Ein neuartiges Polyoxocobaltat(II)-Anion in Rb₂Co₂O₃

Mikhail Sofin, Eva Maria Peters und Martin Jansen*

Stuttgart, Max-Planck-Institut für Festkörperforschung

Bei der Redaktion eingegangen am 16. April 2002.

Herrn Professor Rudolf Hoppe zum 80. Geburtstag gewidmet

Inhaltsübersicht. $Rb_2Co_2O_3$ wurde über die Azid/Nitrat-Route dargestellt. Gemenge der Edukte Co_3O_4 , RbN_3 und $RbNO_3$ im molaren Verhältnis von 6:17:1 wurden unter besonderer Temperaturführung in Silbertiegeln bis 450 °C aufgeheitzt und 50 h bei dieser Temperatur gehalten. Durch nachträgliches Tempern des erhaltenen Pulvers (450 °C, 500 h) in Silbertiegeln, die unter getrocknetem Ar in Glasampullen eingeschmolzen waren, wurden Einkristalle erhalten. Nach der Röntgenstrukturanalyse (Pnma, Z = 8, 11,729(2), 6,058 (1), 8,004(1) Å) ist Cobalt trigonal planar von Sauerstoffatomen koordiniert. Die CoO₃-Einheiten sind über alle Ecken verknüpft und bilden ein neuartiges ${}^{2}_{\alpha}Co_{2}O_{3}$ -Polyanion.

A New Polyoxocobaltate(II) Anion in Rb₂Co₂O₃

Abstract. $Rb_2Co_2O_3$ was prepared via the azide/nitrate route. Mixtures of the precursors Co_3O_4 , RbN_3 and $RbNO_3$ in the molar ratios 6:17:1 were heated in a special regime up to 450 °C and annealed at this temperature for 50 h in silver crucibles. Single crystals have been grown by subsequent annealing of prepared powder at 450 °C for 500 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crys-

tal structure (Pnma, Z = 8, 11.729(2), 6.058 (1), 8.004(1) Å) cobalt is trigonal planar coordinated by oxygen atoms. The CoO₃-units share through all corners and build up an infinite two-dimensional ${}^{2}_{\infty}Co_{2}O_{3}$ -network.

Keywords: Azide/nitrate route; Rubidium cobaltate(II); Crystal structure

Einleitung

Durch die grundlegenden Arbeiten von Rudolf Hoppe und Mitarbeitern ist die Chemie von Alkalioxocobaltaten in ihren wesentlichen Merkmalen aufgeklärt. Sie zeichnet sich zunächst einmal durch eine bemerkenswerte Varianz in den möglichen Oxidationszahlen für Cobalt aus, die zwischen den exotisch anmutenden minimalen bzw. maximalen Stufen +I und +IV lückenlos realisiert sind. Wegen ihrer elektronischen Eigenschaften sind die gemischtvalenten Vertreter (Rb₅Co₂O₄ [1], KCo₂O₄ [2, 3], RbCo₂O₄ und CsCo₂O₄ [2]) besonders interessant. Die Fülle des Bekannten erlaubt bereits erste verallgemeinerbare Schlüsse. So gibt es offenbar für jeden Valenzzustand von Cobalt eine bevorzugte Koordination durch Sauerstoff, die weniger als sonst in der Strukturchemie der Alkalioxometallate beobachtet durch die Zusammensetzung und die Größe des Alkalimetalles moduliert wird. Typisch für Co^I ist, wie durch Beispiele Na₃CoO₂, K₃CoO₂ [4], Rb₃CoO₂ [5] und K₂CsCoO₂ [6] belegt, eine lineare Zweierkoordination, während CoII nahezu durchgängig carbonatanaloge, trigonal planare CoO3-Ein-

Max-Planck-Institut für Festkörperforschung Heisenbergstraße 1 D-70569 Stuttgart Fax: +49-711-689 15 02 e-mail: m.jansen@fkf.mpg.de heiten ausbildet (Na₄CoO₃ [7–9], Na₁₀Co₄O₉ [9, 10], K₁₀Co₄O₉ [11], Na₄K₂Co₂O₅, Na₄Rb₂Co₂O₅ [12], K₄Rb₂Co₂O₅ [13], Na₇RbCo₂O₆ [14], K₂CoO₂ [15]). Dreiwertiges Cobalt bevorzugt, wie aus der Koordinationschemie vertraut, eine oktaedrische Umgebung (LiCoO₂ [16], NaCoO₂ [17, 18]), läßt aber auch tetraedrische (Li₃Na₂CoO₄ [19], Na₅CoO₄ [20], KCoO₂ [3], RbCO₂ [21]) und quadratisch pyramidale Koordination (KCoO₂ [21]) zu. Vierwertiges Cobalt entwickelt im wesentlichen eine silicatanaloge Strukturchemie (Li₈CoO₆ [22], Na₄CoO₄ [23, 24], K₆Co₂O₇ [25], K₂CoO₃, Rb₂CoO₃, Cs₂CoO₃ [26]).

