Xiaoyong Sun,[†] Edward H. Wong,^{*,†} Mark M. Turnbull,^{*,‡} Arnold L. Rheingold,^{*,§} Beth E. Waltermire,[§] and Robert L. Ostrander[§]

Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, Department of Chemistry, Clark University, Worcester, Massachusetts 01610, and Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received June 9, 1994[®]

Starting with bis(dialkylamino)phosphine oxides or triphosphoxane $[R_2NPO]_3$ rings, transition metal complexes containing P_4O_4 , P_5O_5 , and P_6O_6 heterocycles have been assembled. Specific products isolated were found to depend critically on reaction conditions, the metal, and its ancillary ligands, as well as the phosphorus substituent. While only monometallic products were obtained from divalent precursors of the nickel triad, bimetallic complexes were also produced from the group 6 metal carbonyls. In general, larger rings were obtained at higher temperatures. Only P₃O₃ and P₄O₄ products were formed around molybdenum, while P_5O_5 structures could also be assembled about chromium, nickel, palladium, and platinum centers. One of the iron carbonyl complexes was found to feature an unusual η^{1} -P[OP(O)]₂P ring, the product of a double POP to PP(=O) rearrangement. In addition, a dichromium P_6O_6 cluster complex featuring the novel hexaphosphoxane ring was synthesized from bis(cis-2,6-dimethylpiperidino)phosphine oxide. Use of isolated monometallic P_nO_n complexes as ligands yielded heterobimetallic products as well as phosphoxane ring transfer reactions. The X-ray crystal structures of five representative complexes containing FeP_4O_4 (14), $Cr_2P_4O_4$ (19a, 19b), $Cr_2P_6O_6$ (21), and $MoFeP_4O_4$ (25) cores, respectively, are reported.

Introduction

Inorganic rings, cages, and clusters have relevance in many areas of chemical research including coordination, catalytic, polymer, and materials chemistry.¹ Trivalent phosphorus-oxygen heterocycles or cyclic phosphoxanes are potentially useful multidentate ligands that can lead to polycyclic, cage, or cluster complexes with $M_m P_n O_n$ cores (Figure 1). We have previously shown that bis(dialkylamino)phosphine oxides and related triphosphoxane ([R₂NPO]₃) rings are suitable precursors to MP_nO_n and MP_nO_nM complexes (M = Cr, n = 4, 5; M = Mo, n = 3, 4; M = W, Ni, Pd, n = 4) with bicyclic and cage structures (Figure 2A-F).² These syntheses depend critically on the presence of metal centers to provide templating sites for the linking up of $R_2NP=O$ phosphinidene units. In this article, we will further expand the scope of these reactions and demonstrate the variety of products and structural types now accessible, including a novel hexaphosphoxane Cr₂P₆O₆ cluster. Interesting ring transfer and metallaligand chemistry of several of these products will also be presented.

Results

Syntheses from Triphosphoxane $([R_2NPO]_3)$ Rings. (1) The Nickel Triad. In hexane, tris(diisopropylaminophosphoxane) ([ⁱPr₂NPO]₃) and various metal dihalide MX_2 complexes ($MX_2 = NiCl_2 \cdot DME$, $NiBr_2 \cdot DME$, $PdCl_2 \cdot 2PhCN$, $PdBr_2 \cdot 2PhCN$, $PtCl_2 \cdot NBD$) all yielded tetraphosphoxane MX₂[ⁱPr₂NPO]₄ complexes (1A,B, 2A,B, 3). These light-yellow to orange-red solids have been characterized by IR, ³¹P (Table 1), and, in some cases, ¹H and ¹³C (Tables 2 and 3) NMR spectroscopy. The NiBr₂ (1B), PdCl₂ (2A), and PdBr₂ (2B) products were also sufficiently stable for satisfactory elemental analyses to be obtained. The X-ray crystal structure of complex 2A has been reported.² By ³¹P NMR spectroscopy, the other palladium (2B) and platinum (3) products can also be assigned the same structure with a 1,5chelating P_4O_4 ring in a chair-chair conformation (Figure 2A), accounting for their A_2X_2 spectra. The unique 1,3-ring coordination mode (Figure 2B) of the two nickel complexes (1A,B) can be deduced from their distinctive AA'XX' ³¹P NMR (Table 1) spectra.²

Reactions using the tris(dicyclohexylaminophosphoxane) ([Cy₂NPO]₃) precursor gave analogous $MX_2P_4O_4$ products ($MX_2 = NiCl_2$, **4A**; NiBr₂, **4B**; NiI₂, **4C**; PdCl₂, **5A**; PdBr₂, **5B**; PtCl₂, **6**, but in addition, $MX_2P_5O_5$ ($MX_2 = NiCl_2$, **7**; PdCl₂, **8A**; PdBr₂, **8B**; and PtCl₂, **9**) were also isolable under different reaction conditions. Specifically, reaction in hot toluene (90 °C) afforded unstable NiCl₂[Cy₂NPO]₄ (**4A**; ³¹P NMR, AA'XX' pattern) while room-temperature reaction in hexane yielded NiCl₂[Cy₂-NPO]₅ (**7**). A mixture of both (**4A**, **7**) was obtained by reaction at room temperature in toluene. In contrast, the palladium and platinum P₅O₅ complexes (**8A**,**B**, **9**) were obtained from reactions in refluxing hexane while

[†] University of New Hampshire.

[‡] Clark University.

[§] University of Delaware.

<sup>Abstract published in Advance ACS Abstracts, November 1, 1994.
(1) Armitage, D. A. Inorganic Rings and Cages; E. Arnold: London, 1972. Heal, H. G. The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen, and Phosphorus; Academic Press: London, 1980. Haidue, I., Sowerby, D. B., Eds. The Chemistry of Inorganic Homo- and Heterocycles; Academic Press: London, 1987. Wollins, J. D. Non-Metal Rings, Cages, and Clusters; Wiley and Sons: New York, 1988. Mark, J. E.; Allcock, H. R.; West, R. Inorganic Polymers; Prentice Hall: New York, 1992.</sup>

⁽²⁾ Wong, E. H.; Sun, X.; Gabe, E. J.; Lee, F. L.; Charland, J.-P. Organometallics 1991, 10, 3010.

Figure 1. Possible structures based on $M_m P_n O_n$ cyclic polyphosphoxane metal complexes (P = RP).

Figure 2. Bicyclic and cage structures of MP_nO_n and $M_2P_nO_n$ complexes (P = R₂NP).

the MP₄O₄ products (**5A**,**B**, **6**) only formed in cold hexane at 4 °C. ³¹P NMR spectroscopy (A₂X₂ patterns) supported similar structural assignments for the various MX₂P₄O₄ complexes as made above for their diisopropylamino analogues. It also revealed the presence of two isomers of the PtCl₂[Cy₂NPO]₄ complex, one with the familiar A₂X₂ pattern (**6A**) and the second with an AMX₂ pattern (**6B**). These can be assigned to the 1,5chelated P₄O₄ ring in chair—chair (Figure 2A) and boat chair (Figure 2C) conformations, respectively. All the MX₂P₅O₅ complexes exhibited AA'MXX' patterns consistent only with the novel 1,5-chelating η^2 -P₅O₅ coordination mode (Figure 2G).

(2) Metal Carbonyls. Room-temperature reaction of $M_0(CO)_4(NBD)$ with $[{}^{i}Pr_2NPO]_3$ or $[Cy_2NPO]_3$ in hexanes afforded the simple substitution products *cis*- $M_0(CO)_4[R_2NPO]_3$ ($R = {}^{i}Pr$, Cy; 10A,B, Figure 2D). These unstable white compounds slowly transformed to the known $M_0(CO)_4[R_2NPO]_4M_0(CO)_4$ cage complexes (Figure 2E) in solution or in the solid state.² Similar reaction using $Cr(CO)_4(NBD)$ required prolonged reaction times or refluxing to give *cis*- $Cr(CO)_4[R_2NPO]_4$ (11a) instead as a white solid. Its ³¹P NMR spectrum with an A_2XY pattern is consistent with a boat-chair 1,5-chelating mode for the tetraphosphoxane heterocycle (Figure 2C).

In refluxing toluene, diiron nonacarbonyl gave different products with the two triphosphoxanes. Specifically, $[Cy_2NPO]_3$ yielded complex 12, $Fe(CO)_3[Cy_2NPO]_4$, also with an A₂XY ³¹P NMR spectrum (Table 1) as observed for the chromium complex 11 (Figure 2C). By contrast, $[{}^{i}Pr_{2}NPO]_{3}$ gave two isolable products in a 60:40 ratio; the first analyzed as $Fe(CO)_{3}[{}^{i}Pr_{2}NPO]_{4}$ (13) and the second as $Fe(CO)_{4}[{}^{i}Pr_{2}NPO]_{4}$ (14). Complex 13 can be assigned the chair-chair ligand ring conformation based on its $A_{2}X_{2}$ ${}^{31}P$ NMR spectrum (Table 1, Figure 2A). Complex 14, however, has a spectrum that indicated presence of high-field (δ +24.5) phosphoryl resonances in a distinctive $AX_{2}Y$ pattern (Table 1). Its novel structure as revealed by an X-ray study (Figure 3) actually features a $P[OP(=O)]_{2}P$ heterocycle as a monodentate ligand toward the tetracarbonyl iron.

Syntheses from Bis(dialkylamino)phosphine Oxide Precursors. We have previously reported the formation of complexes with MoP₃O₃, MoP₄O₄, Mo₂P₄O₄, CrP_4O_4 , $Cr_2P_4O_4$, $Cr_2P_5O_5$, and WP_4O_4 (Figure 2A-F) cores from reactions of the respective metal hexacarbonyl and $({}^{i}Pr_{2}N)_{2}P(O)H^{2}$ Similarly, $(Cy_{2}N)_{2}P(O)H$ and Cr(CO)₆ also produced two isomers of Cr(CO)₄[Cy₂NPO]₄ with chair-chair (11b) and boat-chair (11a) P_4O_4 conformations, Cr₂(CO)₈[Cy₂NPO]₄ (15), and Cr₂(CO)₇- $[Cy_2NPO]_5$ (16), with higher reaction temperatures favoring formation of the pentaphosphoxane complex 16 (Figure 2F). Traces of an unstable white solid characterized as the O-bonded Cr(CO)5-O=P(Cy2N)2H were also isolated (³¹P NMR: singlet at δ 94.1, ¹ $J_{PH} = 366$ Hz). Tungsten hexacarbonyl yielded W₂(CO)₇[Cy₂N- PO_{15} (17), a product analogous to 16, although it was found to be quite unstable. In addition, prolonged reaction times led to isolation of small amounts of a red solid characterized as $W_2(CO)_6[Cy_2NPO]_4$ (18), the ³¹P NMR spectrum of which contained a very low-field

The second of the state of the	Table 1. ³	1 P{ 1 H }	NMR Sp	ectra of the	Cyclic Phos	phoxane (Complexes
---	-----------------------	--------------------------	--------	--------------	-------------	-----------	-----------

