 0 °C. DDQ (68 mg, 0.30 mmol) was then added and the deep green mixture was allowed to warm up to room temperature. After stirring for 2 h, the reaction was quenched by addition of a solution of ascorbic acid (0.7%)/citric acid (1.3%)/NaOH (0.9%) in water (7 mL), stirred until the color turned to bright yellow (10 min) and diluted with CH₂Cl₂ (50 mL). The organic phase was washed with satd. NaHCO₃ solution (10 mL), dried (Na₂SO₄), and the volatiles were removed in vacuo to give 150 mg (89%) of crude product. Purification by size exclusion chromatography (Bio-Beads S-X2) with toluene afforded 109 mg (65%) of **30** as a colorless foam, $[\alpha]_{\rm D} =$ +44.2 (c = 0.65, CHCl₃). - ¹H NMR (270 MHz, CDCl₃): $\delta =$ 1.83 (s, 3 H, CH₃CO), 2.09 (s, 3 H, CH₃S), 3.64 (m, 1 H, 5-H), 3.72 (s, 3 H, CH₃OC₆H₄), 3.74 (dd, 1 H, 6-H_a), 3.80 (s, 3 H, CH₃OC₆H₄), 3.82 (dd, 1 H, 6-H_b), 3.92 (m, 2 H, 2'-H, 6'-H_a), 4.24-4.36 (m, 5 H, 3-H, 4-H, 4'-H, 5'-H, 6'-H_b), 4.47 (dd, 1 H, 2-H), 4.54, 4.60, 4.83 (3 d, 1 H each, C₆H₅CH₂), 5.03 (s, 1 H, C₆H₅CH), 5.18 (dd, 1 H, 3'-H), 5.31 (d, 1 H, C₆H₅CH₂), 5.47 (s, 1 H, CH₃OC₆H₄CH), 5.59 (d, 1 H, 1-H), 5.73 (br. s, 1 H, 1'-H), 6.70-6.96, 7.08-7.16 (2 m, 9 H and 4 H, CH₃OC₆H₄, C₆H₅CH), 7.32-7.42 (m, 10 H, C₆H₅CH₂), 7.70 and 7.88 (2 bs, 1 H each, DCPhth); $J_{1,2} = 8.4$, $J_{2,3} = 8.6$, $J_{2',3'} = 3.3$, $J_{3',4'} = 9.9$, $J_{CH2} =$ 12.2, 12.4 Hz. $- {}^{13}$ C NMR (67.80 MHz, CDCl₃): $\delta = 13.6$ (CH₃S), 20.8 (CH₃CO), 55.3, 55.6 (2 CH₃OC₆H₄), 56.2 (C-2), 64.6 (C-4'), 67.3 (C-6), 68.7 (C-6'), 70.1 (C-3'), 74.1 (C₆H₅CH₂), 74.3 (C-2'), 75.0 (C-5), 75.4 (C₆H₅CH₂), 75.6, 75.9, 77.2, 78.2 (C-3, C-4, C-

4', C-5'), 82.5 (C-1'), 97.8 (C-1), 101.4 (CH₃OC₆H₄CH, C₆H₅CH), 113.9, 114.4, 118.8 (CH₃OC₆H₄, CH₃OC₆H₄CH), 125.4–138.6 (C₆H₅CH, C₆H₅CH₂), 150.7, 155.5, 160.4 (DCPhth, CH₃OC₆H₄), 169.8 (CH₃CO). - C₅₉H₅₇Cl₂NO₁₅S (1123.1): calcd. C 63.10, H 5.12, N 1.25; found C 63.21, H 5.11, N 1.27.