Mit der Azid/Nitrat-Route [27] haben wir einen neuen, offenbar universell anwendbaren präparativen Zugang zu Alkalioxometallaten entwickelt, über den im wesentlichen die Resultate des klassischen Weges über Festkörperreaktionen zwischen den binären Komponenten reproduzierbar sind, der also diesem ebenbürtig erscheint. Im Zuge der präparativen Bearbeitung von Alkalioxocobaltaten über Anwendung dieses neuen Zugangs haben wir mit Rb₂Co₂O₃ ein neues Oxocobaltat(II) dargestellt.

Experimentelles

Für die Darstellung von $Rb_2Co_2O_3$ wurden Co_3O_4 , RbN_3 und $RbNO_3$ (Johnson Matthey, 99 %) eingesetzt. RbN_3 wurde aus wässeriger HN_3 und Rb_2CO_3 (Johnson Matthey, 99 %) dargestellt [28], Co_3O_4 in reaktionsfähiger Form durch thermischen Abbau von $Co(C_2O_4)$ ·2H₂O (Johnson Matthey) im Sauerstoffstrom bei 350 °C

^{*} Prof. Dr. M. Jansen

Abb. 1 Rißzeichnung des verwendeten Tiegels. a) Tiegel (Sechskant, Stahl); b) Innenauskleidung (Silber) c) Stopfen (Silber)

(10 h) erhalten [25]. Die Phasenreinheit der Ausgangsverbingungen wurde röntgenographisch kontrolliert. Die Edukte wurden in Stoffmengen entsprechend der Reaktionsgleichung

 $17 \text{ RbN}_3 + \text{RbNO}_3 + 6 \text{ Co}_3\text{O}_4 = 9 \text{ Rb}_2\text{Co}_2\text{O}_3 + 26 \text{ N}_2$

in einer Kugelmühle vermahlen. Das Gemenge der Reaktanden (~0,5 g) wurde zu Preßlingen (\emptyset 6 mm, 3 GPa) verdichtet. Diese wurden in die Reaktionstiegel (Abb. 1) überführt und unter Vakuum (10⁻³ mbar) 12 h bei 150 °C getrocknet. Die Tiegel wurden anschließend unter trockenem Ar mit einem Drehmomentschlüssel (30 Nm) verschraubt. Im Ar-Strom wurde die folgende Temperaturführung gewählt: 25–260 °C (100 K/h); 260–380 °C (5 K/h), 380–450 °C (20 K/h). Dann wurde 50 h bei 450 °C getempert.

Das erhaltene luft- und feuchtigkeitsempfindliche Pulver wurde in Glasampullen unter trockenem Ar eingeschmolzen. Alle nachfolgenden Arbeitsschritte wurden in inerter Atmosphäre durchgeführt.

Das thermische Verhalten wurde mittels gekoppelter DTA/TG (STA 407, Netzsch) aufgeklärt.

Zur Kristallzucht wurde das erhaltene Pulver gepreßt und in geschlossenen Silbertiegeln, ihrerseits in Glasampullen eingeschmolzen, 500 h bei 450 °C getempert. Geeignete Kristalle wurden unter dem Mikroskop aussortiert, mit ausgezogenen Glasfäden (\emptyset 0,1 mm) unter Argonatmosphäre in Glaskapillaren (\emptyset 0,3 mm) überführt und abgeschmolzen. Die Einkristalle wurden auf einem Vierkreisdiffraktometer (Bruker AXS) mit SMART-CCD (APEX) vermessen. Die Strukturlösung erfolgte mit direkten Methoden, die Verfeinerung wurde mit der Methode der kleinsten Fehlquadrate durchgeführt. Angaben zur Strukturbestimmung, verfeinerte Atomparameter, und Temperaturfaktoren sind in den Tabellen 1–3 zusammengefaßt.

Röntenpulverdaten wurden auf einem Zweikreisdiffraktometer (Stadi P, STOE, Co-K_{α} (λ =1,78896 Å), Ge-Monochromator) gemessen. Die gemessenen d-Werte sind in der Tabelle 4 zusammengestellt.