$ \begin{array}{c} \text{Complex} \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	complex	splitting pattern [chemical shift, ppm] (J, Hz)			
$ \begin{split} &\text{Nicl}_{[1P_{2}NPO]_4}(1A) & \text{AA'XX'} & [\partial_A = \partial_A' = 144.2, \partial_X = \partial_X = 55.7] (J_{AX'} = J_{AX'} = 20, J_{AX'} = J_{AX'} = 1) \\ &\text{Nicl}_{[1P_{2}NPO]_4}(1B) & \text{AA'XX'} & [\partial_A = \partial_A' = 144.4, \partial_X = \partial_X = 55.7] (J_{AX'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ &\text{PdEl}_{2}(P_{2}NPO)_4(2B) & \text{A2X}_2 & [\partial_A = 146.1, \partial_X = 88.3] (J_{AX} = 49) \\ &\text{PdEl}_{2}(P_{2}NPO)_4(2B) & \text{A2X}_2 & [\partial_A = 142.3, \partial_X = 59.0] (J_{AX} = 4) \\ &\text{PdEl}_{2}(P_{2}NPO)_4(2B) & \text{A2X}_2 & [\partial_A = 142.3, \partial_X = 59.0] (J_{AX'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ &\text{Nicl}_{2}(C_{2}NPO)_4(4B) & \text{AA'XX'} & [\partial_A = \partial_A' = 142.4, \partial_X = \partial_{X'} = 54.0] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ &\text{Nicl}_{2}(C_{2}NPO)_4(4B) & \text{AA'XX'} & [\partial_A = \partial_A' = 142.4, \partial_X = \partial_{X'} = 54.0] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ &\text{Nicl}_{2}(C_{2}NPO)_4(4B) & \text{AA'XX'} & [\partial_A = \partial_A' = 142.4, \partial_X = \partial_{X'} = 54.0] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ &\text{PdCl}_{2}(C_{2}NPO)_4(4B) & \text{AA'XX'} & [\partial_A = 142.9, \partial_X = \partial_{X'} = 64.3] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ &\text{PdCl}_{2}(C_{2}NPO)_4(5B) & A_2X_2 & [\partial_A = 143.9, \partial_A = 88.8] (J_{AX} = 83) \\ &\text{PdCl}_{2}(C_{2}NPO)_4(5B) & \text{AA'XX'} & [\partial_A = 143.9, \partial_X = 59.3] (J_{AX} = 64, J_{PP} = 4826) \\ &\text{PdCl}_{2}(C_{2}NPO)_{1}(6B) & \text{AMX}_2 & [\partial_A = 143.9, \partial_M = 127.5, \partial_X = 0X' = 91.7] (J's < 15, pordy resolved) \\ &\text{PdCl}_{2}(C_{2}NPO)_{1}(6B) & \text{AMXX'} & [\partial_A = 0A' = 143.9, \partial_M = 127.5, \partial_X = 0X' = 91.7] (J_{AA'} = J_{XX} = 50, J_{AX} = J_{AX'} = 19, J_{AM} = 3, J_{AXZ} = J_{AM'} = 3, J_{AXZ} = 10, J_{AA'} = J_{AX'} = 10, J_{AX} = J_{A$	complex				
$\begin{split} \text{NiBr}_{2}[Pr_2\text{NPO}]_4 (1B) & \text{AA'} XX' & [\delta_A = \delta_A' = 144.4, \delta_X = \delta_X = 63.4] (J_{AA'} = J_{XX} = 50, J_{AX} = J_{AXY} = 20, J_{AX'} = J_{AXX} = 1) \\ \text{PdCl}_2[Pr_2\text{NPO}]_4 (2B) & \text{A}_2X_2 & [\delta_A = 147.8, \delta_X = 88.3] (J_{AX} = 44) \\ \text{PdBr}_2[Pr_2\text{NPO}]_4 (2B) & \text{A}_2X_2 & [\delta_A = 146.1, \delta_X = 88.3] (J_{AX} = 49) \\ \text{PCl}_2[Pr_2\text{NPO}]_4 (2B) & \text{A}_2X_2 & [\delta_A = 142.8, \delta_X = 59.0] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AXX} = 1) \\ \text{NiBr}_2[Cy_2\text{NPO}]_4 (4A) & \text{AA'}XX' & [\delta_A = \delta_X = 142.4, \delta_X = \delta_Y = 62.3] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ \text{NiBr}_2[Cy_2\text{NPO}]_4 (4B) & \text{AA'}XX' & [\delta_A = \delta_X = 142.4, \delta_X = \delta_Y = 62.3] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ \text{NiL}_2[Cy_2\text{NPO}]_4 (4B) & \text{AA'}XX' & [\delta_A = \delta_X = 142.4, \delta_X = \delta_Y = 62.3] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AX} = 1) \\ \text{PdCl}_2[Cy_2\text{NPO}]_4 (5B) & \text{A}_XX_2 & [\delta_A = 143.9, \delta_A = 188.9] (J_{AX'} = 83.9) \\ \text{PdCl}_2[Cy_2\text{NPO}]_4 (5B) & \text{A}_XX_2 & [\delta_A = 144.0, \delta_X = 59.3] (J_{AX} = 64, J_{PP} = 4826) \\ \text{PCl}_2[Cy_2\text{NPO}]_4 (6B) & \text{AMX}_2 & [\delta_A = 143.1, \delta_M = 124.6, \delta_X = 59.17] (J''_S < 15, poorty resolved) \\ \text{PdCl}_2[Cy_2\text{NPO}]_5 (7) & \text{AA'MXX'} & [\delta_A = \delta_A' = 143.9, \delta_M = 124.6, \delta_X = \delta_Y = 91.7] (J''_S < 15, poorty resolved) \\ \text{PdCl}_2[Cy_2\text{NPO}]_5 (8B) & \text{AA'MXX'} & [\delta_A = \delta_A' = 143.9, \delta_M = 127.5, \delta_X = \delta_Y = 87.9] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 15, J_{AM} = J_{AM} = 3, J_{MX} = J_{AM} = 3, J_{MX} = J_{AM} = 127.5, \delta_X = \delta_X = 60.1] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 19, J_{AM} = J_{AM} = 3, J_{AX} = J_{AX'} = 14, J_{MX} = J_{MX} = 140.1, \delta_X = 127.5, \delta_X = \delta_X = 60.1] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 19, J_{AM} = J_{AM} = 3, J_{AX} = J_{AX'} = 14, J_{MX} = J_{AX'} = 14, J_{MX} = J_{XX'} = 10, J_{XY'} = 30, J_{AX'} = J_{AX'} = 14, J_{AX'} = J_{AX'} = 14, J_{AX} = J_{AX'} = 14, J_{AX} = J_{AX'} = 127.5, \delta_X = \delta_X = 60.1] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} =$	$NiCl_2[Pr_2NPO]_4$ (1A)	AA'XX'	$[\delta_{A} = \delta_{A'} = 144.2, \ \delta_{X} = \delta_{X'} = 55.7] \ (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 20, \ J_{AX'} = J_{A'X} = 1)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$NiBr_2[Pr_2NPO]_4$ (1B)	AA'XX'	$[\delta_{A} = \delta_{A'} = 144.4, \delta_{X} = \delta_{X'} = 63.4] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{A'X'} = 20, J_{AX'} = J_{A'X} = 1)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$PdCl_2[PT_2NPO]_4$ (2A)	A_2X_2	$[\partial_A = 147.8, \partial_X = 88.3] (J_{AX} = 44)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$PdBr_{2}[Pr_{2}NPO]_{4}(2B)$	A_2X_2	$[\delta_{\rm A} = 146.1, \delta_{\rm X} = 88.3] J_{\rm AX} = 49)$		
$ \begin{split} & \text{NiCl}_2[\text{Cy}_2\text{NPO}]_4 (\textbf{4A}) & \text{AA'XX'} & [\partial_A = \partial_{A'} = 142.3, \partial_X = d_X, \dots = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AXX} = 1) \\ & \text{NiB}_{12}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{4B}) & \text{AA'XX'} & [\partial_A = \partial_{A'} = 142.4, \partial_X = \partial_X = 15, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AXX} = 1) \\ & \text{Pd}_{12}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{4C}) & \text{AA'XX'} & [\partial_A = \partial_{A'} = 142.4, \partial_X = \partial_X = 75, 4] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 20, J_{AX'} = J_{AXX} = 1) \\ & \text{Pd}_{12}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{5A}) & \text{A}_{2}X_2 & [\partial_A = 143.9, \partial_X = 88.9] (J_{AX} = 64, J_{PP} = 4826) \\ & \text{Pt}_{12}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{5B}) & \text{A}_{2}X_2 & [\partial_A = 143.9, \partial_X = 58.9] (J_{AX} = 64, J_{PP} = 4826) \\ & \text{Pt}_{12}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{6B}) & \text{AMX}_2 & [\partial_A = 143.4, \partial_M = 134.4, \partial_X = 58.1] (J_{AM} \sim 0, J_{AX} = 44, J_{MX} = 13) \\ & \text{NiC}_{12}[\text{Cy}_{2}\text{NPO}]_5 (\textbf{6A}) & \text{A}_{2}X_2 & [\partial_A = 143.9, \partial_M = 124.6, \partial_X = \delta_{X'} = 91.7] (J''_S < 15, \text{poorly resolved}) \\ & \text{Pd}_{2}[\text{Cy}_{2}\text{NPO}]_5 (\textbf{7}) & \text{AA'MXX'} & [\partial_A = \delta_{A'} = 143.9, \partial_M = 124.6, \partial_X = \delta_{X'} = 91.7] (J''_S < 15, \text{poorly resolved}) \\ & \text{Pd}_{2}[\text{Cy}_{2}\text{NPO}]_5 (\textbf{8B}) & \text{AA'MXX'} & [\partial_A = \delta_{A'} = 143.9, \partial_M = 127.5, \partial_X = \delta_{X'} = 87.9] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 15, \\ & J_{AM} = J_{AM} = 3, J_{MX} = J_{MX'} = 10 \\ & J_{AM} = J_{AM} = 3, J_{MX} = J_{MX'} = 10 \\ & \text{Pd}_{12}[\text{Cy}_{2}\text{NPO}]_5 (\textbf{8B}) & \text{AA'MXX'} & [\partial_A = \delta_{A'} = 143.9, \partial_M = 127.5, \partial_X = \delta_{X'} = 87.4] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{AX'} = 19, \\ & J_{AM} = J_{AM} = 3, J_{MX} = J_{MX'} = 10 \\ & \text{Pd}_{2}[\text{Cy}_{2}\text{NPO}]_5 (\textbf{8B}) & \text{AA'MXX'} & [\partial_A = 127.5, \partial_X = 0.1] (J_{AX} = J_{XX'} = 50, J_{AX} = J_{AX'} = 19, \\ & J_{AM} = J_{AM} = 3, J_{MX} = J_{MX'} = 10, \\ & \text{Pd}_{2}[\text{Cy}_{2}\text{NPO}]_5 (\textbf{1B}) & \text{A}_{2}X & [\partial_A = 143.8, \partial_X = 130.1] (J_{AX} = 2) \\ & \text{Mo(CO)}_4[\text{Cy}_2\text{NPO}]_5 (\textbf{1D}) & A_2X & [\partial_A = 145.0] (J_{AX} = 123.4] (J_{AX} = 13.7, J_{AY} = 10, J_{XY} = 3) \\ & \text{Cr}(\text{CO)}_4[\text{Cy}_2$	$PtCl_2[Pr_2NPO]_4$ (3)	A_2X_2	$[\delta_{\rm A} = 142.8, \delta_{\rm X} = 59.0] (J_{\rm AX} = 34)$		
$\begin{split} \text{NiB}_{12}[\text{Cy}_2\text{NPO}]_4 (\textbf{4B}) & \text{AA'XX'} & [\delta_{A} = \delta_{A'} = 142.4, \ \delta_{X} = \delta_{X'} = 62.3] (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{AX'} = 20, \ J_{AX} = J_{AX'} = 1) \\ \text{NiL}_{2}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{4C}) & \text{AA'XX'} & [\delta_{A} = \delta_{A'} = 142.4, \ \delta_{X} = \delta_{X'} = 75.4] (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{AX'} = 20, \ J_{AX'} = J_{AX'} = 1) \\ \text{PdCl}_{2}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{5B}) & \text{A}_{2}\text{X}_{2} & [\delta_{A} = 143.9, \ \delta_{X} = 88.8] (J_{AX} = 83) \\ \text{PtCl}_{2}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{6B}) & \text{AMX}_{2} & [\delta_{A} = 143.9, \ \delta_{X} = 59.3] (J_{AX} = 64, \ J_{PP} = 4826) \\ \text{PtCl}_{2}[\text{Cy}_{2}\text{NPO}]_4 (\textbf{6B}) & \text{AMX}_{2} & [\delta_{A} = 140.1, \ \delta_{M} = 134.4, \ \delta_{X} = 58.9] (J_{AX} = 58.1] (J_{AM'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 13) \\ \text{NiCl}_{2}[\text{Cy}_{2}\text{NPO}]_5 (\textbf{7}) & \text{AA'MXY'} & [\delta_{A} = \delta_{A'} = 143.9, \ \delta_{M} = 127.5, \ \delta_{X} = \delta_{X'} = 87.9] (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 15, \ J_{AM} = J_{A'M} = 3, \ J_{MX} = J_{MX'} = 127.3, \ \delta_{X} = \delta_{X'} = 87.4] (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 19, \ J_{AM} = J_{A'M} = 3, \ J_{MX} = J_{A'X'} = 19) \\ \text{PdEl}_{2}[\text{Cy}_{2}\text{NPO}]_{5} (\textbf{8B}) & \text{AA'MXY'} & [\delta_{A} = \delta_{A'} = 143.8, \ \delta_{M} = 127.5, \ \delta_{X} = \delta_{X'} = 87.4] (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 19, \ J_{AM} = J_{A'M} = 3, \ J_{MX} = J_{A'X'} = 19) \\ \text{PdEl}_{2}[\text{Cy}_{2}\text{NPO}]_{5} (\textbf{8B}) & \text{AA'MXY'} & [\delta_{A} = \delta_{A'} = 143.8, \ \delta_{M} = 127.5, \ \delta_{X} = \delta_{X'} = 60.1] (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 19, \ J_{AM} = J_{A'M} = 3, \ J_{AX} = J_{A'X'} = 19) \\ \text{PdEl}_{2}[\text{Cy}_{2}\text{NPO}]_{5} (\textbf{1B}) & \text{A}_{2}X & [\delta_{A} = 138.5, \ \delta_{X} = 132.2] (J_{AX} = 10, \ J_{A'X} = J_{XX'} = 50, \ J_{AX} = J_{A'M} = 3, \ J_{AX} = J_{A'X'} = 14, \ J_{MX} = J_{M'} = 12, \ J_{A'X} = 10, \ J_{A'X} = 50, \ J_{AX} = 50, \ J_{AX} = 14, \ J_{A'X} = 14, \ J_{A'X} = 14, \ J_{A'X} = 10, \ J_$	$NiCl_2[Cy_2NPO]_4$ (4A)	AA'XX'	$[\delta_{A} = \delta_{A'} = 142.3, \ \delta_{X} = \delta_{X'} = 54.0] \ (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 20, \ J_{AX'} = J_{A'X} = 1)$		
$ \begin{split} & \text{Ni}_{\text{I}_{2}} [\text{Cy}_{2}\text{NPO}]_{4} (4C) & \text{AA'XX'} & [\delta_{\text{A}} = \delta_{A'} = 142.4, \delta_{\text{X}} = \delta_{X} = 75.4] (J_{\text{AA'}} = J_{\text{XX'}} = 50, J_{\text{AX'}} = J_{\text{A'X}} = 20, J_{\text{AX'}} = J_{\text{A'X}} = 1) \\ & \text{PdC}_{12} [\text{Cy}_{2}\text{NPO}]_{4} (5B) & \text{A}_{2} X_{2} & [\delta_{\text{A}} = 143.9, \delta_{\text{A}} = 88.9] (J_{\text{AX}} = 88) \\ & \text{PtC}_{12} [\text{Cy}_{2}\text{NPO}]_{4} (6B) & \text{A}_{2} X_{2} & [\delta_{\text{A}} = 141.9, \delta_{\text{X}} = 59.3] (J_{\text{AX}} = 64, J_{\text{PP}} = 4826) \\ & \text{PtC}_{12} [\text{Cy}_{2}\text{NPO}]_{4} (6B) & \text{A}_{2} X_{2} & [\delta_{\text{A}} = 144.8, \delta_{\text{X}} = 59.3] (J_{\text{AX}} = 64, J_{\text{PP}} = 4826) \\ & \text{PtC}_{12} [\text{Cy}_{2}\text{NPO}]_{5} (7) & \text{AA'MXX'} & [\delta_{\text{A}} = 142.4, \delta_{\text{M}} = 127.5, \delta_{\text{X}} = \delta_{\text{X'}} = 91.7] (J^{\text{S}} < 15, \text{poorly resolved}) \\ & \text{PdC}_{12} [\text{Cy}_{2}\text{NPO}]_{5} (8A) & \text{AA'MXX'} & [\delta_{\text{A}} = \delta_{\text{A'}} = 142.4, \delta_{\text{M}} = 127.5, \delta_{\text{X}} = \delta_{\text{X'}} = 91.7] (J^{\text{S}} < 15, \text{poorly resolved}) \\ & \text{PdC}_{12} [\text{Cy}_{2}\text{NPO}]_{5} (8B) & \text{AA'MXX'} & [\delta_{\text{A}} = \delta_{\text{A'}} = 142.7, \delta_{\text{M}} = 127.5, \delta_{\text{X}} = \delta_{\text{X'}} = 91.7] (J_{\text{AA'}} = J_{\text{XX'}} = 50, J_{\text{AX}} = J_{\text{AX'}} = 15, \\ & J_{\text{AM}} = J_{\text{AM}} = 3, J_{\text{MX}} = J_{\text{MX'}} = 12.7, \delta_{\text{M}} = J_{\text{XX'}} = 50, J_{\text{AX}} = J_{\text{AX'}} = 19, \\ & J_{\text{AM}} = J_{\text{AM}} = 3, J_{\text{MX}} = J_{\text{MX'}} = 102.7, \delta_{\text{X}} = \delta_{\text{X'}} = 87.4] (J_{\text{AA'}} = J_{\text{XX'}} = 50, J_{\text{AX}} = J_{\text{AX'}} = 19, \\ & J_{\text{AM}} = J_{\text{AM}} = 3, J_{\text{MX}} = J_{\text{MX'}} = 11, J_{\text{PL}P} = 5206) \\ & \text{Mo(CO)}_{4} [\text{P}_{\text{P}}\text{NPO}]_{3} (10B) & A_{2}X & [\delta_{\text{A}} = 136.1] (J_{\text{AX}} = 21, 1, J_{\text{MX}} = 31, J_{\text{M}} = 10, J_{\text{XX}} = 30, \\ & J_{\text{AX}} = J_{\text{AX'}} = 14.J_{\text{A}} J_{\text{A}} = 129.2 (J_{\text{AX}} = 11, J_{\text{PL}P} = 5206) \\ & \text{Mo(CO)}_{4} [\text{P}_{2}\text{NPO}]_{3} (10B) & A_{2}X & [\delta_{\text{A}} = 177.1, \delta_{\text{X}} = 129.4] (J_{\text{AX}} = 37, J_{\text{AY}} = 10, J_{\text{XY}} = 3) \\ & \text{Cr}(\text{CO})_{4} [\text{Cy}_{2}\text{NPO}]_{4} (11b) & A_{2}X & [\delta_{\text{A}} = 177.1, \delta_{\text{X}} = 128.2] (J_{\text{AX}} = 53, $	$NiBr_2[Cy_2NPO]_4$ (4B)	AA'XX'	$[\delta_{A} = \delta_{A'} = 142.4, \ \delta_{X} = \delta_{X'} = 62.3] \ (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 20, \ J_{AX'} = J_{A'X} = 1)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$NiI_2[Cy_2NPO]_4$ (4C)	AA'XX'	$[\delta_{A} = \delta_{A'} = 142.4, \ \delta_{X} = \delta_{X'} = 75.4] \ (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 20, \ J_{AX'} = J_{A'X} = 1)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$PdCl_2[Cy_2NPO]_4$ (5A)	A_2X_2	$[\delta_{\rm A} = 143.9, \delta_{\rm x} = 88.9] (J_{\rm AX} = 83)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$PdBr_2[Cy_2NPO]_4$ (5B)	A_2X_2	$[\delta_{\rm A} = 141.9, \delta_{\rm X} = 88.8] (J_{\rm AX} = 88)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$PtCl_2[Cy_2NPO]_4$ (6A)	A_2X_2	$[\delta_{\rm A} = 146.8, \delta_{\rm X} = 59.3] (J_{\rm AX} = 64, J_{\rm PtP} = 4826)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$PtCl_2[Cy_2NPO]_4$ (6B)	AMX ₂	$[\delta_{A} = 140.1, \delta_{M} = 134.4, \delta_{X} = 58.1] (J_{AM} \sim 0, J_{AX} = 44, J_{MX} = 13)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$NiCl_2[Cy_2NPO]_5(7)$	AA'MXX'	$[\delta_A = \delta_{A'} = 143.9, \delta_M = 124.6, \delta_X = \delta_{X'} = 91.7]$ (J's < 15, poorly resolved)		
$ \begin{array}{lll} J_{AM} = J_{A'M} = 3, J_{MX} = J_{MX'} = 12) \\ J_{AM} = J_{A'M} = 3, J_{MX} = J_{MX'} = 12) \\ J_{AM} = J_{A'M} = 3, J_{MX} = J_{MX'} = 12) \\ J_{AM} = J_{A'M} = 3, J_{MX} = J_{MX'} = 19) \\ PtCl_2[Cy_2NPO]_5 (9) & AA'MXX' & [\delta_A = \delta_{A'} = 142.7, \delta_M = 127.3, \delta_X = \delta_{X'} = 60.1] (J_{AA'} = J_{XX'} = 50, J_{AX} = J_{A'M'} = 3, J_{AX} = J_{A'X'} = 14, J_{MX} = J_{MX'} = 11, J_{Pt-P} = 5206) \\ Mo(CO)_4[Pr_2NPO]_3 (10A) & A_2X & [\delta_A = 138.5, \delta_X = 130.1] (J_{AX} = 2) \\ Mo(CO)_4[Cy_2NPO]_4 (11B) & A_2XY & [\delta_A = 136.8, \delta_X = 128.2] (J_{AX} = 15) \\ Cr(CO)_4[Cy_2NPO]_4 (11B) & A_2X2 & [\delta_A = 174.0, \delta_X = 138.7] (J_{AX} = 63) \\ Fe(CO)_3[Pr_2NPO]_4 (12) & A_2XY & [\delta_A = 163.8, \delta_X = 131.6, \delta_Y = 125.6] (J_{AX} = 54, J_{AY} = 0.2, J_{XY} \approx 0) \\ Fe(CO)_4[Pr_2NPO]_4 (13) & A_2X_2 & [\delta_A = 160.6, \delta_X = 145.0] (J_{AX} = 39) \\ Fe(CO)_4[Pr_2NPO]_4 (14) & AX_2Y & [\delta_A = 152.5, \delta_X = 24.5, \delta = 6.6] (J_{AX} = 15, J_{AY} \approx 0, J_{XY} = 187) \\ Cr_2(CO)_8[Cy_2NPO]_4 (15) & singlet & [\delta = 157.8] \\ Cr_2(CO)_7[Cy_2NPO]_5 (16) & A_2BX_2 & [\delta_A = 176.1, \delta_B = 175.1, \delta_X = 155.4] (J_{AB} = 6, J_{BX} = 34, J_{AX} \approx 0) \\ W_2(CO)_7[Cy_2NPO]_5 (17) & A_2BX_2 & [\delta_A = 176.1, \delta_B = 175.1, \delta_X = 155.4] (J_{AB} = 2, J_{AX} = 1, J_{BX} = 17, J_{WP} = 186) \\ W_2(CO)_6[Cy_2NPO]_4 (18) & AXYZ & [\delta_A = 267.7, \delta_X = 133.2, \delta_Y = 100.1, \delta_Z = 84.2] (J_{AX} = J_{AY} = 13, J_{AZ} = 20, J_{XY} = 101, J_{XY} = 101, J_{XY} = 101, J_{XY} = 33) \\ \end{array}$	$PdCl_2[Cy_2NPO]_5(8A)$	AA'MXX'	$[\delta_{A} = \delta_{A'} = 143.4, \ \delta_{M} = 127.5, \ \delta_{X} = \delta_{X'} = 87.9] \ (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 15,$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$J_{\rm AM} = J_{\rm A'M} = 3, J_{\rm MX} = J_{\rm MX'} = 12$		
$ \begin{array}{lll} J_{AM} = J_{AM} = 3, \ J_{MX} = J_{MX'} = 19) \\ J_{AA} = J_{AX} = 3, \ J_{AX} = J_{AX'} = 50, \ J_{AM} = J_{AM} = 3, \\ J_{AX} = J_{A'X'} = 141.8, \ \delta_M = 127.5, \ \delta_X = \delta_{X'} = 60.1] \ (J_{AA'} = J_{XX'} = 50, \ J_{AM} = J_{A'M} = 3, \\ J_{AX} = J_{A'X'} = 14, \ J_{MX} = J_{MX'} = 11, \ J_{PLP} = 5206) \\ Mo(CO)_4[Pr_2NPO]_3 \ (10B) & A_2X & [\delta_A = 138.5, \ \delta_X = 130.1] \ (J_{AX} = 2) \\ Mo(CO)_4[Cy_2NPO]_4 \ (11a) & A_2X & [\delta_A = 136.8, \ \delta_X = 128.2] \ (J_{AX} = 15) \\ Cr(CO)_4[Cy_2NPO]_4 \ (11b) & A_2X_2 & [\delta_A = 177.1, \ \delta_X = 129.4, \ \delta_Y = 123.4] \ (J_{AX} = 37, \ J_{AY} = 10, \ J_{XY} = 3) \\ Cr(CO)_4[Cy_2NPO]_4 \ (11b) & A_2X_2 & [\delta_A = 177.1, \ \delta_X = 138.7] \ (J_{AX} = 63) \\ Fe(CO)_3[Cy_2NPO]_4 \ (12) & A_2XY & [\delta_A = 163.8, \ \delta_X = 131.6, \ \delta_Y = 125.6] \ (J_{AX} = 54, \ J_{AY} = 0.2, \ J_{XY} \approx 0) \\ Fe(CO)_3[Pr_2NPO]_4 \ (13) & A_2X_2 & [\delta_A = 160.6, \ \delta_X = 145.0] \ (J_{AX} = 39) \\ Fe(CO)_4[Pr_2NPO]_4 \ (14) & AX_2Y & [\delta_A = 152.5, \ \delta_X = 24.5, \ \delta = 6.6] \ (J_{AX} = 15, \ J_{AY} \approx 0, \ J_{XY} = 187) \\ Cr_2(CO)_8[Cy_2NPO]_4 \ (15) & singlet & [\delta = 157.8] \\ Cr_2(CO)_7[Cy_2NPO]_5 \ (16) & A_2BX_2 & [\delta_A = 176.1, \ \delta_B = 175.1, \ \delta_X = 155.4] \ (J_{AB} = 6, \ J_{BX} = 34, \ J_{AX} \approx 0) \\ W_2(CO)_7[Cy_2NPO]_5 \ (17) & A_2BX_2 & [\delta_A = 176.1, \ \delta_B = 175.1, \ \delta_X = 155.4] \ (J_{AB} = 2, \ J_{AX} = 1, \ J_{BX} = 17, \ J_{WP} = 186) \\ W_2(CO)_6[Cy_2NPO]_4 \ (18) & AXYZ & [\delta_A = 267.7, \ \delta_X = 133.2, \ \delta_Y = 100.1, \ \delta_Z = 84.2] \ (J_{AX} = J_{AY} = 13, \ J_{AZ} = 20, \\ J_{XY} = 101, \ J_{XY} = 104, \ J_{YZ} = 33) \end{array}$	$PdBr_2[Cy_2NPO]_5(8B)$	AA'MXX'	$[\delta_{A} = \delta_{A'} = 142.7, \ \delta_{M} = 127.3, \ \delta_{X} = \delta_{X'} = 87.4] \ (J_{AA'} = J_{XX'} = 50, \ J_{AX} = J_{A'X'} = 19,$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$J_{\rm AM} = J_{\rm A'M} = 3, J_{\rm MX} = J_{\rm MX'} = 19$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$PtCl_2[Cy_2NPO]_5(9)$	AA'MXX'	$[\delta_A = \delta_{A'} = 141.8, \ \delta_M = 127.5, \ \delta_X = \delta_{X'} = 60.1] \ (J_{AA'} = J_{XX'} = 50, \ J_{AM} = J_{A'M} = 3,$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$J_{AX} = J_{A'X'} = 14, J_{MX} = J_{MX'} = 11, J_{Pt-P} = 5206)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Mo(CO)_4[^iPr_2NPO]_3$ (10A)	A_2X	$[\delta_{A} = 138.5, \delta_{X} = 130.1] (J_{AX} = 2)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Mo(CO)_4[Cy_2NPO]_3$ (10B)	A_2X	$[\delta_{\rm A} = 136.8, \delta_{\rm X} = 128.2] (J_{\rm AX} = 15)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Cr(CO)_4[Cy_2NPO]_4$ (11a)	A_2XY	$[\delta_A = 177.1, \delta_X = 129.4, \delta_Y = 123.4] (J_{AX} = 37, J_{AY} = 10, J_{XY} = 3)$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$Cr(CO)_4[Cy_2NPO]_4$ (11b)	A_2X_2	$[\delta_{\rm A} = 174.0, \delta_{\rm X} = 138.7] (J_{\rm AX} = 63)$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$Fe(CO)_{3}[Cy_{2}NPO]_{4}(12)$	A_2XY	$[\delta_A = 163.8, \delta_X = 131.6, \delta_Y = 125.6] (J_{AX} = 54, J_{AY} = 0.2, J_{XY} \approx 0)$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$Fe(CO)_{3}[^{i}Pr_{2}NPO]_{4}(13)$	A_2X_2	$[\delta_{A} = 160.6, \delta_{X} = 145.0] (J_{AX} = 39)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Fe(CO)_4[^{i}Pr_2NPO]_4$ (14)	AX_2Y	$[\delta_A = 152.5, \delta_X = 24.5, \delta = 6.6] (J_{AX} = 15, J_{AY} \approx 0, J_{XY} = 187)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Cr_2(CO)_8[Cv_2NPO]_4$ (15)	singlet	$[\delta = 157.8]$		
$ \begin{array}{ll} W_2(CO)_7[Cy_2NPO]_5 \ (17) \\ W_2(CO)_6[Cy_2NPO]_4 \ (18) \end{array} & \begin{array}{ll} A_2BX_2 \\ AXYZ \end{array} \begin{bmatrix} \delta_A = 176.1, \ \delta_B = 175.1, \ \delta_X = 155.4 \end{bmatrix} (J_{AB} = 2, \ J_{AX} = 1, \ J_{BX} = 17, \ J_{WP} = 186) \\ (\delta_A = 267.7, \ \delta_X = 133.2, \ \delta_Y = 100.1, \ \delta_Z = 84.2 \end{bmatrix} (J_{AX} = J_{AY} = 13, \ J_{AZ} = 20, \ J_{XY} = 101, \ J_{XZ} = 140, \ J_{YZ} = 140, \ J_{YZ} = 33) \end{array} $	$Cr_2(CO)_7[Cv_2NPO]_5(16)$	$A_2 \breve{B} X_2$	$\delta_{A} = 176.1, \delta_{B} = 175.1, \delta_{X} = 155.4$ $(J_{AB} = 6, J_{BX} = 34, J_{AX} \approx 0)$		
$W_{2}(CO)_{6}[Cy_{2}NPO]_{4} (18) \qquad AXYZ \qquad [\delta_{A} = 267.7, \delta_{X} = 133.2, \delta_{Y} = 100.1, \delta_{Z} = 84.2] (J_{AX} = J_{AY} = 13, J_{AZ} = 20, J_{XY} = 101, J_{XZ} = 140, J_{YZ} = 33)$	$W_2(CO)_7[Cv_2NPO]_5(17)$		$[\delta_{A} = 176.1, \delta_{B} = 175.1, \delta_{X} = 155.4] (J_{AB} = 2, J_{AX} = 1, J_{BX} = 17, J_{WP} = 186)$		
$J_{XY} = 101, J_{XZ} = 140, J_{YZ} = 33)$	$W_2(CO)_6[Cv_2NPO]_4$ (18)	AXYZ	$[\delta_A = 267.7, \delta_X = 133.2, \delta_Y = 100.1, \delta_Z = 84.2] (J_{AX} = J_{AY} = 13, J_{AZ} = 20,$		
			$J_{XY} = 101, J_{XZ} = 140, J_{YZ} = 33)$		
$Cr_2(CO)_8[DMP-PO]_4$ (19a) singlet $[\delta = 171.1]$	$Cr_2(CO)_8[DMP-PO]_4$ (19a)	singlet	$[\delta = 171.1]$		
$C_{T}(CO) $ [DMP-PO] ₄ (19b) singlet [$\delta = 155.4$]	$Cr_2(CO)_8[DMP-PO]_4$ (19b)	singlet	$[\delta = 155.4]$		
Cr ₂ (CO)/[DMP-PO] ₂ (20) $A_{2}BX_{2}$ [$\delta_{A} = 176.1, \delta_{B} = 175.1, \delta_{Y} = 155.4$] ($J_{AB} = 6, J_{AY} \approx 0, J_{BY} = 42$)	$Cr_2(CO)_2[DMP-PO]_5(20)$	A ₂ BX ₂	$[\delta_A = 176.1, \delta_B = 175.1, \delta_X = 155.4] (J_{AB} = 6, J_{AX} \approx 0, J_{BX} = 42)$		
$C_{T}(CO)(DMP-PO)(21)$ singlet $[\delta = 175.5]$	$Cr_2(CO)_6[DMP-PO]_6(21)$	singlet	$[\delta = 175.5]$		
$M_{2}(CO) = [DMP - PO]_{4}(22) \qquad \text{singlet} \qquad [\delta = 149.6]$	$M_{02}(CO)_{8}[DMP-PO]_{4}(22)$	singlet	$[\delta = 149.6]$		
NiBro(CV ₂)NPO1 ₄ M ₀ (CO ₄ (23) AA'XX' [$\delta_A = \delta_{A'} = 137.9, \ \delta_{Y'} = \delta_{A'} = 60.7$] ($J_{AY} = J_{A'Y'} = 15, \ J_{AY'} = J_{A'Y} = 12$)	NiBr ₂ [Cv_2 NPO] ₄ Mo(CO) ₄ (23)	AA'XX'	$[\delta_A = \delta_{A'} = 137.9, \delta_X = \delta_{X'} = 60.7] (J_{AX} = J_{A'X'} = 15, J_{AX'} = J_{A'X} = 12)$		
$P(C)_{1}(V_{1}) = V_{1}(V_{1}) = V$	$PtCl_2[Cv_2NPO]_sMo(CO)_3 (24)$	AMM'XX'	$[\delta_A = 157.1, \delta_M = 137.5, \delta_X = 88.9] (J_{AM} = J_{AM'} = 28.9, J_{AX} = J_{AX'} = 9.5,$		
$J_{\text{MY}} = J_{\text{MY}} = J_{\text{MY}} \approx 0$			$J_{MY} = J_{MY'} = J_{MY'} = J_{MY'} \approx 0$		
$Fe(CO)_{1}^{[1]}Pr_{2}NPO]_{4}Mo(CO)_{4}$ (25) AB ₂ X $[\delta_{A} = 163, 5, \delta_{P} = 137, 4]$ $(J_{AB} = 85, J_{AX} \approx 0, J_{BY} = 5)$	$Fe(CO)_{a}[^{i}Pr_{2}NPO]_{a}Mo(CO)_{a}(25)$	AB ₂ X	$[\delta_A = 163.5, \delta_B = 160.5, \delta_X = 137.4] (J_{AB} = 85, J_{AX} \approx 0, J_{BX} = 5)$		
N ₂ (CO) ₄ [Cv ₂ NPO] ₄ (26) singlet [$\delta = 133.8$]	$Ni_2(CO)_4[Cv_2NPO]_4$ (26)	singlet	$[\delta = 133.8]$		