(S)-p-Methoxybenzaldehyde [p-Methoxyphenyl 3,6-di-O-benzyl-2,4dideoxy-2-(4,5-dichlorophthalimido)-\beta-D-glucopyranosid-4-yl] (Methyl 4,6-O-benzylidene-2-deoxy-1-thio-3-O-toluyl-α-D-mannopyranosid-2-yl) Acetal (31): This compound was prepared by treatment of compounds 28 (150 mg, 0.23 mmol) and 24 (170 mg, 0.32 mmol) with DDQ (123 mg, 0.54 mmol) in anhydrous CH₂Cl₂ (2.3 mL) in an analogous manner as described for 30. Purification by size exclusion chromatography (Bio-Beads S-X2) with toluene afforded 184 mg (66%) of **31** as a colorless foam, $[\alpha]_D = +17.4$ (c = 1.1, CHCl₃). $- {}^{1}$ H NMR (270 MHz, CDCl₃): $\delta = 2.11$ (s, 3 H, CH₃S), 2.38 (s, 3 H, CH₃C₆H₄CO), ca. 3.60 (m, 1 H, 5-H), 3.62 (s, 3 H, CH₃OC₆H₄), 3.70 (dd, 1 H, 6-H_a), 3.72 (s, 3 H, CH₃OC₆H₄), 3.81 (dd, 1 H, 6-H_b), 3.98 (dd, 1 H, 6'-H_a), 4.11 (d, 1 H, 2'-H), 4.31-4.39 (m, 4 H, 3-H, 4-H, 5'-H, 6'-H_b), 4.42 (dd, 1 H, 4'-H), 4.46 (dd, 1 H, 2-H), 4.55, 4.59, 4.81 (3 d, 1 H each, C₆H₅CH₂), 5.09 (s, 1 H, C₆H₅CH), 5.36 (d, 1 H, C₆H₅CH₂), 5.40 (dd, 1 H, 3'-H), 5.49 (s, 1 H, CH₃OC₆H₄CH), 5.58 (d, 1 H, 1-H), 5.78 (br. s, 1 H, 1'-H), 6.40 (d, 1 H, CH₃C₆H₄CH), 6.72, 6.83 (2 m, 2 H each, $CH_3OC_6H_4$), 6.89-7.02 (2 d, 2 H each, $CH_3C_6H_4CO$, CH₃OC₆H₄CH), 7.11-7.39 (m, 15 H, 2 C₆H₅CH₂, C₆H₅CH), 7.74 (d, 2 H, CH₃C₆H₄CO), 7.75, 7.90 (2 br. s, 1 H each, DCPhth); $J_{1,2} = 8.3, J_{2,3} = 9.4, J_{1',2'} < 0.5, J_{2',3'} = 3.1, J_{3',4'} = 9.9, J_{4',5'} =$ 10.2, $J_{6'a,b} = 11.6$, $J_{CH2} = 12.2$ Hz. $- C_{65}H_{61}Cl_2NO_{15}S$ (1199.2): calcd. C 65.10, H 5.13, N 1.17; found C 65.15, H 5.08, N 1.46.