^a All spectra were run in CDCl₃.

phosphido resonance (δ +267.8). An analogous Mo₂(CO)₆-[ⁱPr₂NPO]₄ complex containing a phosphido-bridged metal-metal bond and a cleaved P-O linkage has been reported (Figure 4).³ Diiron nonacarbonyl gave the same Fe(CO)₃[Cy₂NPO]₄ (**13**) product as described above from its reaction with [Cy₂NPO]₃.

From bis(2,6-dimethylpiperidino)phosphine oxide $((DMP)_2P(O)H)$ and $Cr(CO)_6$ in refluxing toluene we obtained both isomers of $Cr_2(CO)_8[DMP-PO]_4$ (19a,b), Cr₂(CO)₇[DMP-PO]₅ (20) and traces of a white solid with high spectral (Table 1) symmetry that analyzed as Cr-(CO)₃[DMP-PO]₃ (21). The X-ray crystal structures of 19a and 19b confirmed their being configurational isomers of the $Cr_2P_4O_4$ core. Complex **19a** adopts the familiar adamantanoid cage structure featuring a tetradentate P₄O₄ ring in a boat-boat form (Figures 5 and 2E). Complex 19b has the heterocycle in the long chair form serving to link two four-membered CrPOP chelate rings (Figure 6). X-ray crystallography also revealed the symmetrical **21** to be the novel $Cr_2(CO)_6[DMP-PO]_6$ (Figure 7), a cluster structure featuring the heretofore unknown hexaphosphoxane ring. Significantly, quantitative yields of this same product can be obtained from the cage expansion reaction of Cr₂(CO)₇[DMP-PO]₅ (20) with $(DMP)_2P(O)H$ in refluxing xylene. By contrast,

(3) Yang, H. Y.; Wong, E. H.; Jasinski, J. P.; Pozdniakov, R. Y.; Woudenberg, R. Organometallics **1992**, *11*, 1579. molybdenum hexacarbonyl gave the $Mo_2P_4O_4$ cage complex 22 as the only product regardless of reaction conditions.

No tractable products were obtained from $Fe_2(CO)_9$ or dihalide precursors of the nickel triad in this type of thermal reaction. Substitution of the bis(amino)phosphine oxides with various phosphoramidites like (R₂N)-(R'O)P(O)H also failed to produce any alkoxy- or aryloxysubstituted phosphoxane complexes.

Reactions of Monometallic Phosphoxane Complexes. The monometallic phosphoxane complexes synthesized above contain additional available phosphorus donor sites. Several heterobimetallic complexes have been prepared using them as metalla-ligands. These include the Mo(CO)₄[Cy₂NPO]₄NiBr₂ complex (23), the Mo(CO)₃[Cy₂NPO]₅PdCl₂ complex 24, and the Mo(CO)₄[ⁱPr₂NPO]₄Fe(CO)₃ complex 25 (Scheme 1). All have been characterized spectrally and by elemental analyses. The Ni/Mo complex 23 can be assigned a basic structure similar to that of complex 19b (Figure 6) with the P_4O_4 ring in the long chair conformation and metals coordinating at opposite ends of the heterocycle. Complex 24 should be a Mo/Pd mixed-metal analogue of the $Cr_2P_5O_5$ cage (complex 16, Figure 2F) structure. Complex 25 exhibited an AB₂X pattern in its solution ³¹P NMR spectrum (Table 1) and numerous bands in its IR carbonyl spectrum (see Experimental Section). A single-

Table 2. ¹³C NMR Data for the Cyclic Phosphoxane Complexes⁴

compd	assgnt [δ , ppm (J, Hz)]
1B	CH [48.6, 45.1], CH ₃ [24.5, 22.9]
2A	CH [47, 7, 47,2], CH ₃ [23,2, 19,2]
4B	CH [58.1, 53.5], CH ₂ [33.3, 33.1, 26.7, 26.4, 26.1, 25.5, 24.8]
7	CH [58.1, 53.8, 52.7], CH ₂ [33.4, 32.4, 29.3, 27.1, 26.5, 25.6, 25.4, 24.9, 21.5]
8A	CH [58.5, 53.7, 52.7], CH ₂ [37.7, 35.7, 35.2, 33.2, 32.5, 31.5, 29.2, 26.9, 26.3, 25.3, 24.7]
8B	CH [58.5, 54.1, 53.0], CH ₂ [37.6, 37.3, 33.4, 33.1, 32.7, 32.4, 29.1, 27.1, 26.4, 25.8, 25.4, 24.8]
9	CH [58.0, 53.6, 52.9], CH ₂ [37.8, 37.2, 33.1, 32.5, 29.3, 27.1, 26.4, 25.8, 25.6, 25.4, 24.8]
10A	CH [47.8, 44.5], CH ₃ [24.4, 23.6, 23.2]
10B	CH [57.4, 53.7], CH ₂ [34.9, 33.7, 34.2, 26.9, 26.6, 26.5, 25.4, 25.1]
11a	CO [226.0, triplet (10), 219.4, triplet (20)], CH [57.4, 53.2, 52.5], CH ₂ [33.7, 33.1, 26.8, 25.6]
12	CO [218.1, multiplet], CH [57.8, 53.5 doublet (9); 52.5, doublet (12)] CH ₂ [33.5, 33.0, 26.9, 26.8, 26.3, 25.8, 25.7]
13	CO [218.0, multiplet], CH [47.5; 44.4, doublet (15)], CH ₃ [24.1, 22.8]
14 (-10°)	CO [215.8, doublet (15); 215.0, doublet (15)] CH [56.9, doublet (11); 48.0, doublet (12);
	46.9, doublet (7); 44.6, doublet (27)] CH ₃ [26.4, doublet (11); 23.9, 23.5, 23.2, 22.9]
16	CO [229.9, multiplet; 229.1, triplet (14); 224.4, triplet (9); 219.7, triplet (20); 216.7,
	triplet (20)] CH [58.5, 58.3, 57.5, doublet (10)], CH ₂ [36.2, 35.9, 35.3, 34.8, 34.3, 27.3, 27.1, 26.9, 26.7, 25.8, 25.6, 25.2]
17	CO [213.5, 209.8, 203.6, multiplets]; CH [59.0, 58.7, 58.0, doublet (14)], CH ₂ [36.0,
	35.4, 35.2, 34.8, 34.3, 27.1, 27.0, 26.9, 26.6, 25.7, 25.5, 25.2, 24.8]
18	CO [212.9, 217.6, 210.8, 210.3, 209.8, 206.9, multiplets], CH [57.8, doublet (10);
	57.2, doublet (9); 57.5, doublet (8), CH ₂ [34.0, 33.9, 33.7, 33.6, 33.4, 31.5, 26.9, 26.6, 26.5, 25.4, 25.3, 24.9, 22.6]
19a	CO [224.1, triplet (9); 217.1, triplet (19)], CH [45.6], CH ₂ [30.9, 14.2], CH ₃ [23.2]
19b	CO [213.5, 209.8, 203.6, multiplets], CH [47.3, triplet (4); 46.1], CH ₂ [31.0, 30.1, 13.6],
	CH ₃ [23.3, 21.7]
20	CO [229.5, multiplet; 228.3, multiplet; 226.4, triplet (11); 219.3, triplet (21); 216.2,
	triplet (20)]; CH [47.6, triplet (7); 45.8, 45.6, multiplets], CH ₂ [31.4, 31.9, 31.1, 30.9, 30.6,
	30.5, 14.2, 14.1, 13.9], CH ₃ [23.4, 23.0, 22.9, 22.8, 22.5, 22.4]
21	CO [213.5, triplet (15); 206.9, triplet (12)], CH [45.6, triplet (7)], CH ₂ [31.0, 14.1], CH ₃ [23.0]
22	CO [213.5, triplet (15); 206.9, triplet (12)] CH [45.6, triplet (7)], CH ₂ [31.0, 14.1], CH ₃ [23.0]
23	CO [215.9, doublet (12); 215.4, doublet (12); 208.7, triplet (8); 207.7, triplet (10)], CH [58.4,
• •	58.2], CH ₂ [36.4, 34.2, 33.5, 32.9, 26.4, 25.9, 25.3, 25.1]
24	CO[218.9, doublet of triplets (39, 13); 216.4, doublet of triplets (39, 13)], CH [59.3, 58.2, 13] and 13
25	$5/./J_1 \subset H_2$ (55.8, 55.4, 54.7, 55.5, 27.0, 26.7, 26.1, 25.4, 25.2, 24.9]
25	CO[219.2, urplet (0); 218.8, aoublet (9); 210.7, aoublet (94); 211.0, aoublet of doublets (9, 3); 2007 f and (0); 218.7, aoublet (0); 247.6, doublet (0); 249.2, aoublet (0); 249.2, aou
26	207.3, quarter (9)], Cn [49.2; 47.0, doublet (9)]; 44.3, doublet (14)], Cn ₃ [23.4, 23.0, 22.4] CO [109.0, trialst (2)] CH [55.4, trialst (6)] CH, [24.2, 26.6, 25.5]
20	Co [126.0, utplet (2)], Cn [33.4, utplet (0)], Cn [34.2, 20.0, 23.3]

^a All spectra were run in CDCl₃ at ambient temperature unless otherwise noted.

Table 3.	Proton	NMR	Data	for	the	Cvelie	Phos	nhoyane	Com	nlexesª
	1104011		2.7 CR 1/14		+11¢	C) CHC	* 1100	Paromano	Q'UIII	preneo

compd	assgnt [δ , ppm (J , Hz)]
1B	CH [4.20, multiplets], CH ₃ [1.36, 1.32, 1.31, doublets (6.8 Hz)]
2A	CH [3.74, multiplets], CH ₃ [1.36, 1.28, doublet (6.7)]
4B	CH [3.8, broad], CH ₂ [1.99–0.84, multiplets]
7	CH $[3.6, 3.1, 2.9, broad]$, CH ₂ $[2.14-1.07, multiplets]$
8A	CH [3.52, 3.04, 2.82, broad], CH ₂ [2.25-0.88, multiplets]
8B	CH [3.51, 3.17, 2.80, broad], CH ₂ [2.26-0.85, multiplets]
9	CH [3.56, 3.06, 2.79, broad], CH ₂ [2.19-0.82, multiplets]
10A	CH [3.86, septet (6.9); 3.7, broad], CH ₃ [1.32, 1.31, 1.26, doublets (6.9)]
10B	CH [3.25 , broad], CH ₂ [$1.70-1.18$, multiplets]
11a	CH [3.48, broad], CH ₂ [1.76–0.84, multiplets]
12	CH [3.52, broad], CH ₂ [1.82–0.84, multiplets]
13	CH [3.92, 3.79, broad], CH ₃ [1.26, doublet (23)]
14 (-10°)	CH [4.58, 4.15, 3.50, 3.33], CH ₃ [1.35, 1.31, 1.24, 1.19, doublets (6)]
16	CH [4.19, 3.76, 3.51, multiplets], CH ₂ [1.98–0.84, multiplets]
17	CH [4.21, 3.73, 3.10, multiplets], CH ₂ [1.92–0.84, multiplets]
18	CH [3.41, 3.30, 3.20, multiplets], CH ₂ [2.03-0.84, multiplets]
19a	CH [4.46], CH ₂ [1.15 $-$ 1.18, multiplets], CH ₃ [1.35, doublet (7)]
19b	CH [4.46, 4.22, multiplets], CH ₂ [1.87–1.55, multiplets], CH ₃ [1.35, 1.40, doublets (7)]
20	CH [4.55, 4.46, 4.37, 4.25, 4.13, multiplets], CH ₂ [1.87–1.55, multiplets, CH ₃ [1.41, 1.37, 1.32, doublets (7)]
21	CH [4.47, multiplet], CH ₂ [$1.51-1.19$, multiplets], CH ₃ [1.37 , doublet (7)]
22	CH [4.40, multiplet], CH ₂ [$1.92-1.50$, multiplets], CH ₃ [1.31 , doublet (7)]
23	CH [3.98, multiplet; 3.8, broad], CH ₃ [$1.95-0.84$, multiplets]
24	CH [4.11, 3.66, multiplets; 3.0, broad], CH ₃ [2.06–1.00, multiplets]
25	CH [4.03, 3.87, septets (7); 3.63, broad], CH ₃ [1.44, 1.38, 1.33, 1.19, doublets (7)]
26	CH [3.38, broad], CH ₂ [2.18-0.72, multiplets]

^a All spectra were run at ambient temperature in CDCl₃ unless noted otherwise.

crystal X-ray analysis revealed an η^3 -P₄O₄ ring bridging the two metals with an iron-molybdenum bond completing pseudooctahedral coordination spheres at both metals (Figure 8). In attempts to prepare heterobimetallic complexes of the nickel triad, phosphoxane ring transfer reactions were observed instead. For example, $PdBr_2$ and $PtCl_2$ were found to displace the 1,3-chelated NiBr₂ from

Figure 3. Molecular structure of $Fe(CO)_4[^iPr_2NPO]_4$ (14).

 $(\mathbf{P} = \mathbf{P} \cdot \mathbf{N}^{i} \mathbf{P} \mathbf{r}_{2})$

Figure 4. Molecular structure of Mo₂(CO)₆[ⁱPr₂NPO]₄.³

Figure 5. Molecular structure of $Cr_2(CO)_8[DMP-PO]_4$ (19a).

complex **4B** to give the respective 1,5-P₄O₄ complexes (**5B**, **6**) at room temperature (Scheme 2). At lower temperature, an intermediate 1,3-chelated PtCl₂ complex (Figure 2B) can be identified by ³¹P NMR spectros-copy (AA'XX' pattern).

A reductive decarbonylation occurred in the thermal reactions of either $Fe(CO)_5$ or $Fe_2(CO)_9$ with $NiBr_2[Cy_2-NPO]_4$ (**4B**) in attempts to prepare a Ni/Fe complex. The only isolated phosphoxane product was identified as $Ni_2(CO)_4[Cy_2NPO]_4$ complex **26**, a nickel analogue of adamantanoid cages like **19a** (see Figures 2E and 5).

X-Ray Structural Studies. (1) Molecular Structure of $Fe(CO)_4[^iPr_2NPO]_4$ (14). The coordination geometry around iron is essentially trigonal bipyramidal

Figure 6. Molecular structure of $Cr_2(CO)_8[DMP-PO]_4$ (19b).

Figure 7. Molecular structure of $Cr_2(CO)_6[DMP-PO]_6$ (21).

Scheme 1

Mo(CO)4(NBD) + NiBr2[Cy2N-PO]4 ----- Mo(CO)4[Cy2N-PO]4NiBr2 + NBD

4b

13

23

24

25

Mo(CO)4(NBD) + PdCl2[Cy2N-PO]5 ----- Mo(CO)3[Cy2N-PO]5PdCl2 + NBD + CO

 $\mathsf{Mo}(\mathsf{CO})_4(\mathsf{NBD}) + \mathsf{Fe}(\mathsf{CO})_3[{}^t\mathsf{Pr}_2\mathsf{N}\mathsf{-}\mathsf{PO}]_4 \xrightarrow{} \mathsf{Mo}(\mathsf{CO})_4[{}^t\mathsf{Pr}_2\mathsf{N}\mathsf{-}\mathsf{PO}]_4\mathsf{Fe}(\mathsf{CO})_3 + \mathsf{NBD}$

with the lone phosphorus donor in one axial site (Figure 3). An Fe-P bond length of 2.189(2) Å is toward the short side of typical values for phosphine-Fe(CO)₄ structures $(2.22-2.37 \text{ Å}).^4$ The axial Fe-C(4) bond is at 1.763(10) Å. The diaxial P(1)-Fe-C(4) angle is considerably bent from linearity at 161.3(2)°. While the equatorial coordination plane is well defined by Fe, C(1), C(2), and C(3), the C(1)-Fe-C(3) angle has opened up

⁽⁴⁾ Riley, P. E.; Davis, R. E. Inorg. Chem. 1980, 19, 159. Massimbeni, L. R. Inorg. Nucl. Chem. Lett. 1971, 7, 187. Wong, E. H.; Bradley, F. C.; Prasad, L.; Gabe, E. J. J. Organomet. Chem. 1984, 263, 167. Pickardt, J.; Rosch, L.; Schumann, H. J. Organomet. Chem. 1976, 107, 241. Kilbourn, B. T.; Raeburn, U. A.; Thompson, D. T. J. Chem. Soc. A 1969, 1906. Einstein, F. W. B.; Jones, R. D. G. J. Chem. Soc., Dalton Trans. 1972, 442.

Figure 8. Molecular structure of $Fe(CO)_3[^iPr_2NPO]_4Mo-(CO)_4$ (25).

Scheme 2

 $NiBr_{2}[Cy_{2}N-PO]_{4} + PtCl_{2}(NBD) \longrightarrow PtCl_{2}[Cy_{2}N-PO]_{4} + NiBr_{2} + NBD$ 4b
6

Table 4.	Selected 1	Bond	Distances	and	Angles	for
	(Comp	lex 14		-	

	.					
Bond Distances (Å)						
Fe-P(1)	2.189(2)	Fe-C(1)	1.775(7)			
Fe-C(2)	1.821(5)	Fe-C(3)	1.776(9)			
Fe-C(4)	1.763(10)	P(1) - O(5)	1.627(3)			
P(1) - O(6)	1.636(4)	P(1) - N(1)	1.644(4)			
P(2) - P(3)	2.234(2)	P(2) - O(5)	1.641(3)			
P(2) - O(7)	1.451(4)	P(2) - N(2)	1.640(4)			
P(3) - P(4)	2.227(2)	P(3) - N(3)	1.673(4)			
P(4) - O(6)	1.628(3)	P(4)-O(8)	1.456(4)			
P(4) - N(4)	1.640(5)	O(1) - C(1)	1.145(9)			
O(2) - C(2)	1.131(6)	O(3) - C(3)	1.139(11)			
O(4)-C(4)	1.149(13)					
Pond Angles (deg)						
$\mathbf{P}(1) = \mathbf{F}_{\mathbf{a}} = \mathbf{P}(1)$	87 5(3)	$P(1) - F_{e} - C(2)$	101 6(2)			
C(1) = Fe = C(2)	105 4(3)	P(1) = Ferr C(3)	84 9(3)			
C(1) = Fe = C(3)	103.4(3) 144.5(3)	$C(2) = F_{0} = C(3)$	110 2(3)			
P(1) - Fe - C(4)	14.3(3)	$E_{2} = O(1) = O(6)$	110.2(3) 115.0(1)			
$\Gamma(1) = \Gamma e = C(4)$ $\Gamma(2) = Fe = C(4)$	101.3(2) 07 1(2)	$C(1) = E_{0} = C(4)$	87.2(1)			
C(2) = P(1) - O(5)	$\frac{97.1(3)}{118.0(1)}$	C(1) - Fe - C(4)	88 Q(A)			
O(5) = P(1) = O(6)	08 3(2)	P(2) = P(2) = O(7)	1167(2)			
D(3) = P(1) = O(0) P(3) = P(2) = O(5)	102.2(1)	P(3) - P(2) - O(7) P(3) - P(4) - O(6)	110.7(2)			
P(3) = P(2) = O(3) O(5) = P(2) = O(7)	102.2(1) 112.6(2)	P(3) = P(4) = O(0)	101.1(1) 112.9(2)			
D(3) = P(2) = D(7)	112.0(2)	D(0) = F(4) = D(0) B(1) = O(5) = B(2)	115.0(2)			
P(2) = P(3) = P(4) P(2) = P(4) = O(9)	99.5(1)	P(1)=O(3)=P(2) E. $O(1)$	150.1(2)			
P(3) = P(4) = O(8)	110.5(1)	Fe = C(1) = O(1)	179.1(7)			
P(1) = O(0) = P(4)	131.0(2)	re-C(3)-P(3)	179.3(6)			
Fe = C(2) = O(2)	172.1(6)					
re=1.(4)=0.(4)	(אור פי, ו					

to an unusually large $144.5(3)^{\circ}$ at the expense of the other two C(eq)-Fe-C(eq) angles (105.4(3)° and 110.2- $(5)^{\circ}$). One of the Fe-C distances (Fe-C(2)) is significantly elongated to 1.821(5) Å compared to the other two equatorial bonds at 1.775(7) and 1.776(9) Å. This particular carbonyl group also tilts away from the two axial ring phosphoryl oxygens, resulting in an obtuse P(1)-Fe-C(2) angle of $101.6(2)^{\circ}$ and C(2)-Fe-C(4) angle of $97.1(3)^{\circ}$. Selected bond distances and angles are listed in Table 4.

A chair conformation of the P_4O_2 heterocycle is observed with all four diisopropylamino groups in

Table 5.	Selected	Bond	Distances	and	Angles	for		
Complex 19a								

Complex 19a							
Bond Distances (Å)							
Cr(1) - P(1)	2.329(2)	Cr(1) - P(2)	2.340(2)				
Cr(1) - C(1)	1.872(7)	Cr(1) - C(2)	1.851(6)				
Cr(1) - C(3)	1.879(6)	Cr(1) - C(4)	1.895(6)				
Cr(2) - P(3)	2.323(2)	Cr(2) - P(4)	2.337(2)				
Cr(2) - C(5)	1.864(6)	Cr(2) - C(6)	1.892(6)				
Cr(2) - C(7)	1.886(6)	Cr(2) - C(8)	1.856(6)				
P(1) - N(1)	1.643(4)	P(1)-O(9)	1.631(3)				
P(1)-O(10)	1.662(3)	P(2) - O(12)	1.656(3)				
P(2)-O(12)	1.646(3)	P(2) - N(2)	1.632(4)				
P(3) - N(3)	1.638(4)	P(3) - O(10)	1.647(3)				
P(3)-O(12)	1.638(3)	P(4) - N(4)	1.632(4)				
P(4)-O(9)	1.661(3)	P (4)-O(11)	1.644(3)				
O(1) - C(1)	1.135(8)	O(2) - C(2)	1.148(8)				
O(3) - C(3)	1.137(8)	O(4) - C(4)	1.136(7)				
O(5) - C(5)	1.152(7)	O(6)-C(6)	1.130(7)				
O(7) - C(7)	1.140(8)	O(8) - C(8)	1.140(7)				
	Bond Ang	gles (deg)					
P(1) - Cr(1) - P(2)	80.0(1)	P(1) - Cr(1) - C(1)	177.3(2)				
P(2) - Cr(1) - C(1)	97.6(2)	P(1) - Cr(1) - C(2)	98.0(2)				
P(2) - Cr(1) - C(2)	176.1(2)	C(1) - Cr(1) - C(2)	84.5(3)				
P(1) - Cr(1) - C(3)	93.5(2)	P(2) - Cr(1) - C(3)	90.6(2)				
C(1) - Cr(1) - C(3)	87.7(3)	C(2) - Cr(1) - C(3)	86.1(3)				
P(1) - Cr(1) - C(4)	90.9(2)	P(2) - Cr(1) - C(4)	95.4(2)				
C(1) - Cr(1) - C(4)	88.1(3)	C(2) - Cr(1) - C(4)	88.0(3)				
C(3) - Cr(1) - C(4)	173.1(3)	P(3) - Cr(2) - P(4)	79.4(1)				
P(3) - Cr(2) - C(5)	175.2(2)	P(4) - Cr(2) - C(5)	100.8(2)				
P(3) - Cr(2) - C(6)	88.7(2)	P(4) - Cr(2) - C(6)	97.3(2)				
C(5) - Cr(2) - C(6)	86.6(3)	P(3) - Cr(2) - C(7)	98.6(2)				
P(4) - Cr(2) - C(7)	88.5(2)	C(5) - Cr(2) - C(7)	86.2(3)				
C(6) - Cr(2) - C(7)	171.4(3)	P(3) - Cr(2) - C(8)	92.7(2)				
P(4) - Cr(2) - C(8)	170.6(2)	C(5) - Cr(2) - C(8)	87.5(3)				
C(6) - Cr(2) - C(8)	87.5(3)	C(7) - Cr(2) - C(8)	87.6(3)				
O(9) - P(1) - O(10)	99.5(2)	O(11) - P(2) - O(12)	98.8(2)				
O(10) - P(3) - O(12)	101.4(2)	O(9) - P(4) - O(11)	98.3(2)				
P(1) = O(9) = P(4)	128.4(2)	P(1) - O(10) - P(3)	127.6(2)				
P(2) - O(11) - P(4)	129.6(2)	P(2) = O(12) = O(3)	126.5(2)				

equatorial positions and the two phosphoryl oxygens axial. Ring phosphorus-phosphorus bond distances of 2.234(2) and 2.227(2) Å are comparable to known P-P (=O) bond lengths.⁵

(2) Molecular Structure of Cr₂(CO)₈[DMP-PO]₄ (19a). The basic $M_2P_4O_4$ adamantanoid cage structure (Figure 2E) is adopted in the solid-state structure of complex 19a (Figure 5). A boat-boat conformation of the core tetraphosphoxane ring enables it to chelate two chromium vertices in a back-to-back mode. Ring P-O distances range from 1.631(3) to 1.662(3) Å while P-O-P angles vary slightly from $126.6(2)^{\circ}$ to 128.4- $(2)^{\circ}$. The four ring oxygens are planar to within 0.039 A. Deviations from octahedral bond angles at the chromiums include the not-quite-linear axial carbonyls at $171.4(3)-173.1(2)^{\circ}$, the compressed P-Cr-P angles at 79.4(1)° and 80.0(1)°, and trans-carbonyl-Cr-P angles from 84.5(3)° to 87.5(3)°. Metal-phosphorus distances vary only slightly from 2.323(2) to 2.340(2) Å and axial carbonyl-metal distances (1.879(6)-1.895(6))Å) are indeed slightly longer than equatorial ones $(1.851(6)-1.872(6) \text{ \AA})$ as expected. The intracage Cr-Cr separation is at 5.656(1) Å. Other selected bond distances and angles are listed in Table 5.