(S)-p-Methoxybenzaldehyde {p-Methoxyphenyl O-[3,6-di-O-benzyl-2,4-dideoxy-2-(4,5-dichlorophthalimido)-β-D-glucopyranos-4-yl]-(1→4)-3,6-di-O-benzyl-2-deoxy-2-(4,5-dichlorophthalimido)-β-Dglucopyranosid-4-yl} [Methyl O-(3,4,6-tri-O-benzyl-2-O-levulinoyl-1-thio-α-D-mannopyranosyl)-(1→3)-4,6-O-benzylidene-2-deoxy-1thio-α-D-mannopyranosid-2-yl] Acetal (32): Prepared from compounds 29 (560 mg, 0.46 mmol) and 26 (620 mg, 0.65 mmol) by treatment with DDQ (253 mg, 1.12 mmol) in CH₂Cl₂ (5 mL) in an analogous manner to that described for 30. Purification by size exclusion chromatography (Bio-Beads S-X1) with toluene afforded 790 mg (80%) of **32** as a yellowish foam, $[\alpha]_{\rm D} = +26.4$ (c = 1.6, CHCl₃). - ¹H NMR (270 MHz, CDCl₃): $\delta = 1.84$ (s, 3 H, CH₃S), 2.07 (s, 3 H, CH_{3Lev}), 2.59 (s, 4 H, CH_{2Lev}), 3.26 (s, 3 H, CH₃OC₆H₄CH), 3.32 and 3.41-3.63 (ddd and m, 1 H and 6 H, ring protons), 3.67 (s, 3 H, CH₃OC₆H₄), 3.69-3.76 (m, 3 H, ring protons, 3'''-H), 3.78 (br. dd, 1 H, 2''-H), 3.95, 4.07 (dd and d, 1 H each, ring protons) 4.12-4.49 (m, 16 H, ring protons, 2-H, 2'-H), 4.54 (d, 2 H, C₆H₅CH₂), 4.63 (br. s, 2 H, C₆H₅CH₂), 4.81, 4.89 (2 d, 1 H each, C₆H₅CH₂), 5.09 (s, 1 H, C₆H₅CH), 5.21 (d, 1 H, 1^{'''}-H), 5.34 (d, 1 H, 1[']-H), 5.36 (d, 1 H, C₆H₅CH₂), 5.43 (d, 1 H, 1-H), 5.50 (br. dd, 1 H, 2'''-H), 5.64 (s, 1 H, CH₃OC₆H₄CH), 5.69 (s, 1 H, 1''-H), 6.61-6.79 (m, 6 H, CH₃OC₆H₄, CH₃OC₆H₄CH), 6.85-7.42 (m, 42 H, C₆H₅CH, C₆H₅CH₂), 7.68, 7.81 (2 s, 2 H each, DCPhth); $J_{1,2} = 8.3$, $J_{1',2'} = 7.6$, $J_{1'',2''} < 0.5$, $J_{2'',3''} = 3.0$, $J_{1''',2'''} = 1.7$, $J_{CH2} = 10.9$, 11.6, 12.9 Hz. $-^{13}$ C NMR $(67.80 \text{ MHz}, \text{ CDCl}_3): \delta = 13.4 \text{ (CH}_3\text{S}), 28.1 \text{ (CH}_{2Lev}), 29.6$ (CH_{3Lev}), 38.0 (CH_{2Lev}), 54.8 (CH₃OC₆H₄CH), 55.5 (CH₃OC₆H₄), 56.0 (C-2), 57.4 (C-2'), 67.0 (C-2'''), 64.7, 69.0-78.4 (other ring C, C₆H₅CH₂), 82.2 (C-1''), 97.0 (C-1'), 97.4 (C-1), 99.1 (C-1'''), 100.3 (CH₃OC₆H₄CH), 100.8 (C₆H₅CH), 114.2, 114.3, 118.5 (CH₃OC₆H₄, CH₃OC₆H₄CH), 125.2-138.7 (C₆H₅CH₂,C₆H₅CH), 150.6, 155.3, 160.2, 165.6 (DCPhth, CH₃OC₆H₄), 171.2 (CH₂COO), 206.0 (CH₃CO). - C₁₁₇H₁₁₂Cl₄N₂O₂₇S (2152.1): C 65.30, H 5.25, N 1.30; found C 64.83, H 5.28, N 1.23.

(S)-[Methyl O-(3,4,6-tri-O-benzyl-2-O-acetyl-1-thio-α-D-mannopyranosyl)- $(1\rightarrow 3)$ -4,6-O-benzylidene-2-deoxy-1-thio- α -D-mannopyranosid-2-yl][p-methoxyphenyl O-[3,6-di-O-benzyl-2,4-dideoxy-2-phthalimido-β-D-glucopyranos-4-yl]-(1→4)-3,6-di-O-benzyl-2deoxy-2-phthalimido-\beta-D-glucopyranosid]-p-methoxybenzylidene Acetal (33): Prepared from compounds 5 (165 mg, 0.18 mmol) and 8 (152 mg, 0.14 mmol) by treatment with DDQ (42 mg, 0.18 mmol) in CH₂Cl₂ (1.2 mL) in an analogous manner to that described for 30. Purification by size exclusion chromatography (Bio-Beads S-X3) with toluene afforded 246 mg (88%) of 33 as yellowish foam. - 1H NMR (270 MHz, CDCl_3): δ = 1.82 and 2.06 (2 s, 3 H each, SMe and Ac), 3.25 and 3.66 (2 s, 3 H each, OMe), 5.24 (d, 1 H, 1""-H), 5.35 (s, 1 H, benzylidene CH), 5.38 (d, 1 H, 1'-H), 5.49 (d, 1 H, 1-H), 5.61 (dd, 1 H, 2'''-H), 5.65 (s, 1 H, acetal CH), 5.73 (s, 1 H, 1''-H), 6.6–7.8 (m, 56 H, aromatic); $J_{1,2} = 8.3$, $J_{1',2'} = 8$, $J_{1''',2'''} = 2.0, J_{2''',3'''} = 2.8$ Hz). $- {}^{13}$ C NMR (67.80 MHz, $CDCl_3$): $\delta = 82.2$ (C-1^{''}), 97.2, 97.6, 99.3 (C-1, -1['], -1^{'''}), 100.3 and 100.5 (acetal CH).