(3) Molecular Structure of $Cr_2(CO)_8[DMP-PO]_4$ (19b). The molecule has an inversion center with the tetraphosphoxane P_4O_4 ring conformation best described as a long chair with O(6) and O(6a) forming the back

⁽⁵⁾ Weber, D.; Fluck, E.; Von Schnering, H. G.; Peters, K. Z. *Naturforsch.*, B: Anorg. Chem., Org. Chem. **1982**, 37B, 594, 1580. Turnbull, M. M.; Wong, E. H.; Gabe, E. J.; Lee, F. L. Inorg. Chem. **1986**, 25, 3189.

Complex 19b						
Bond Distances (Å)						
Cr(1) - P(1)	2.337(1)	Cr(1) - P(2)	2.333(1)			
Cr(1) - C(1)	1.884(4)	Cr(1) - C(2)	1.862(6)			
Cr(1) - C(3)	1.875(4)	Cr(1) - C(4)	1.872(5)			
P(1) - P(2)	2.560(1)	P(1) - N(2)	1.633(3)			
P(1) - O(1)	1.657(3)	P(1) - O(7)	1.635(3)			
P(2) - N(1)	1.627(4)	P(2) - O(6)	1.664(3)			
P(2)-O(7A)	1.630(2)	O(1) - C(1)	1.152(5)			
O(2) - C(2)	1.144(8)	O(3) - C(3)	1.141(5)			
O(4)-C(4)	1.141(6)	O(7)-P(2A)	1.630(2)			
	Bond Ang	zles (deg)				
P(1) - Cr(1) - P(2)) 66.5(1)	P(1)-Cr(1)-C(1)	97.9(2)			
P(2) - Cr(1) - C(1)) 98.7(2)	P(1) - Cr(1) - C(2)	162.7(2)			
P(2) - Cr(1) - C(2)	96.3(2)	C(1) - Cr(1) - C(2)	85.5(2)			
P(1) - Cr(1) - C(3)) 89.9(2)	P(2) - Cr(1) - C(3)	91.3(2)			
C(1) - Cr(1) - C(3)	3) 169.2(2)	C(2) - Cr(1) - C(3)	89.3(2)			
P(1) - Cr(1) - C(4)) 100.2(2)	P(2) - Cr(1) - C(4)	166.4(2)			
C(1) - Cr(1) - C(4)	85.6(4)	C(2) - Cr(1) - C(4)	96.9(2)			
C(3) - Cr(1) - C(4)	4) 85.6(2)	O(6) - P(2) - O(7A)	98.8(1)			
P(1)-O(6)-P(2)	100.9(2)	P(1) - O(7) - P(2A)	134.5(2)			

1.01.4

and leg and P(1), P(2), O(7a), P(1a), P(2a), and O(7) the planar seat (Figure 6). Significantly longer P-O bonds of 1.660(4) A are observed in the strained chelate rings compared to those in the rest of the ring (1.632(4) Å). Also, the compressed P(1)-O(6)-P(2) angle of 100.9- $(2)^{\circ}$ in the four-membered chelate rings can be contrasted with the much larger 134.5(2)° found for the remaining P-O-P angles. Transannular P(1)-P(2)separations are at only 2.560(1) Å. Two Cr(CO)₄ groups are coordinated to opposite sides of this heterocycle by four-membered chelate rings to give approximately octahedral environments at the metals. Bending of the axial carbonyls away from the phosphoxane ring is observed with a C(1)-Cr(1)-C(3) angle of 169.2(2)°. The cramped P(1)-Cr(1)-P(2) and P(1)-O(6)-P(2) angles of $66.5(1)^{\circ}$ and $100.9(2)^{\circ}$, respectively have precedence in related chromium phosphoxane chelate rings.^{2,6} Metal-phosphorus distances at 2.333(1) and 2.337(1)Å are unexceptional. Selected bond distances and angles are listed in Table 6. Interestingly, the two methyl substituents in each of the dimethylpiperidino groups adopt diaxial positions with the piperidino nitrogens effectively planar.

(4) Molecular Structure of Cr₂(CO)₆[DMP-PO]₆ (21). The centrosymmetric core structure of the hexaphosphoxane complex 21 (Figure 7) features two fac- $Cr(CO)_3$, six phosphorus, and six oxygen vertices. A novel P_6O_6 macrocycle serves as a hexadentate donor toward two metal centers, one above and one below. This can also be viewed as a Cr_2P_6 cube with oxygens bridging only the P-P edges (Figure 9). Cage phosphoxane P-O-P angles range from 123.3(3)° to 124.8-(2) Å. Bond angles around the metals are reasonably close to orthogonal values with P-Cr-P angles ranging from 92.7(1)° to 93.0(1)° and C-Cr-C angles from 88.0-(3)° to 90.2(3)°. Average Cr-P bond lengths of 2.335-(2) Å and Cr-C distances of 1.857(6) Å are found. The intracage Cr-Cr separation is down to 4.700(1) Å. Other selected bond distances and angles are listed in Table 7.

(5) Molecular Structure of $Fe(CO)_3[^iPr_2NPO]_4Mo-(CO)_4$ (25). This heterobimetallic complex contains a

Figure 9. Schematic view of the $Cr_2P_6O_6$ core in complex 21.

Table 7.	Selected Bond	Distances	and	Angles	for	
Complex 21						

Bond Distances (Å)							
Cr - P(1)	2.325(1)	Cr - P(2)	2.325(1)				
Cr-P(3)	2.321(1)	Cr-C(1)	1.866(5)				
Cr-C(2)	1.857(5)	Cr-C(3)	1.860(4)				
P(1) = O(4)	1.647(2)	P(1) - N(11)	1.649(4)				
P(1) = O(5A)	1.638(3)	P(2) - O(6)	1.648(3)				
P(2) - N(21)	1.645(4)	P(2) - O(4A)	1.639(3)				
P(3)-O(6A)	1.641(3)	O(1) - C(1)	1.145(6)				
O(2) - C(2)	1.152(6)	O(3) - C(3)	1.145(5)				
O(4) - P(2A)	1.639(3)	O(5) - P(1A)	1.638(3)				
O(6)-P(3A)	1.641(3)						
	Bond An	gles (deg)					
P(1) - Cr - P(2)	92.8(1)	P(1) - Cr - P(3)	93.1(1)				
P(2) - Cr - P(3)	93.0(1)	P(1) - Cr - C(1)	177.1(1)				
P(2) - Cr - C(1)	87.0(1)	P(3) - Cr - C(1)	89.8(1)				
P(1) - Cr - C(2)	90.0(1)	P(2)-Cr-C(2)	177.2(1)				
P(3) - Cr - C(2)	87.0(1)	C(1) - Cr - C(2)	90.2(2)				
P(1) - Cr - C(3)	87.0(1)	P(2) - Cr - C(3)	89.7(1)				
P(3) - Cr - C(3)	177.3(1)	C(1) - Cr - C(3)	90.1(2)				
C(2) - Cr - C(3)	90.3(2)	O(4) - P(1) - O(5A)	97.0(1)				
O(6) - P(2) - O(4A)	96.8(1)	O(5) - P(3) - O(6A)	96.8(1)				
P(1) - O(4) - P(2A)	123.7(2)	P(3) = O(5) = P(1A)	123.7(2)				
P(2) = O(6) = P(3A)	123.7(1)						

metal-bridging tridentate P_4O_4 ring in a chair-chair conformation (Figure 8). In addition to the often observed 1,5-chelating coordination mode toward Fe (Figure 2A), a third phosphorus is also ligating to the Mo- $(CO)_4$ fragment. A long Fe-Mo bond of 3.034(2) Å completes the pseudooctahedral coordination sphere at each metal. At Mo, an acute Fe-Mo-P(1) angle of 72.9-(1)° is found while all four carbonyls are pushed away from the FeP_4O_4 unit with Fe-Mo-C and P(1)-Mo-Cangles ranging from $93.7(2)^{\circ}$ to as much as $102.1(2)^{\circ}$ (P(1)-Mo-C(3)). The Mo-C(3) bond *trans* to the Fe is the shortest at 1.946(8) Å while those cis to both the Fe and P(1) are longest at 2.036(8)-2.057(8) Å. A Mo-P(1) bond of 2.473(2) Å can also be noted. At the Fe center, the two carbonyls trans to the phosphorus atoms are bent toward the $Mo(CO)_4$ moiety with Mo-Fe-C(5)and Mo-Fe-C(6) angles of only $71.8(3)^{\circ}$ and $73.7(2)^{\circ}$, respectively, while that *trans* to the Mo is bent away from the P_4O_4 ring with the P-Fe-C(7) angle at about 100°. The two Fe-P distances are at 2.218(2) and 2.225(2) Å. Other selected bond distances and angles are listed in Table 8.

The tetraphosphoxane ring itself retains the approximate chair-chair conformation as was found for complex 2A.² Interestingly, two ranges of P-O bond lengths are observed. Those at the chelating P(2) and

⁽⁶⁾ Wong, E. H.; Prasad, L.; Gabe, E. J.; Bradley, F. C. J. Organomet. Chem. 1982, 236, 321.

Table 6. Beleteu Distances and Angles for Complex 2	Table 8.	Selected	Distances	and	Angles	for	Complex	25
---	----------	----------	-----------	-----	--------	-----	---------	----

Bond Distances (Å)								
Mo-Fe	3.034(2)	Mo-P(1)	2.473(2)					
Mo-C(1)	1.984(6)	Mo-C(2)	2.057(8)					
Mo-C(3)	1.946(8)	Mo-C(4)	2.036(8)					
Fe-P(2)	2.225(2)	Fe-P(4)	2.218(2)					
Fe-C(5)	1.796(7)	Fe-C(6)	1.798(7)					
Fe-C(7)	1.792(7)	P(1) - O(8)	1.663(4)					
P(1) = O(11)	1.669(5)	P(2) - O(8)	1.621(4)					
P(2) = O(9)	1.621(5)	P(3)-O(9)	1.675(6)					
P(3) = O(10)	1.658(4)	P(4) - O(10)	1.621(5)					
P(4) = O(11)	1.622(4)	O(1) - C(1)	1.152(8)					
O(2) - C(2)	1.124(9)	O(3) - C(3)	1.152(10)					
O(4) - C(4)	1.139(11)	O(5) - C(5)	1.142(8)					
O(6)-C(6)	1.143(8)	O(7) - C(7)	1.138(9)					
Dand Analos (dag)								
$\mathbf{F}_{\mathbf{a}} = \mathbf{M}_{\mathbf{a}} = \mathbf{P}(1)$	72 0(1)	$\mathbf{E}_{\mathbf{n}} = \mathbf{M}_{\mathbf{n}} = \mathbf{C}(1)$	04 8(2)					
$\mathbf{P}(1) - \mathbf{M}_0 - \mathbf{C}(1)$	12.9(1)	Fe-Mo-C(1)	94.0(2) 07 5(3)					
$P(1) = M_0 = C(1)$	107.0(2)	$C(1) = M_0 = C(2)$	97.3(3) 86.8(3)					
$F(1) = M_0 = C(2)$ $F_0 = M_0 = C(2)$	90.0(2)	$C(1) = M_0 = C(2)$ $P(1) = M_0 = C(2)$	1021(2)					
$C(1)$ M_{2} $C(2)$	1/4.7(2)	$F(1) = M_0 = C(3)$	102.1(2) 84.5(2)					
C(1) = Mo = C(3)	90.1(3)	$C(2) = M_0 = C(3)$ $P(1) = M_0 = C(4)$	04.3(3)					
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	95.0(3)	P(1) = M0 = C(4)	95.7(2)					
C(1) = M0 = C(4)	83.9(3)	C(2) = M0 = C(4)	100.0(4)					
C(3) = M0 = C(4)	83.0(3)	MO - Fe - P(2)	89.8(1)					
Mo - Fe - P(4)	90.4(1)	P(2) - Fe - P(4)	83.0(1)					
Mo - Fe - C(5)	73.7(2)	P(2) - Fe - C(3)	91.9(2)					
P(4) = Fe = C(5)	163.4(2)	MO - Fe - C(6)	/1.8(3)					
P(2) - Fe - C(6)	160.5(2)	P(4) - Fe - C(6)	90.6(2)					
C(5) - Fe - C(6)	89.0(3)	Mo-Fe-C(7)	166.2(2)					
P(2)-Fe- $C(7)$	100.1(2)	P(4) - Fe - C(7)	100.2(2)					
C(5) - Fe - C(7)	96.3(3)	C(6) - Fe - C(7)	99.2(3)					
Mo - P(1) - O(8)	109.5(1)	Mo - P(1) - O(11)	112.3(1)					
O(8) - P(1) - O(11)	97.9(2)	Fe - P(2) - O(8)	112.4(2)					
Fe - P(2) - O(9)	113.5(2)	O(8) - P(2) - O(9)	97.7(2)					
O(9) - P(3) - O(10)	96.1(2)	Fe - P(4) - O(10)	113.0(1)					
Fe - P(4) - O(11)	111.1(2)	O(10) - P(4) - O(11)	99.9(2)					
P(1) = O(8) = P(2)	117.7(2)	P(2) - O(9) - P(3)	127.0(2)					
P(3) - O(10) - P(4)	127.4(2)	P(1) - O(11) - P(4)	119.5(2)					
Mo-C(1)-O(1)	178.4(7)	Mo-C(2)-O(2)	171.4(8)					
Mo - C(3) - O(3)	178.2(5)	Mo-C(4)-O(4)	170.2(8)					
Fe - C(5) - O(5)	172.9(6)	Fe-C(6)-O(6)	171.6(6)					
Fe - C(7) - O(7)	174.8(5)							

P(4) are all around 1.621(5) Å while the remainders are significantly longer, varying from 1.658(4) to 1.675(6)Á.

Discussion

Formation of the Cyclic Phosphoxane Complexes. The variety of products obtained from preformed triphosphoxane rings $[R_2NPO]_3$ (R = ⁱPr, Cy) with nickel, palladium, or platinum dihalides illustrates some of the subtle and still not well-understood factors that influenced the reaction course. Though diisopropylamino and dicyclohexylamino substituents would not be expected to differ dramatically in their stereoelectronic influences,⁷ [ⁱPr₂NPO]₃ yielded only P₄O₄ complexes while [Cy₂NPO]₃ led to both P₄O₄ and P₅O₅ products. There is a general pattern in higher reaction temperatures favoring formation of the larger P_5O_5 rings except in the nickel dichloride case. The nature of the ancillary halides in NiX_2 (X = Cl, Br, I) also made a difference. Of the three, only NiCl₂ yielded a P_5O_5 complex.

The 1,3-coordination mode (Figure 2B) in the NiP₄O₄ (Figures 4A-C and 7) products as revealed by a characteristic AA'XX' ³¹P NMR spectrum was unique to the nickel dihalides, presumably due to a superior fit in the resulting four-membered NiPOP chelate ring. Although the actual conformation of the tetraphosphoxane ring itself has not been determined, its ability to further coordinate a second metal to give $Mo(CO)_4[Cy_2 NPO_{4}NiBr_{2}$ (23) suggests the long chair form with the opposite side of the ring available for coordination of a second metal (Figures 2B and 6). The X-ray structure of Cr(CO)₄[DMP-PO]₄Cr(CO)₄ (19b, Figure 6) lends credence to this premise. Observation of well-resolved NMR resonances for all the isolated NiX₂ phosphoxane complexes (1A,B, 4A-C, 7, 23) is consistent with nearsquare-planar nickel coordination geometries and diamagnetism in all these cases.

The assembly of P_4O_4 and P_5O_5 complexes from cyclic triphosphoxane under reaction conditions as mild as 4° requires exclusive head-to-tail grafting in of extra R₂-NP=O phosphinidene units. Existence of such intermediates has been substantiated by several previous reports.⁸ It is very likely that prior metal coordination represents an essential prerequisite to these ring expansions. It is also noteworthy that we failed to isolate any products incorporating more than one divalent metal center regardless of the reaction stoichiometry. Subsequent studies indeed revealed the reluctance of divalent metal MP_nO_n complexes to coordinate a second divalent metal center even though zero-valent metals were readily bound. Electronic effects transmitted through the P-O-P linkages may be responsible for this selectivity. We have recently reported on such intramolecular influences in a series of heterobimetallic P₄O₄ cage complexes.^{9,10} Cage complexes containing two Mo^{II} vertices can be synthesized indirectly from halogenation reactions of Mo⁰P₄O₄Mo⁰ precursors.¹⁴

Under similar reaction conditions, $Fe_2(CO)_9$ gave significantly different products, depending on the cyclic triphosphoxane used. While [Cy2NPO]3 yielded Fe- $(CO)_{3}[Cy_{2}NPO]_{4}$ (12) with an 1,5- η^{2} -P₄O₄ ring in a boatchair configuration (Figure 2C), [ⁱPr₂NPO]₃ produced instead $Fe(CO)_3[^iPr_2NPO]_4$ (13), the chair-chair (Figure 2A) isomer, and a novel $Fe(CO)_4$ - η^1 -(ⁱPr₂NPO)₄ complex (14). The X-ray structure of the latter (Figure 3) revealed coordination of a $Fe(CO)_4$ fragment to a P[OP- $(=0)]_2$ P ring. This unusual six-membered ring can be viewed as the product of a double P-O-P to P-P(=O)rearrangement, converting a tetraphosphoxane η^1 -P₄O₄ ring into a mondentate $P[OP(=O)]_2P$ heterocycle. It is conceivable that the eight-membered P_4O_4 ring was initially formed but was unstable toward such a rearrangement to a six-membered ring with two strong phosphoryl P=O bonds. We have previously reported a single P-O-P to P-P(=O) rearrangement in the metallocycle cis-M(CO)₄(PPh₂O)₂PPh to form cis-

 $\dot{M}(CO)_4[PPh_2P(O)PhOPPh_2]$ (M = Cr, Mo, W).^{11a}

Three diaminophosphine oxides, $(R_2N)_2P(O)H(R_2N =$ ⁱ Pr_2N , Cy_2N , DMP), were used as sources of $R_2NP=O$ phosphinidine oxide units in thermal reactions with group 6 metal carbonyls. All three have in common

⁽⁷⁾ Seligson, A. L.; Trogler, W. C. J. Am. Chem. Soc. 1991, 113, 2520.

⁽⁸⁾ Niecke, E.; Engelmann, M.; Zorn, H.; Krebs, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 710. Chasar, D. W.; Fackler, J. P.; Mazany, A. M.; Komoroski, R. A.; Kroenke, W. J. J. Am. Chem. Soc. 1986, 108, 5956. Quast, H.; Heuschmann, M. Angew. Chem., Int. Ed. Engl. 1978, 17, 867.

⁽⁹⁾ Yang, H. Y.; Wong, E. H.; Rheingold, A. L.; Owens-Waltermire,
B. E. J. Chem. Soc., Chem. Commun. 1993, 35.
(10) Yang, H. Y.; Wong, E. H.; Rheingold, A. L.; Waltermire, B. E.
Organometallics, in press.
(11) (a) Wong, E. H.; Bradley, F. C.; Gabe, E. J. J. Organomet. Chem.

^{1983, 244, 235. (}b) Bader, D. S.; Turnbull, M. M. Polyhedron 1990, 9, 2619.

amino substituents with secondary α -carbons. We have previously found that less bulky dialkylamino groups like Et₂N failed to lead to P_nO_n products under these conditions.² Presumably the dialkylamine elimination critical to the generation of $R_2NP=O$ units from $(R_2N)_2P$ -(O)H is only viable with the bulkier R groups. A correlation between the steric bulk of the dialkylamino substituents and success of cage formation from dialkylamino phosphine oxides has been made.11b

Again, the size and coordination mode of the $P_n O_n$ rings formed in the complexes isolated were sensitive to the nature of both precursors and the reaction conditions. In general, only P_3O_3 and P_4O_4 complexes were formed around the $Mo(CO)_4$ moiety. Although a lone Mo₂(CO)₆[Me-AsO]₆ structure has been reported previously,¹² no Mo₂P₆O₆ species was isolated here in our studies. It may be that the smaller P_6O_6 core cannot accommodate two fac-Mo(CO)₃ vertices. By contrast, in addition to two isomers of the $Cr_2P_4O_4$ cores (19a,b), larger ring P_5O_5 and P_6O_6 products were also isolated around $Cr(CO)_n$ (n = 3, 4) fragments. Further, among the products isolated, only chromium formed stable fourmembered MPOP chelate rings (complexes 16 and 19b), the shorter Cr-P bond apparently resulting in less strained ring geometries. Larger cages incorporating $Cr(CO)_3$ vertices are increasingly favored with higher reaction temperatures. Conceivably, progressive assembly of P_3O_3 to P_4O_4 to P_5O_5 to P_6O_6 rings about the metal carbonyl centers as more CO's are lost underlie the syntheses of these products. This is not unexpected since the loss of a third carbonyl from the Cr(CO)₄ center should be possible only under more forcing conditions.¹³ Indeed, it is tempting upon examining the related structures of the $Cr_2P_5O_5$ (20) and $Cr_2P_6O_6$ (21) cores to speculate on the loss of a third CO from the cis-Cr- $(CO)_4$ vertex in 20 with incorporation of an extra phosphinidine oxide unit (Scheme 3) to build up to the hexaphosphoxane complex 21. This speculation was amply supported by the quantitative conversion of 20 to 21 upon refluxing in xylene in the presence of extra $(DMP)_2P(O)H$ as the phosphinidene oxide source.

Metal Coordination Reactions of Monometallic Cyclic Phosphoxane Complexes. Heterobimetallic complexes were accessible from the monometallic polyphosphoxane complexes since they have phosphorus lone pairs available. Isolated complexes include Mo- $(CO)_4[Cy_2NPO]_4NiBr_2$ (23), $Mo(CO)_3[Cy_2NPO]_5PdCl_2$ (24), and Mo(CO)₄[ⁱPr₂NPO]₄Fe(CO)₃ (25) (Scheme 1). The first two have parallels in known $M_2P_nO_n$ structures. Complex 23 can be assigned a long chair ring conformation based on its ³¹P NMR spectrum (Table 1), at its core a configurational isomer of the previously

Figure 10. Two core geometries of Mo(CO)₄[R₂NPO]₄NiBr₂ $(\mathbf{P} = \mathbf{R}_2 \mathbf{N} \mathbf{P}).$

reported Mo(CO)₄[ⁱPr₂NPO]₄NiBr₂ cage complex (Figure 10).^{9,10} Interestingly, the latter is paramagnetic and has been found to have a pseudotetrahedral geometry at the Ni center.⁹ We ascribe these different nickel coordination geometries to steric factors engendered by the positioning of the cage dialkylamino groups, which disfavors a square-planar Ni coordination geometry. Complex 24 is a Pd/Mo analogue of the $Cr_2P_5O_5$ cage core (complexes 16 and 20, Figure 2F). Its ready formation from PdCl₂[Cy₂NPO]₅ (8A) supports the ³¹P NMR-based geometry of the precursor (Figure 2G). The unique complex 25 was found to have an η^3 -P₄O₄ ring bridging the two metal centers. Furthermore, EAN electron counting would be consistent with a dative iron to molybdenum bond, completing pseudooctahedral environments at both sites.

Again, no bimetallic products containing two divalent metal vertices were isolated. This confirms the reluctance of such P_nO_n rings to incorporate two relatively electron-demanding centers. The only such complexes we know of are the tetrahalogenated molybdenum cage species $M_0(CO)_2X_2[RPO]_4M_0(CO)_2X_2$ (X = Cl, Br, I; R = ⁱPr₂N, Ph) prepared from direct halogenations of the parent cages. Even these rare exceptions were found to be relatively less tractable species.¹⁴

Attempts at synthesizing Ni/Pd and Ni/Pt complexes revealed instead phosphoxane ring transfer reactions whereby the P_nO_n heterocycle was displaced from $NiBr_2[Cy_2NPO]_4$ (4B) by the heavier metals to form the more stable 1,5-chelates (5B, 6). Previously, we reported a pyridine displacement of the [ⁱPr₂NPO]₄ tetraphosphoxane free ligand from its NiBr₂ complex at -30 °C.² Similar displacements failed with the palladium complexes. Observation of the PtCl₂-1,3-[Cy₂-NPO]₄ intermediate at low temperature (³¹P NMR, AA'XX' pattern) suggested that the transfer reaction may proceed via a bimetallic intermediate followed by loss of nickel and a subsequent 1,3- to 1,5-rearrangement of the chelation mode (Scheme 4).

Reductive carbonylation of the NiBr₂ vertex in the reactions of complex 4B with $Fe(CO)_5$ and $Fe_2(CO)_9$ to give $Ni_2(CO)_4[Cy_2NPO]_4$ (26) has precedence in the reported use of iron carbonyls as both reducing and carbonylating agents toward metal dihalides.¹⁵ The initially formed Ni(CO)₂[Cy₂NPO]₄ then can dimerize with loss of four phosphinidene oxide units to form the cage complex 26.

³¹P NMR Spectroscopy of the Cyclic Phosphoxane Complexes. ³¹P NMR spectroscopy remains the

⁽¹²⁾ Rheingold, A. L. Organometallics 1986, 5, 393.
(13) Kirtly, S. W. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982: Vol. 3.

⁽¹⁴⁾ Turnbull, M. M.; Valdez, C.; Wong, E. H.; Gabe, E. J.; Lee, F.

L. Inorg. Chem. 1992, 31, 208. (15) Booth, B. L.; Else, M. J.; Fields, R.; Goldwhile, H.; Hazeldine, R. N. J. Organomet. Chem. 1968, 14, 417. Nesmeynov, A. N.; Isaeva, L. S.; Morozova, L. N. Inorg. Chim. Acta 1978, 29, L210.

single most powerful tool for structural determination of the described cyclic phosphoxane complexes in solution. The well-known dependence of ${}^{2}J_{\rm PP}$ on lone pair orientation has proven to be useful for structural assignments in a variety of polyphosphorus compounds.¹⁶ In the known cyclic phosphoxane complexes, magnitudes of observed ${}^{2}J_{POP}$ range from less than 1 to over 60 Hz, with lone pairs syn to the coordinated metals accounting for most of the larger values. For example, in the chair-chair form (Figure 11A) of MP_4O_4 (M = Cr, Mo, W, Fe, Pd, Pt) possessing syn lone pairs, ${}^{2}J_{POP}$ were observed at 28-88 Hz. For the chair-boat form (Figure 11B) (M = Cr, Mo, W, Fe, Pt), the syn values range from 38 to 59 Hz while the anti couplings are significantly smaller at 1-13 Hz. In the lone boat-boat complex Mo(CO)₄[ⁱPr₂NPO]₄ (Figure 11C) with both lone pairs anti to the coordinated metal, ${}^{2}J_{POP}$ is 2 Hz only.^{9,10} We also noted that high-temperature (to 100 °C) spectral studies failed to reveal any interconversions between these isomeric structures (Figure 11A-C), thus confirming typically high phosphorus inversion barriers. These coupling data also allowed us to propose solution structures of several MP5O5 complexes with some confidence. For example, PdX₂P₅O₅ (8A, 8B) and $PtCl_2P_5O_5$ (9) are assigned structures (Figure 11D) on the basis of their AA'MXX' spectral patterns, their small ${}^{2}J_{AX}$ and ${}^{2}J_{MX}$ of 11–19 Hz, and the actual observation of ${}^{4}\!J_{\rm AM}$'s of about 3 Hz in each case. The ready formation of the MoP₅O₅Pd (24, Figure 2F) cage complex from 8A lends further support for these structural designations.

The well-known "ring effect" or ring contribution (Δ_R) to the ³¹P chemical shifts of four- to six-membered phosphine chelates has been recently ascribed by Lindner to originate from the component of the shift tensor perpendicular to the ring plane.¹⁷⁻¹⁹ For our complexes, it proved very helpful in identifying the existence of four-membered chelate rings. For example, the fourmembered CrPOP chelate rings in complex 19b (δ 155.4) can be distinguished from the six-membered rings in the adamantanoid cage structure of 19a (δ 171.1) by their upfield shift. This effect also manifested itself in the mixed-metal complex 23, where the relatively upfield shift (δ 137.9) of the Mo-bounded P's compared to typical larger chelate ring values ($\delta \sim 150$) is fully consistent with formation of four-membered chelates rings using the long chair form of P₄O₄ (Figure

2B). Similarly, the 1,3-coordination mode of the NiX₂P₄O₄ complexes can be gauged from their upfield δ 's of 54–63. Nickel analogues of the 1,5-chelated PdX₂P₄O₄ structure would be expected to have chemical shifts downfield from the 88 ppm region.¹⁷ Thus, the NiP₅O₅ complex was assigned its structure (Figures 2G and 11D) partly on the basis of this downfield δ value of 91.7 observed for its coordinated P's, invalidating the presence of any four-membered chelate rings.

Bridging phosphido and phosphoryl units in these complexes are readily identified by their unique chemical shifts at very low and high fields, respectively, compared to typical P(NR₂) (OR')₂ centers whose shifts range from δ +60 to +180.^{16,20} Finally, complexes **10A** and **10B** both contain a P₃O₃ ring which can be either in a boat or in a chair form. We favor the chair form (Figure 2D) in both cases since the upfield shift of the lone uncoordinated P_x from δ 140.3 to 130.1 and 128.2, respectively, upon complex formation should be a result of the parent triphosphoxane flipping into a chair form. This will remove the transannular P=O interaction present in the parent boat-form heterocycle and lead to the observed upfield shift.

Room-temperature ¹³C NMR studies of the iron FeP_4O_4 complex 14 in CDCl₃ revealed fluxional carbonyls resulting in observation of a single doublet resonance at δ +215.8 (² J_{CP} = 15 Hz). Interestingly, in addition to the usual sharp signals, both the methyl (δ 's 26.4 and 23.1) and methine (δ 's 56.9, 44.9) regions exhibited two broad resonances at room temperature which sharpened into doublets at -10 °C. In toluene d_8 at about 100 °C, these coalesced to broad singlets at around δ 25 and δ 51. Decomposition precluded observation of spectra at the fast-exchange regime. We ascribe these changes to a hindered rotation around the $P-N^{i}Pr_{2}$ bond at the iron-coordinating phosphorus center since the solid-state structure (Figure 3) showed a significant bending back of the $Fe(CO)_4$ unit away from the two axial phosphoryl oxygens and toward this particular diisopropylamino group.

X-Ray Structures of Cyclic Phosphoxane Complexes. The highly distorted equatorial C(1)-Fe-C(3) angle of 144.5(3)° in the structure of complex 14 may be traced to two origins. One of the P(1)-N(1)diisopropyl groups is oriented so that a methine C(14)-H is pointed directly into the region between C(1) and C(3) (Figure 3). Concurrently, a tilting away of the equatorial iron coordination plane at C(2) (C(2)-Fe-P(1) angle of 101.6(2)°) from the two axial ring phosphoryl oxygens toward this methine group may also contribute to the opening up of this angle. As a consequence of this, an elongated Fe-C(2) bond (1.821(5) Å) also results while

⁽¹⁶⁾ Verkade, J. G., Quin, L. D., Eds. Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis: Organic Compounds and Metal Complexes; VCH Publishers: Deerfield Beach, FL, 1987.
(17) Garrou, P. E. Chem. Rev. 1981, 81, 229.

 ⁽¹⁶⁾ Lindner, E.; Fawzi, R.; Mayer, H. A.; Eichele, K.; Hiller, W. Organometallics 1992, 11, 1033.

⁽¹⁹⁾ Pregosin, P. S.; Kunz, R. W. ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes; Springer-Verlag: New York, 1979.

⁽²⁰⁾ Gorenstein, D. G. ³¹P NMR; Academic Press: New York, 1984.

Figure 11. Syn and anti phosphorus lone pairs in MP_4O_4 and MP_5O_5 (P = R₂NP).

Figure 12. Known coordination modes of the P_4O_4 tetraphosphoxane heterocycle ($P = R_2NP$).

the remaining Fe–C distances are quite similar to each other (1.76-1.78 Å).

Comparison to the original $Mo_2P_4O_4$ geometry reveals the slightly more compact $Cr_2P_4O_4$ core in complex **19a** with shorter average Cr-P distances of 2.332(3) Å compared to 2.501(2) Å in the former.²¹ Average cage P-O-P angles are also less in **19a** (128.0(3)°) than in the molybdenum cage (131.0(2)°). Further, the intracage Cr-Cr separation is down to 5.656(1) Å from the Mo-Mo value of 6.001(1) Å. The deviations from idealized octahedral geometry about the metal center are also less in the dichromium cage structure. For example, the axial carbonyls subtend an angle of 172° at Cr and 167° at Mo while the P-M-P angles are 79.7(2)° and 75.96(5)°, respectively, indicative of the better fit of the more compact chromium vertices.

Aside from the distinct coordination modes and conformations of the η^4 -P₄O₄ ring, comparison of structural details between the **19a** cage and its long chair configurational isomer **19b** revealed only a few dramatic differences. The presence of two strained four-membered CrPOP chelate rings in the latter resulted in two types of wildly differing P–O–P angles of 100.9(2)° and 134.5(2)°. These smaller chelate rings enforced a P–Cr–P angle of 66.5(1)° and a wider C(eq)–Cr–C(eq) angle of 96.9(2)° than similar values in the cage structure of 80° and around 86°, respectively. In spite of these, no significant variations in Cr–P, Cr–C, or P–O distances were found.