p-Methoxyphenyl O-(3,4,6-Tri-O-benzyl-2-O-levulinoyl- α -D-mannopyranosyl)- $(1 \rightarrow 3)$ -(4, 6-O-benzylidene- β -D-mannopyranosyl)-(1→4)-[3,6-di-O-benzyl-2-deoxy-2-(4,5-dichlorophthalimido)-β-Dglucopyranosyl]-(1->4)-3,6-di-O-benzyl-2-deoxy-2-(4,5-dichlorophthalimido)-B-D-glucopyranoside (36a): Mixed acetal 32 (654 mg, 2,6-di-*tert*-butyl-4-methylpyridine 0.30 mmol) and (DBMP. 218 mg, 1.06 mmol) were stirred in 1,2-dichloroethane (60 mL) with freshly activated 4-Å molecular sieves (1.5 g) under argon for 30 min. A solution of MeOTf in 1,2-dichloroethane (1 M, 1.37 mL, 1.37 mmol) was injected and the mixture stirred for 44 h at 40 °C. The reaction was quenched with triethylamine (2 mL), stirred for 15 min (color changed from yellow to brownish), diluted with CH₂Cl₂ (100 mL), and filtered through Celite. The organic phase was washed with water (2 \times 30 mL), dried (Na₂SO₄), and after evaporation of the solvent the residue was subjected to size exclusion chromatography (Bio-Beads S-X1) with toluene to give 390 mg of crude 36a and 87 mg (24%) recovered disaccharide acceptor 29. Crude 36a was further purified by silica gel chromatography with toluene/AcOEt, 10:1 \rightarrow 5:1, to furnish another 43 mg (12%) acceptor 29 and 234 mg tetrasaccharide 36a (39%, 43%) based on consumed **29** over 2 steps) as a beige foam, $[\alpha]^{20}_{D} = +7.5$ $(c = 1.5, \text{CHCl}_3)$. – ¹H NMR (400 MHz, CDCl₃): $\delta = 2.12$ (s, 3) H, CH_{3Lev}), 2.66 (m, 4 H, 2 CH_{2Lev}), 2.84 (d, 1 H, 2''-OH), 3.12 (ddd, 1 H, 5''-H), 3.25 (d, 1 H, 5'-H), 3.34-3.42 (m, 2 H, 5-H, 6- H_a), 3.52–3.56 (m, 3 H, 6- H_b , 6'- H_a , 6''- H_a), 3.64 (dd, 1 H, 3''-H), 3.66 (s, 3 H, CH₃OC₆H₄), 3.67-3.82 (m, 4 H, 6'-H_b, 4'''-H, $6^{\prime\prime\prime}\text{-}\text{H}_2\text{)},\;3.91$ (dd, 1 H, $4^{\prime\prime}\text{-}\text{H}\text{)},\;4.02$ (dd, 1 H, $3^{\prime\prime\prime}\text{-}\text{H}\text{)},\;4.07$ (m, 1 H, 2''-H), 4.09-4.13 (m, 3 H, 4'-H, 6''-H_b, 5'''-H), 4.14 (2 dd, 1 H each, 3-H, 2'-H), 4.23 (dd, 1 H, 4-H), 4.25 (dd, 1 H, 3'-H), 4.30 (dd, 1 H, 2-H), 4.38 (d, 1 H, C₆H₅CH₂), 4.43-4.67 (m, 10 H, C₆H₅CH₂), 4.60 (br. s 1 H, 1''-H), 4.81 (d, 1 H, C₆H₅CH₂), 4.84 and 4.87 (2 d, 1 H each, C₆H₅CH₂), 5.08 (d, 1 H, 1""-H), 5.24 (d, 1 H, 1'-H), 5.39 (d, 1 H, 1-H), 5.45 (s and dd, 1 H each, C₆H₅CH and 2'''-H), 6.60-6.70 (m, 4 H, CH₃OC₆H₄), 6.82-7.44 (m, 40 H, C₆H₅CH₂), 7.45-7.88 (2 s and 2 br. s, 1 H each, DCPhth); $J_{1,2} = 8.7$, $J_{2,3} = 10.5$, $J_{3,4} = J_{4,5} = 9.0$, $J_{1',2'} = 8.3$, $J_{4^{\prime},5^{\prime}}=9.8,\,J_{1^{\prime\prime},2^{\prime\prime}}<0.5,\,J_{2^{\prime\prime},3^{\prime\prime}}=3.4,\,J_{2^{\prime\prime},\mathrm{OH}}=2.9,\,J_{3^{\prime\prime},4^{\prime\prime}}=10.0,$ $J_{4^{\prime\prime},5^{\prime\prime}} = 9.4, J_{5^{\prime\prime},6^{\prime\prime}a} = 9.5, J_{5^{\prime\prime},6^{\prime\prime}b} = 4.9, J_{1^{\prime\prime\prime},2^{\prime\prime\prime}} = 1.5, J_{2^{\prime\prime\prime},3^{\prime\prime\prime}} = 1.5, J_{1^{\prime\prime\prime},2^{\prime\prime\prime}} = 1.5, J_{1^{\prime\prime},2^{\prime\prime\prime}} = 1.5, J_{1^{\prime\prime},2^{\prime\prime\prime}} = 1.5, J_{1^{\prime\prime\prime},2^{\prime\prime\prime}} = 1.5, J_{1^{\prime\prime},2^{\prime\prime\prime}} = 1.5, J_{1^{\prime\prime},2^{\prime\prime}} = 1.5, J_{1^{\prime\prime},$ 3.2, $J_{3''',4'''} = 9.0$ Hz. $-{}^{13}$ C NMR (100.40 MHz, CDCl₃): $\delta = 28.1$ (CH_{2Lev}), 29.8 (CH_{3Lev}), 38.0 (CH_{2Lev}), 55.5 (CH₃OC₆H₄), 56.0 (C-2), 56.9 (C-2'), 66.8 (C-5''), 67.6 (C-6'), 68.0 (C-6), 68.4 (C-6''), 68.7 (C-2'''), 69.4 (C-6'''), 70.6 (C-2''), 71.6, 71.8, 72.9, 73.2, 73.6, 74.4, 74.7, 74.8, 75.1, 78.7 (C-5, C-4', C-5', C-4''', C-5''', C₆H₅CH₂), 75.8 (C-4), 76.9 (C-3), 77.2 (C-3', C-4''), 77.4 (C-3''), 77.8 (C-3'''), 96.9 (C-1'), 97.3 (C-1), 98.6 (C-1'''), 100.6 (C-1''),

Eur. J. Org. Chem. 1999, 1367-1376

101.4 (C₆H₅CH), 114.3, 118.5 (CH₃OC₆H₄), 125.3, 126.0 (DCPhth), 127.0–139.0 (C_6 H₅CH₂, C_6 H₅CH), 150.6, 155.3, 160.2, 165.6 (CH₃OC₆H₄, DCPhth), 171.7 (CH₂COO), 206.1 (CH₃CC); ¹J_{C1-H} = 163.6 (C-1), 161.4 (C-1'), 159.7 (C-1''), 173.4 (C-1''') Hz. – FAB MS (positive); *m*/*z*: 2006.9, 2007.9, 2008.8, 2009.7 [M + Na]⁺; (negative); *m*/*z*: 2083.6, 2084.6 [M – H]⁻. – C₁₀₈H₁₀₂Cl₄N₂O₂₆ (1985.8): calcd. C 65.32, H 5.18, N 1.41; found C 65.44, H 5.15, N 1.43.

p-Methoxyphenyl *O*-(3,4,6-Tri-*O*-benzyl-2-*O*-acetyl-α-D-mannopyranosvl)- $(1 \rightarrow 3)$ -O-(4, 6-O-benzylidene- β -D-mannopyranosvl)-(1→4)-O-(3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-Dglucopyranosyl]-(1→4)-3,6-di-O-benzyl-2-deoxy-2-phthal-imido-β-Dglucopyranoside (36b): To a mixture of compound 33 (30 mg, 0.015 mmol), DBMP (9.4 mg, 0.046 mmol) and 4-Å molecular sieves (0.2 g) in 1,2-dichloroethane (1 mL) was added MeOTf (1 M in CCl₄, 46 µL, 0.046 mmol) and the mixture was stirred at 40 °C. Additional portions of MeOTf (0.015 mmol) and DBMP (0.015 mmol) were added at 24 h intervals, while the stirring was continued for 4 d. The mixture was worked up as described for 32a and the crude material was purified by size exclusion chromatography (Bio-Beads S-X4) with toluene, followed by preparative TLC (toluene/AcOEt, 5:1) to afford 15.2 mg (55%, 49% from 8) as well as recovered 8 (3.7 mg). –Compound 36b; $[\alpha]_D = +22.2$ (c = 0.6, CHCl₃). $- {}^{1}$ H NMR (400 MHz, CDCl₃): $\delta = 2.11$ (s, 3 H, Ac), 2.79 (br. s, 1 H, OH), 3.65 (s, 3 H, OMe), 4.55 (s, 1 H, 1"-H), 5.12 (d, 1 H, 1'''-H), 5.28 (d, 1 H, 1'-H), 5.44 (d, 1 H, 1-H), 5.45 (s, 1 H, benzylidene CH), 5.49 (dd, 1 H, 2'''-H), 6.6-7.9 (m, 52 H, aromatic); $J_{1,2} = 8.8$, $J_{1',2'} = 8.3$, $J_{1'',2'''} = 1.5$ Hz. $- {}^{13}$ C NMR $(100.40 \text{ MHz}, \text{CDCl}_3): \delta = 66.8, 67.7, 68.0, 68.4, 68.6, 69.3, 70.7,$ 71.8, 71.9, 72.7, 73.2, 73.6, 74.4, 74.5, 74.6, 75.1, 75.8, 76.8, 77.2, 77.9, 78.9, 79.1, 97.1 (C-1'), 97.5 (C-1), 98.8 (C-1'''), 100.6 (C-1''), 101.4 (benzylidene CH). – $C_{105}H_{102}N_2O_{25}$ (1792.0): calcd. C 70.38, H 5.74, N 1.56; found C 70.14, H 5.84, N 1.41.

DADAS 90 Experiment: For the calculation studies 100 initial conformers for every sample (*S*)-**15a**, (*R*)-**15a**, (*S*)-**15b**, and (*R*)-**15b** were generated by using randomly generated torsion angles in DADAS 90. Bond lengths and angles of pyranose rings were based on X-ray data.^[28] Anomeric fluorine was substituted by hydrogen. Minimization of pseudo energy values (T_p) was performed under the distance restrictions for NOE and soft repulsion and angle restriction for the acetal moiety by using the conjugate gradient method. T_p values for (*S*)-**15a**, (*R*)-**15a**, (*S*)-**15b**, and (*R*)-**15b** between 0 and 34800 were observed and the smallest for each individual diastereomer selected for the determination of the absolute configuration at the acetalic position. – All calculations were carried out with an IRIS Indy computer. Molgraph (DAIKIN Co. Ltd.) and Molskop (JEOL Co. Ltd.) were used as graphical editors.