The lone precedent for the $M_2P_6O_6$ core geometry of complex **21** (Figures 7 and 9) is the $Mo_2(CO)_6[Me-AsO]_6$ complex formed in the reaction of $Mo(CO)_6$ with [Me-AsO]₅ in the presence of air.¹² A description of the latter structure as a flattened As₆O₆ cubooctahedron transcapped by $Mo(CO)_3$ units can also describe the geometry of 21. The longer As-O distances apparently allowed accommodation of two fac-Mo(CO)₃ vertices while only smaller Cr(CO)₃ units are incorporated into the hexaphosphoxane core. This superior fit can be seen in the nearly ideal octahedral angles observed at the chromium centers with all their structural details closely mirroring those reported for the acyclic $fac-Cr(CO)_3$ - $(PH_3)_3$ ²² The considerable decrease of intracage Cr-Cr distance from the $Cr_2P_4O_4$ cage value of 5.656(1) to 4.700(1) Å in the $Cr_2P_6O_6$ cage reflects a flattening of the P_6O_6 core. Consistent with this observation, slightly smaller phosphoxane P-O-P angles of around 124° are observed compared to that of 128° in the Cr₂P₄O₄ cage.

All three structures featuring the dimethylpiperidino substituent (**19a**, **19b**, **21**) revealed diaxial positioning of their 2,6-dimethyls. Adoption of this normally unfavored conformation is presumably due to the nearplanarity at their ring nitrogens and a similar preference for axial methyls in substituted piperidines containing *N*-nitroso, *N*-acetyl, and *N*-nitro groups.²³

The novel tridentate coordination geometry of the P_4O_4 ring in the iron-molybdenum complex 25 extends to seven the known ligating modes of the versatile tetraphosphoxane ligand (Figure 12). The long Fe-Mo bond of 3.034(2) Å has ample precedence in known Fe/

 ⁽²¹⁾ Wong, E. H.; Turnbull, M. M.; Hutchinson, K. D.; Valdez, C.;
 Gabe, E. J.; Lee, F. L.; LePage, Y. J. Am. Chem. Soc. 1988, 110, 8422.
 (22) Huttner, G.; Schelle, S. J. Organomet. Chem. 1973, 47, 383.

⁽²³⁾ Fraser, R. R.; Grindley, Can. J. Chem. 1975, 53, 2465. Ripperger, H. Z. Chem. 1977, 17, 177.

Mo cluster compounds, and its presence ensures the electron-precise nature of the complex.²⁴ In accord with this dative $Fe \rightarrow Mo$ bonding, a distinctly strengthened and shorter Mo-C(3) bond trans to this interaction of 1.946(8) Å is observed compared to the other Mo-C bonds which range from 1.98 to 2.06 Å.

Experimental Section

All manipulations were carried out using standard Schlenk techniques under an atmosphere of prepurified nitrogen. Hexane was distilled from CaH₂ and toluene from sodium, while THF was distilled from sodium benzophenone ketyl. Triethylamine was distilled from KOH before use. Phosphorus trichloride, diisopropylamine, dicyclohexylamine, dimethylpiperidine, and xylene were reagent grade chemicals obtained from Aldrich Chemicals. Group 6 metal hexacarbonyls and iron carbonyls were purchased from Pressure Chemicals, Inc. Norbornadiene chromium tetracarbonyl,²⁵ (NBD)Mo(CO)₄,²⁶ (NBD)W(CO)₄,²⁷ (cycloheptatriene)Mo(CO)₃,²⁸ NiCl₂·DME, NiBr2·DME, 29 NiI2·2THF, 30 PdCl2(PhCN)2, 31 PdBr2(PhCN)2, 32 and $(NBD)PtCl_2^{33}$ were all prepared according to literature methods. The phosphine oxides $({}^{i}Pr_{2}N)_{2}P(O)H$ and $(Cy_{2}N)_{2}$ -P(O)H and the triphosphoxane [${}^{i}Pr_{2}NPO$]₃ were prepared as described previously.²

Proton, ¹³C{¹H}, ³¹P{¹H} NMR spectra were recorded on JEOL FX90Q and Bruker AM 360 spectrometers using internal deuterium lock. Proton and ¹³C chemical shifts were referenced to internal TMS while ³¹P shifts were referenced to external 85% phosphoric acid. Infrared spectra were recorded on a Perkin-Elmer 283B instrument using KBr pellets. Elemental analyses were performed at the University of New Hampshire Instrumentation Center with a Perkin-Elmer 2400 elemental analyzer.

NiCl₂[ⁱPr₂NPO]₄ (1A) and NiBr₂[ⁱPr₂NPO]₄ (1B). The synthesis and elemental analyses of complex 1B have been described in ref 2. A similar procedure was used to prepare 1A: A 2.0 g (4.5 mmol) amount of [ⁱPr₂NPO]₃ and 0.60 g (2.7 mmol) of NiCl₂·DME were stirred in 30 mL of hexane for 24 h. The yellow suspension turned brown and was filtered, and the residue was washed with hexane. After dissolution of the brown solid in CH₂Cl₂ and filtration through Celite to remove residual NiCl₂·DME, the filtrate was evaporated to dryness to give crude 1A as a brown powder (0.80 g, 44% based on Ni). Although a satisfactory ³¹P NMR spectrum was obtained (Table 1), acceptable elemental analyses were not available due to its low stability. IR, ν_{POP} 939 cm⁻¹.

 $PdCl_2[^{i}Pr_2NPO]_4$ (2A) and $PdBr_2[^{i}Pr_2NPO]_4$ (2B). The synthesis and spectral and structural characterization of 2A were described in ref 2. A similar procedure was used to prepare 2B: Triphosphoxane [ⁱPr₂NPO]₃ (0.30 g, 0.68 mmol) and 0.20 g (0.42 mmol) of PdBr₂·2PhCN were refluxed in 30 mL of hexane for 6 h. The orange suspension turned yellow and after cooling to room temperature was filtered to give a light yellow residue. This was washed with hexane and dried under reduced pressure to give 0.41 g (40% based on Pd) of **2B**: IR, ν_{POP} 896 cm⁻¹. Anal. Calcd for C₂₄H₅₆Br₂N₄O₄P₄Pd: N, 6.60; C, 33.71; H, 6.60. Found: N, 6.46; C, 34.12; H, 6.77.

PtCl₂[ⁱPr₂NPO]₄ (3). The triphosphoxane (0.30 g, 0.68 mmol) and 0.15 g (0.42 mmol) of (NBD)PtCl₂ were refluxed in 20 mL of hexane for 6 h. After cooling to room temperature, the white residue was filtered off, washed with hexane, and dried to give 0.27 g (75% based on Pt) of crude 3. Attempts to further purify this white powder were not successful.

[Cy₂NPO]₃. The triphosphoxane was prepared from Cy₂-NPCl₂ as follows: An amount of 27.5 g (87.0 mmol) of Cy₂-NPCl₂ and 27.0 mL (194 mmol) of triethylamine in 100 mL of THF were chilled in an ice bath. From a dropping funnel, 30 mL of the THF containing 1.70 mL (94.0 mmol) of water was added dropwise over 2 h with rigorous stirring of the reaction mixture. After complete addition, the mixture was allowed to warm to room temperature and then heated to reflux for about 1 h. The thick white precipitate of amine hydrochloride was filtered off and the filtrate evaporated to dryness under reduced pressure. The white residue resulting was then extracted with hot hexane and filtered. Upon cooling, a white solid precipitated which was filtered and dried to give 33 g (56%) of the pure triphosphoxane: IR, ν_{POP} 820, 846 cm⁻¹. Anal. Calcd for C₃₆H₆₆N₃O₃P₃: N, 6.16; C, 63.43; H, 9.69. Found: N, 6.29; C, 63.23; H, 9.75.

NiCl₂[Cy₂NPO]₄ (4B). A 6.2 g (9.1 mmol) amount of triphosphoxane and 1.0 g (4.6 mmol) of NiCl2 DME were stirred in 30 mL of hot toluene at 90 °C. After 5 h, the initially yellow suspension became red. Cooling, filtration, and evaporation of the filtrate gave 2.4 g (50% based on Ni) of crude 4A. This unstable red powder gave satisfactory NMR data but could not be further purified due to ready decomposition.

NiBr₂[Cy₂NPO]₄ (4B). Triphosphoxane (1.7 g, 2.5 mmol) and NiBr2 DME (0.56 g, 1.8 mmol) were stirred in 30 mL of hexane for 24 h. The orange-red suspension turned brown. After filtration and washing with hexane, the residue was dissolved in CH_2Cl_2 and filtered through Celite to give 1.2 g (60% based on Ni) of orange 4B: IR, ν_{POP} 932 cm⁻¹. Anal. Calcd for C48H88Br2N4NiO4P4: N, 4.96; C, 51.12; H, 7.86. Found: N, 4.75, C, 50.93; H, 8.18.

NiI₂[Cy₂NPO]₄ (4C). A 0.60 g (0.90 mmol) amount of the triphosphoxane and 0.18 g (0.39 mmol) of NiI₂·2THF were stirred in 30 mL of THF. After 3 h, the purple suspension turned red-purple and was filtered through Celite. The filtrate was evaporated to dryness, washed by hexane, and dried under reduced pressure to give unstable 4C as a red-purple powder.

PdCl₂[Cy₂NPO]₄ (5A). Triphosphoxane (1.1 g, 1.6 mmol) and PdCl₂·2PhCN (0.46 g, 1.2 mmol) were stirred in 30 mL of hexane at 4 °C in the cold room. After 72 h, the orange suspension turned yellow. Filtration, washing with hexane, and drying gave a yellow powder (1.0 g, 77% based on Pd) of crude 5A which was not further purified: IR, v_{POP} 880 cm⁻¹.

PdBr₂[Cy₂NPO]₄ (5B). Triphosphoxane (1.1 g, 1.6 mmol) and PdBr₂·2PhCN (0.50 g, 1.1 mmol) were stirred at 4 °C in 30 mL of hexane. After 72 h, the yellow suspension was filtered, and the residue was washed with hexane and dried under reduced pressure to give 0.91 g (70% based on Pd) of complex 5B: IR, ν_{POP} 878 cm⁻¹. Anal. Calcd for C48H88Br2N4O4P4Pd: N, 4.77; C, 49.05; H, 7.55. Found: N, 4.61; C, 49.34; H, 7.70.

PtCl₂[Cy₂NPO]₄ (6). Triphosphoxane (0.44 g, 0.64 mmol) and 0.15 g (0.40 mmol) of PtCl₂(NBD) were stirred at 4 °C in 20 mL of hexane for 72 h. The white suspension was filtered and dried to give a white solid. Solution ³¹P NMR indicated the **6a** isomer to be the major component. Similar reaction at room temperature gave both isomers with 6b being the major product. Both 6a and 6b were too unstable for further purifications.

NiCl₂[Cy₂NPO]₅ (7). A 2.6 g (3.8 mmol) amount of triphosphoxane and 0.60 g (2.7 mmol) of NiCl₂ DME were stirred in 40 mL of hexane at room temperature. After 24 h, the darkyellow suspension was filtered and the residue washed with

⁽²⁴⁾ Coucouvanis, D.; Salifoglou, A.; Kantzidis, M. G.; Dunham, W.

R.; Simopoulos, A.; Kostikas, A. Inorg. Chem. 1988, 27, 4071. Gorzellik,
 M.; Nuber, B.; Ziegler, M. L. J. Organomet. Chem. 1992, 436, 207.
 (25) Bennett, M. A.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1961,

^{2037.}

 ⁽²⁶⁾ King, R. B., Ed. Organometallic Synthesis; Academic Press:
 New York, 1965; p 124.
 (27) King, R. B.; Fronzaglia, A. Inorg. Chem. 1966, 5, 1837.

⁽²⁸⁾ Abel, E. W.; Bennett, M. A.; Burton, R.; Wilkinson, G. J. Chem. Soc. 1958, 4559.

⁽²⁹⁾ Ward, L. G. L. Inorg. Synth. 1972, 13, 154.

⁽³⁰⁾ McMullen, A. K.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. Inorg.

Chem. 1990, 27, 2228. Brauer, G., Ed. Handbook of Preparatory Inorganic Chemistry; Academic Press: New York, 1965; Vol. 2, p 1547. (31) Doyle, J. R.; Slade, P. E.; Jonassen, H. B. Inorg. Synth. 1960,

^{6, 218} (32) McCrindle, R.; Alyea, E. C.; Ferguson, G.; Dias, S. A.; McAlees,

A. J.; Parvez, M. J. Chem. Soc., Dalton Trans. 1980, 137.

⁽³³⁾ Drew, D.; Doyle, J. R. Inorg. Synth. 1990, 28, 346.

hexane and then dissolved in CH₂Cl₂. This was filtered through Celite and the filtrate evaporated to give 1.65 g (48% based on Ni) of the yellow complex 7. An analytical sample was prepared by recrystallization from toluene: IR, ν_{POP} 863 cm⁻¹. Anal. Calcd for C₆₀H₁₁₀Cl₂N₅NiO₅P₅toluene: N, 5.15; C, 59.24; H, 8.75. Found: N, 5.13; C, 59.26; H, 8.96.

PdCl₂[Cy₂NPO]₅ (8A). Triphosphoxane (2.0 g, 2.9 mmol) and 0.60 g (1.5 mmol) of PdCl₂·2PhCN were refluxed in 40 mL of hexane for 12 h. The orange suspension turned yellow and was cooled and filtered. The yellow residue was washed with hexane and dried under reduced pressure to give 1.6 g (81% based on Pd) of **8A**: IR, ν_{POP} 868 cm⁻¹. Anal. Calcd for C₆₀H₁₁₀Cl₂N₅O₅P₅Pd: N, 5.33; C, 54.85; H, 8.44. Found: N, 5.29; C, 54.49; H, 8.69.

PdBr₂[Cy₂NPO]₅ (8B). A 0.90 g (1.3 mmol) amount of triphosphoxane and 0.30 g (0.60 mmol) of PdBr₂·2PhCN were refluxed in 40 mL of hexane for 12 h. Cooling of the yellow suspension, filtration, hexane washing, and drying of the residue gave the light-yellow solid **8B** (0.60 g, 71% based on Pd): IR, ν_{POP} 869 cm⁻¹. Anal. Calcd for C₆₀H₁₁₀Br₂N₅O₅P₅-Pd: N, 4.99; C, 51.38; H, 7.85. Found: N, 4.83; C, 51.45; H, 8.18.

PtCl₂[Cy₂NPO]₅ (9). Triphosphoxane (0.44 g, 0.64 mmol) and 0.15 g (0.42 mmol) of PtCl₂(NBD) were refluxed in 20 mL of hexane for 16 h. After cooling to room temperature and filtering, the white residue was washed with hexane and dried under reduced pressure to give about 0.47 g (80% based on Pt) of complex **9**. An analytical sample was obtained by recrystallization from toluene: IR, ν_{POP} 870 cm⁻¹. Anal. Calcd for C₆₀H₁₁₀Cl₂N₅O₅P₅Pt-toluene: N, 4.69; C, 53.84; H, 7.96. Found: N, 4.67; C, 53.51; H, 8.42.

Mo(CO)₄[ⁱPr₂NPO]₃ (10A) and Mo(CO)₄[Cy₂NPO]₃ (10B). The synthesis and analyses of complex 10A were described in ref 2. Complex 10B was similarly prepared: The triphosphoxane [Cy₂NPO]₃ (1.0 g, 1.5 mmol) and 0.40 g (1.3 mmol) of Mo(CO)₄(NBD) were dissolved in 30 mL of hexane to give a yellow solution. After stirring for 2 h, a pale yellow suspension formed. The solid was filtered off, washed with cold hexane, and dried under reduced pressure to give 1.1 g (91% based on Mo) of white complex 10B: IR, ν_{CO} 2000, 1918, 1889, 1885; ν_{POP} 826 cm⁻¹. Anal. Calcd for C₄₀H₆₆MoN₃O₇P₃: N, 4.72; C, 53.99; H, 7.48. Found: N, 4.78; C, 53.66; H, 7.57.

Cr(CO)₄[Cy₂NPO]₄ (11a). Triphosphoxane (1.6 g, 2.3 mmol) and Cr(CO)₄(NBD) (0.20 g, 0.78 mmol) were refluxed in 50 mL of hexane for 40 h. Upon cooling to room temperature and standing overnight, Cr(CO)₆ crystallized out and was filtered off. The solution was decolorized by stirring with alumina and filtering through Celite. The filtrate was then evaporated and the residue recrystallized from hot hexane to give 0.25 g (30% based on Cr) of complex **11a**: IR, ν_{CO} , 2000, 1912, 1896, 1886 cm⁻¹; ν_{POP} 829 cm⁻¹. Anal. Calcd for C₅₂H₈₈CrN₄O₈P₄: N, 5.22; C, 58.24; H, 8.21. Found: N, 5.12; C, 58.21; H, 8.35.

Fe(CO)₃[Cy₂NPO]₄ (12). Triphosphoxane (0.60 g, 0.88 mmol) and Fe₂(CO)₉ (0.29 g, 0.80 mmol) were refluxed in 20 mL of hexane for 10 h. After cooling to room temperature and filtering through Celite, the filtrate was evaporated to dryness and the residue chromatographed on an alumina column using 2.5% ethyl acetate/hexane as the eluant. Complex 12 was isolated as a yellow solid and recrystallized from hot hexane to give 0.21 g (25% based on Fe) of 12: IR, ν_{CO} 1995, 1926, 1899 cm⁻¹; ν_{POP} 832 cm⁻¹. Anal. Calcd for C₅₁H₈₈FeN₄O₇P₄: N, 5.34; C, 58.43; H, 8.39. Found: N, 5.11; C, 58.77; H, 8.82.

 $Fe(CO)_{3}[^{i}Pr_{2}NPO]_{4}$ (13) and "Fe(CO)₄[$^{i}Pr_{2}NPO]_{4}$ " (14). Triphosphoxane (3.4 g, 7.7 mmol) and 2.0 g (5.5 mmol) of Fe₂-(CO)₉ were refluxed in 60 mL of toluene for 18 h. After cooling and filtration through Celite, the filtrate was evaporated to dryness and the residue chromatographed on an alumina column using 2.5% ethyl acetate/hexane as the eluant. The yellow fraction was evaporated to dryness and recrystallized from hot hexane to give a mixture of large yellow cubic crystals of 13 and small light-yellow prisms of 14 suitable for X-ray studies which were manually separated. Total yield of **13** and **14** was around 20% based on Fe. Anal. Calcd for **13**, $C_{27}H_{56}FeN_4O_7P_4$: N, 7.69; C, 44.54; H, 7.69. Found: N, 7.57; C, 44.32; H, 7.91. IR, ν_{CO} 1999, 1936, 1908 cm⁻¹; ν_{POP} 829 cm⁻¹. Anal. Calcd for **14**, $C_{28}H_{56}FeN_4O_8P_4$: N, 7.41; C, 44.48; H, 7.41. Found: N, 7.38; C, 44.81; H, 7.57. IR, ν_{CO} 2047, 1987, 1947, 1933 cm⁻¹; ν_{POP} 875 cm⁻¹.

Cr(CO)₄[Cy₂NPO]₄ (11b), Cr₂(CO)₈[Cy₂NPO]₄ (15), and $Cr_2(CO)_7[Cy_2NPO]_5$ (16). The phosphine oxide $(Cy_2N)_2P(O)H$ $(4.5~g,\,11~mmol)$ and $Cr(CO)_6\,(0.80~g,\,3.6~mmol)$ were refluxed in 20 mL of toluene for 36 h. The dark-brown suspension was allowed to cool and then filtered through Celite. After evaporation of the filtrate, the residue was washed with about 20 mL of acetone and then extracted with 30 mL of hot hexane. The hexane extract was concentrated and chilled to precipitate about 0.61 g (32% based on Cr) of complex 11a. The filtrate from this contained 11b and 15 in about a 1:4 ratio according to its ³¹P NMR spectrum. Further purification was not attempted. The acetone wash was evaporated to dryness and chromatographed on an alumina column using 0.5% ethyl acetate/hexane as the eluant. A first fraction contained a small amount of unstable Cr(CO)_5 OP(H) (NCy_2)_2 (IR, ν_{CO} 2047, 1975, 1927 cm⁻¹; $\nu_{P=0}$ 968 cm⁻¹) and the second gave 0.52 g (20% based on Cr) of 16 upon evaporation: IR, ν_{CO} 2005, 1961, 1930, 1905, 1892, 1875 cm⁻¹; ν_{POP} 900 cm⁻¹. Anal. Calcd for C₆₇H₁₁₀- $Cr_2N_5O_{12}P_5$ (16): N, 4.88; C, 56.05; H, 7.72. Found: N, 4.43; C, 56.14; H, 8.22.

Complex 16 was also prepared by refluxing 4.5 g (11 mmol) of the phosphine oxide with $Cr(CO)_6$ (0.80 g, 3.6 mmol) in 25 mL of xylene for 36 h. The dark brown suspension was cooled and filtered through Celite. The filtrate was evaporated to dryness and extracted with 30 mL of acetone. The acetone extract was dried under reduced pressure and chromatographed on an alumina column using 0.5% ethyl acetate/ hexane eluant. A total of 1.7 g (65% based on Cr) of 16 was isolated.

W₂(**CO**)₇[**Cy**₂**NPO**]₅ (17) and **W**₂(**CO**)₆[**Cy**₂**NPO**]₄ (18). An amount of the phosphine oxide (3.5 g, 8.6 mmol) and W(CO)₆ (1.0 g, 2.8 mmol) was refluxed in 20 mL of toluene for 48 h. The dark-brown suspension was allowed to cool and filtered through Celite, and the filtrate was evaporated to dryness. The residue was chromatographed on an alumina column with hexane as the eluant. The first fraction to elute was the unstable yellow complex 17, which was only characterized spectroscopically (Table 1). The second fraction yielded red crystalline complex **18** upon prolonged standing: IR, ν_{CO} 2000, 1973, 1930, 1908, 1904, 1876 cm⁻¹; ν_{POP} 885 cm⁻¹. Anal. Calcd for C₅₄H₈₈N₄O₁₀P₄W₂·1.5hexane: N, 3.56; C, 48.09; H, 6.93. Found: N, 3.59; C, 47.94; H, 7.20.

Cr₂(CO)₈[DMP-PO]₄ (19a), Cr₂(CO)₈[DMP-PO]₄ (19b), and Cr2(CO)7[DMP-PO]5 (20). The phosphine oxide (DMP)2P-(O)H (3.0 g, 11 mmol; synthesized from DMP₂-PCl in the same way as the dialkylaminophosphine oxides described in ref 2) and $Cr(CO)_6$ (0.90 g, 4.1 mmol) were refluxed in 20 mL of toluene for 48 h. The dark-brown suspension was allowed to cool and filtered through Celite. The filtrate was evaporated to dryness and chromatographed on an alumina column using hexane eluant. The fraction collected was recrystallized from hexane to give complex 20 (0.28 g, 18% based on Cr): IR, ν_{CO} 2011, 1963, 1933, 1912, 1898, 1869 cm⁻¹; ν_{POP} 898 cm⁻¹. The mother liquor was concentrated and a small amount of 19a (0.10 g, 5%) crystallized out: IR, ν_{CO} 2006, 1942, 1892 cm⁻¹; $\nu_{\rm POP}$ 819 cm⁻¹. Prolonged standing gave 40 mg (2%) of large crystals of complex **19b**: IR, ν_{CO} 2004, 1927, 1908, 1897 cm⁻¹; ν_{POP} 881 cm⁻¹. Anal. Calcd for $C_{36}H_{56}Cr_2N_4O_{12}P_4$ (19a): N, 5.80; C, 44.80; H, 5.80. Found: N, 5.78; C, 45.11; H, 5.93. Calcd for $C_{36}H_{56}Cr_2N_4O_{12}P_4$ (19b): N, 5.80; C, 44.80; H, 5.80. Found: N, 5.77; C, 45.07; H, 6.04. Calcd for C₄₂- $Cr_2H_{70}N_5O_{12}P_5$ 1.3 hexane (20): N, 5.78; C, 49.61; 7.33. Found: N, 5.96; C, 49.35; H, 6.95.

 $Cr_2(CO)_6[DMP-PO]_6$ (21). Phosphine oxide (0.10 g, 0.37 mmol) and $Cr_2(CO)_7[DMP-PO]_5$ (complex 20; 0.10 g, 0.090

Table 9. Crystallographic Data for Complexes 14, 19a, 19b, 21, and 25

	14	19a	19b	25	21				
(a) Crystal Parameters									
formula	C ₂₈ H ₅₆ FeN ₄ O ₈ P ₄	C36H56Cr2N4O12P4	$C_{36}H_{56}Cr_2N_4O_{12}P_4$	C ₃₄ H ₆₂ FeMoN ₄ O ₁₁ P ₄	$C_{56}H_{94}Cr_2N_6O_{12}P_6$				
formula weight	756.5	964.7	964.7	978.5	1333.2				
crystal system	monoclinic	monoclinic	triclinic	monoclinic	triclinic				
space group	C2/c	I2/a	PĪ	$P2_1/c$	PĪ				
<i>a</i> , Å	42.583(14)	27.593(8)	9.905(3)	20.200(13)	10.650(2)				
<i>b</i> , Å	13.298(4)	18.105(7)	11.668(4)	12.003(4)	12.407(3)				
<i>c</i> , Å	14.828(4)	18.648(5)	12.189(3)	21.881(12)	13.064(3)				
α, deg			96.62(2)		106.64(2)				
β , deg	109.48(3)	91.45(2)	110.81(2)	117.45(2)	93.60(2)				
y, deg			112.59(2)		95.92(2)				
V. Å ³	7916.3(4)	9313	1162.9(5)	4708(4)	1637.3(6)				
Z	8	8	1	4	1				
cryst dimens, mm	$0.25 \times 0.28 \times 0.44$	$0.40 \times 0.40 \times 0.45$	$0.40 \times 0.40 \times 0.45$	$0.25 \times 0.30 \times 0.30$	$0.18 \times 0.30 \times 0.60$				
cryst color	vellow	colorless	vellow	colorless	colorless				
$D_{\rm calc}$, g cm ³	1.270	1.376	1.378	1.381	1.352				
μ (Mo K α), cm ⁻¹	5.89	6.47	6.47	7.64	5.39				
temp, K	244	296	296	233	237				
		(h) Data	Collection						
diffractometer		(0) Data	Siemans P4						
monochromator			graphite						
radiation			$M_{0} K_{0} (1 - 0.710.73 \text{ Å})$						
20 soon range deg	40-520	40-520	$A_0 = 52.0$	40-540	4.0-50.0				
data collected (h k D	$\pm 40 \pm 16 \pm 18$	+.0-52.0	$\pm 10 \pm 14 \pm 15$	+.0-54.0	$\pm 12 \pm 14 \pm 15$				
uata conected (n,k,l)	$\pm 49, \pm 10, \pm 10$	±34,722,722	$\pm 12, \pm 14, \pm 15$	$\pm 22, \pm 13, \pm 27$	$\pm 12, \pm 14, \pm 15$				
no. of concu mins	0407 7747	9403	4/99	11220	0033 5779				
no. of ind this	//4/	5611	43/1	5720	J//6 4515				
$E > n\sigma(E) (n - 4)$	4391	5011	5469	5750	4515				
$F_0 \ge nO(F_0)(n-4)$	2 atd/107 -flma	2 atd/107 miles	2 atd/107 -flma	2 atd/107 after	2 at 1/107 after a				
Stu IIIIIS	3 Stur 197 IIIIIS	- 1	2 Stur 197 Tims	5 std/197 mms	5 std/197 mins				
var in stu, %	2	~ 1	2	1	2				
(c) Refinement									
R(F), %	6.08	5.89	4.81	5.49	4.66				
R(wF), %	6.97	6.95	6.99	5.72	5.19				
$\Delta/\sigma(\max)$	0.031	0.598	0.108	0.549	0.054				
$\Delta(\varrho), e \dot{A}^{-3}$	0.67	1.10	1.02	0.65	0.94				
NoJNv	10.8	10.7	13.3	11.3	12.9				
GOF	1.28	1.35	1.20	1.10	1.44				

mmol) were refluxed in 20 mL of xylene for 6 h. After cooling to room temperature and filtration, the solid residue was recrystallized from toluene to give 0.10 g (90% based on **20**) of complex **21**: IR, ν_{CO} 1949, 1893, 1876 cm⁻¹; ν_{POP} 912 cm⁻¹. Slow cooling of a hot xylene solution of **21** gave X-ray quality crystals. Anal. Calcd for C₄₈H₈₄Cr₂N₄O₁₂P₄·2toluene: N, 5.96; C, 52.79; H, 7.09. Found: N, 5.82; C, 52.21; H, 7.14.

 $Mo_2(CO)_6[DMP-PO]_4$ (22). The phosphine oxide $(DMP)_2P$ -(O)H (1.0 g, 3.6 mmol) and 0.50 g Mo(CO)₆ (1.8 mmol) were refluxed in 20 mL of toluene for 48 h. The dark-brown suspension was cooled, filtered through Celite, and the filtrate was evaporated to dryness. Chromatography of the residue on an alumina column using hexane yielded a white solid. It was recrystallized from hexane to give 0.31 g (32% based on Mo) of 22: IR, ν_{CO} 2012, 1928, 1914, 1898 cm⁻¹; ν_{POP} 885 cm⁻¹. Anal. Calcd for $C_{36}H_{56}Mo_2N_4O_{12}P_4$: N, 5.32; C, 41.09; H, 5.32. Found: N, 5.28; C, 41.19; H, 5.50.

Mo(CO)₄[**Cy**₂**NPO**]₄**NiBr**₂ (23). The complex NiBr₂[**Cy**₂-NPO]₄ (0.45 g, 0.40 mmol of **4B**) and Mo(CO)₄(NBD) (0.12 g, 0.40 mmol) were stirred in 25 mL of toluene at 90 °C for 3 h. The clear red solution turned pale brown as the reaction progressed. After cooling and filtration through Celite, the filtrate was evaporated and the residue chromatographed on an alumina column using 2.5% ethyl acetate/hexane as the eluant. The red-brown solid isolated was 0.25 g (47% based on Mo) of complex **23**: IR, ν_{CO} 2022, 1945, 1928, 1909 cm⁻¹; ν_{POP} 904 cm⁻¹. Anal. Calcd for C₅₂H₈₈Br₂MoN₄NiO₈P₄: N, 4.19; C, 46.79; H, 6.59. Found: N, 4.10; C, 46.76; H, 6.87.

 $Mo(CO)_3[Cy_2NPO]_5PdCl_2$ (24). The complex $PdCl_2[Cy_2-NPO]_5$ (0.26 g, 0.20 mmol of 8A) and $Mo(CO)_4(NBD)$ (60 mg, 0.20 mmol) were stirred in 30 mL of toluene at 90 °C for 5 h. After cooling to room temperature and filtration through Celite, the filtrate was evaporated to dryness. The residue was then chromatographed on an alumina column using 5%

ethyl acetate/hexane eluant. The pale-yellow solid complex 24 was isolated (0.12 g, 40% based on Mo): IR, ν_{CO} 1979, 1912, 1902, 1890 cm⁻¹; ν_{POP} 919 cm⁻¹. Anal. Calcd for C₆₃H₁₁₀Cl₂MoN₅O₈P₅Pd: N, 4.69; C, 50.69; H, 7.37. Found: N, 4.36; C, 50.41; H, 7.78.

 $Mo(CO)_4[^iPr_2NPO]_4Fe(CO)_3$ (25). The complex $Fe(CO)_3$ -[iPr_2NPO]₄ (0.20 g, 0.27 mmol of 13) and $Mo(CO)_4(NBD)$ (0.10 g, 0.33 mmol) were refluxed in 20 mL of hexane for 5 h. After cooling, the solution was evaporated to dryness and chromatographed on an alumina column using 0.5% ethyl acetate/ hexane as the eluant. The isolated product was recrystallized from benzene/hexane to give 0.19 g (75% based on Fe) of 25 as pale yellow crystals suitable for X-ray analysis: IR, ν_{CO} 2021, 1999, 1962, 1944, 1922, 1912, 1899, 1877, 1869 cm⁻¹; ν_{POP} 873 cm⁻¹. Anal. Calcd for C₃₁H₅₆FeMoN₄O₁₁P₄: N, 5.98; C, 39.78; H, 5.98. Found: N, 6.03; C, 39.83; H, 5.98.

Ni(**CO**)₂[**Cy**₂**NPO**]₄**Ni**(**CO**)₂ (26). NiBr₂[Cy₂NPO]₄ (1.50 g, 1.3 mmol) and Fe₂(CO)₉ (0.48 g, 1.3 mmol) were stirred in 40 mL of toluene at 90 °C. After 2 h, the suspension was cooled to room temperature and filtered through Celite. The filtrate was evaporated to dryness and the residue chromatographed on an alumina column using 2.5% ethyl acetate/hexane eluant. A yield of 0.27 g (18% based on Ni) of white complex 26 was isolated: IR, ν_{CO} 2000, 1947 cm⁻¹; ν_{POP} 870 cm⁻¹. Anal. Calcd for C₅₂H₈₈N₄Ni₂O₈P₄: N, 4.92; C, 54.89; H, 7.73. Found: N, 4.71; C, 54.87; H, 8.11.

Crystallographic Studies. Crystal, data collection, and refinement parameters are listed in Table 9. Single crystals of complexes 14, 19a, and 19b were grown from saturated hexane solutions. Crystals of 21 and 25 were from xylene and benzene, respectively. Suitable crystals were selected and mounted on glass fibers with epoxy cement. The unit cell parameters were obtained by least-squares refinement of the

angular settings of 25 reflections ($20^{\circ} \le 2\theta \le 25^{\circ}$). The XABS program was used to correct the data for absorption for 25.³⁴

The systematic absences in the diffraction data for 14 are consistent for space groups C2/c and Cc; for 19a, I2/a and Ia; for 19b and 21, P1 and P1; and uniquely for 25, $P2_1/c$. The *E*-statistics suggested the centrosymmetric alternatives for 14, 19a, 19b, and 21 and were verified by subsequent refinements.

The centers of the molecules of **19b** and **25** are located on inversion centers. In **21** and **25**, several peaks on the Fourier difference maps, not connected with the compound molecules, were observed and modeled as p-xylene and benzene, respectively. These solvent molecules were isotropically refined.

All structures were solved by direct methods, completed by subsequent difference Fourier syntheses, and refined by fullmatrix least-squares procedures. All non-hydrogen, nonsol-

(34) Hope, H.; Moezzi, B., University of California, Davis, CA.

vent atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were treated as idealized contributions.

All software and sources of the scattering factors are contained in either in SHELXTL (5.1) or the SHELXTL PLUS (4.2) program libraries (G. Sheldrick, Siemens XRD, Madison, WI).

Acknowledgment. We acknowledge financial support from the Petroleum Research Fund, administered by the American Chemical Society.

Supplementary Material Available: Listings of atomic coordinates, anisotropic thermal factors, and complete bond distances and angles (35 pages). Ordering information is given on any current masthead page.

OM940442H