Acknowledgments

Part of this work was financially supported by a Grant-in-Aid for Scientific Research from The Ministry of Education, Science, Culture, and Sports and also by the Special Coordination Fund from the Science and Technology Agency of the Japanese Government. M. L. thanks the Science and Technology Agency of the Japanese Government for an STA fellowship award and the Alexander-von-Humboldt Foundation, Bonn, Germany for a supporting Feodor-Lynen fellowship.

FULL PAPER

- M. Lergenmüller, T. Nukada, K. Kuramochi, A. Dan, T. Ogawa, Y. Ito
- ^[1] F. Barresi, O. Hindsgaul in Modern Methods in Carbohydrate Synthesis (Eds.: S. H. Khan, R. O. O'Neill), Harwood, Amsterdam, **1996**, p. 251–276. For more recent publications, see: T. Iimori, H. Ohtake, S. Ikegami, *Tetrahedron Lett.* **1997**, *38*, 3415-3418; G. Hodosi, P. Kovác, J. Am. Chem. Soc. 1997, 119, 2335–2336; C. Unverzagt, Angew. Chem. **1997**, 108, 2507–2510, Angew. Chem. Int. Ed. Engl. **1997**, 35, 2350–2353; D. Crich, S. Sun, J. Org. Chem. **1997**, 62, 1198–1199, and references cited therein. For enzymatic approaches, see: G. Watt, L. Revers, M. C. Webberley, I. B. H. Wilson, S. Flitsch, *Angew. Chem.* **1997**, *109*, 2445–2447; *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 2354–2355; J. Taubken, B. Sauerbrei, J. Thiem, J. Carbohydr. Chem. **1993**, *12*, 651–667; S. Singh, M. Scigelova, D. H. G. Crout, Chem. Commun. 1996, 993-994.
- For general discussion, see: H. Paulsen, *Angew. Chem.* **1982**, *94*, 184–201; *Angew. Chem. Int. Ed. Engl.* **1982**, *21*, 155–173.
- ¹⁸⁴ 201; Angew. Chem. Int. Ea. Engl. 1902, 21, 153-173.
 ^[3] [^{3a]} Y. Ito, T. Ogawa, Angew. Chem. Int. Ed. Engl. 1994, 35, 2510-2512. [^{3b]} A. Dan, Y. Ito, T. Ogawa, J. Org. Chem. 1995, 60, 4680-4681. [^{3e]} A. Dan, Y. Ito, T. Ogawa, Tetrahedron Lett. 1995, 36, 7487-7490. [^{3d]} A. Dan, Y. Ito, T. Ogawa, Carbohydr. Lett. 1996, 1, 469-474. [^{3e]} Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, V. Nokabara, T. Orawa, Y. Ito, T. Ogawa, Y. Ito, T. Ogawa, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ito, T. Ogawa, J. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5566. [^{3f]} A. Dan, Y. Ita, J. Com. Soc. 1997, 119, 5562-5 M. Lergenmüller, M. Amano, Y. Nakahara, T. Ogawa, Y. Ito, *Chem. Eur. J.* **1998**, *4*, 2182-2190.
- [4] F. Barresi, O. Hindsgaul, J. Am. Chem. Soc. 1991, 113, 9376-9377; F. Barresi, O. Hindsgaul, Synlett 1992, 759-761.
- G. Stork, G. Kim, J. Am. Chem. Soc. **1992**, 114, 1087–1088; G. Stork, J. J. La Clair, J. Am. Chem. Soc. **1996**, 118, 247–248. [5] ^[6] The PMB group has been extensively used as a hydroxy-protect-
- ing group: Y. Oikawa, T. Yoshioka, O. Yonemitsu, Tetrahedron Lett. 1982, 23, 885-888; T. W. Greene, P. G. Wuts, Protective Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, New York, **1991**, p. 53–55.
- For cyclic *p*-methoxybenzaldehyde acetal formation, see: Y. Oikawa, T. Yoshioka, O. Yonemitsu, *Tetrahedron Lett.* **1982**, 23, 889–902. [7]
- [8] J. Iqbal, R. R. Srivastava, K. B. Gupta, M. A. Khan, Synth. Commun. 1989, 19, 901–906.
 [9] D. S. Middleton, N. S. Simpkins, Synth. Commun. 1989, 19,
- 21 29.
- ^[10] R. K. Boeckman, C. J. Flann, *Tetrahedron Lett.* **1983**, *24*, 4923–4926.
- ^{4925-4920.}
 ^[11] H. R. Tuchi, S. F. Karaev, F. Kh. Agaev, *Azerb. Khim. Zh.* **1984**, 57–60 (*Chem. Abstr.* **1984**, 102, 166384).
 ^[12] T. Mandai, H. Irei, M. Kawada, J. Otera, *Tetrahedron Lett.* **1984**, 25, 2371–2374; A. Stern, J. S. Swenton, *J. Org. Chem.* **1987**, 52, 2763–2768.

- ^[13] J. Kadelka, H. H. Schwarz, DBP 3426730, 1986 (Chem. Abstr. 1986, 105, P 78190)
- ^[14] K. J. Schönauer, P. Walter, C. R. Noe, Monatsh. Chem. 1986, 117, 127-130.
- ^[15] L. F. Tietze, R. Fischer, H.-J. Guder, M. Neumann, *Liebigs* Ann. Chem. 1987, 847–856; L. F. Tietze, A. Fischer-Beller, Car-bohydr. Res. 1994, 254, 183–194.
- ^[16] H. Hashimoto, T. Endo, Y. Kajihara, J. Org. Chem. 1997, 62, 1914-1915.
- ^[17] Compound 11 was prepered from an anomeric mixture (α/β = 7:1) of 2-O-acetyl-3,4,6-tri-O-benzyl-D-mannopyranosyl fluoride (DIBAL/THF) and was further transformed into 9 (p-methoxybenzyl chloride, NaH/DMF) as reported previously.^[3a] For the use of 11 as a glycosyl acceptor in polymer support oligos-accharide synthesis, see: Y. Ito, O. Kanie, T. Ogawa, *Angew. Chem.* 1996, 108, 2691–2693; *Angew. Chem. Int. Ed. Engl.* 1996, 35, 2510–2512. For IAD experiments, anomeric mixtures of 9 and 11 were used, while stereochemical homogeneities on the acetalic carbon atoms of 14a,b and 15a,b were confirmed in separate experiments, by preparation from anomerically pure α -fluorides.
- ^[18] Compounds 10 and 18: J.-M. Petit, J.-C. Jaquinet, P. Sinaÿ, Carbohydr. Res. 1980, 82, 130–134. Compound 7: T. Nakano, Y. Ito, T. Ogawa, Tetrahedron Lett. 1990, 31, 1597–1600.
- [19] In this particular case, a better result (74% yield) was obtained when IAD was performed in diethyl ether.^[3a]
- ^[20] Ver. 5.1, JEOL Co. Ltd., Akishima, Tokyo Japan. This program was created based upon the algorithm developed by Braun and Go: W. Braun, N. Go, J. Mol. Biol. 1985, 186, 611-626.
- ^[21] Satisfactory combustion analysis data were obtained for 31-33.
- [22] For the use of the DCPhth group as an amino protection, see:
 M. Lergenmüller, Y. Ito, T. Ogawa, *Tetrahedron* 1998, 54, 1381-1394.
- [23] Y. Ito, Y. Ohnishi, T. Ogawa, Y. Nakahara, Synlett 1998, 1102-1104.
- ^[24] C. Colombier, T. Skrydstrup, J. M. Beau, *Tetrahedron Lett.* **1994**, *35*, 8167–8170.
- ^[25] M. Bols, Acta Chim. Scand. 1993, 47, 829–834.
 ^[26] C. Krog-Jensen, S. Oscarson, J. Org. Chem. 1996, 61, 4512-4513.
- ^[27] T. Ogawa, K. Katano, K. Sasajima, M. Matsui, *Tetrahedron* **1981**, *37*, 2779–2786.
- [28] G. A. Jeffrey, M. Sundaralingam, Adv. Carbohydr. Chem. Bi-ochem. 1985, 43, 203–421.

Received October 19, 1998 [098461]