Ergebnisse und Diskussion

Rb₂Co₂O₃ wurde über die Azid/Nitrat-Route als phasenreines, mikrokristallines Pulver erhalten. Durch Tempern dieses Pulvers in verschlossenen Silbertiegeln wurden Einkristalle in einer Größe gewonnen, wie sie für eine Röntgenstrukturanalyse ausreichen. Die Präparate sind luft- und feuchtigkeitsempfindlich und in dünnen Schichten durchscheinend dunkelrot. Thermischer Abbau von Rb₂Co₂O₃ in CoO und noch unbekannten Verbindung(en) tritt bei

Kristalldaten	
Raumgruppe (Nr.), Z	Pnma (62), 8
Gitterkonstanten, Å	a = 11,729(2)
	b = 6,058(1)
	c = 8,004(1)
Molares Volumen, cm ³ /mol	42,82
Röntgenographische Dichte, g/cm ³	3,934
Kristallform, Kristallgrösse, mm	Stäbchen, 0,3 x 0,1 x 0,05
Datensammlung	
Diffraktometer	Bruker AXS, APEX SMART-CCD
Monochromator	Graphit
Röntgenstrahlung, λ	MoK _α , 0,71073 Å
Meßbereich	$3,08 < \Theta < 34,88$
	-18 < h < 18, -9 < k < 9, -12 < 1 < 12
Absorptionskorrektur	Semiempirische Absoptionskorrektur
	SADABS*
Anzahl der gemessenen Reflexe	2918
Anzahl der symmetrie-	1328
unabhängigen Reflexe	
Anzahl der beobachteten Reflexe	2656
Absorptionskoeffizient, μ (mm ⁻¹)	22,73
F(000)	608,0
Strukturaufklärung	
Parameterverfeinerung	Full-matrix least-squares über F ²
Anzahl der freien Parameter	41
Gütefaktor R1 ($F_0 > 4 sig F_0^2 / all$)	0,0658 / 0,1161
Gewichteter Gütefaktor wR2	0,1485 / 0,1793
Wichtungsfaktor w	$w = 1/(\sigma^2(F_0^2) + (0,0621^*P)^2),$
• _	$(\mathbf{P} = (\max(\mathbf{F}_0^2, 0) + 2^* \mathbf{F}_c^2)/3)$
$\Delta \rho_{\min}, \rho_{\max} (e^{-}/A^3)$	-2,69/2,48

 Tabelle 1
 Kristallographische Daten und Angaben zur Strukturbestimmung für Rb₂Co₂O₃ (293 K)

* SADABS: G.M. Sheldrick, Bruker AXS, Inc. Madison, WI (1998)

Tabelle 2Lageparameter für Rb2Co2O3 (Standardabweichungenin Klammern)

Atom	Lage	х	У	Z
Rb1	4c	0,3791(1)	1/4	0,0072(2)
Rb2	4c	0,0633(1)	1/4	0,8721(2)
Co1	4c	0,2743(2)	1/4	0,5961(2)
Co2	4c	0,1498(2)	1/4	0,2827(2)
01	4c	0,1267(8)	1/4	0,5100(10)
O2	8 <i>d</i>	0,1504(7)	0,0013(12)	0,1550(10)

Tabelle 3 Koeffizienten der anisotropen Temperaturfaktoren (in $\mathring{A}^2 \cdot 10^4$) von Rb₂Co₂O₃ (Standardabweichungen in Klammern)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Rb1	212(6)	246(5)	308(6)	-	10(4)	_
Rb2	221(6)	571(9)	233(5)	-	0(4)	-
Co1	188(7)	247(8)	212(7)	-	15(5)	-
Co2	179(7)	224(8)	221(7)	-	25(5)	-
01	245(46)	270(42)	221(35)	-	-23(32)	-
02	484(44)	246(35)	549(41)	-158(31)	-36(36)	121(37)

600 °C ein. Nach der Röntgenstrukturanalyse (s. Abb. 2) ist Cobalt trigonal planar von Sauerstoff umgeben. Die Bindungslängen (vgl. Tab. 5) liegen im Bereich von 1,82 bis 1,86 Å. Auffällig sind die jeweils etwas längeren Abstände von Co1 und Co2 zu O1. Wie aus den partiellen Madelunganteilen der Gitterenergie [29] und der "bond length-bond strength"-Analyse [30] hervorgeht, erfährt O1 eine Kompensation durch eine stärkere Koordination an Rubidium.

Tabelle 4 Beobachtete Reflexe für $Rb_2Co_2O_3$, $d_{exp} > 2,0$ Å.

h	k	1	d _{exp} , Å	I_{exp}	h	k	1	d_{exp} , Å	Iexp
1	0	1	6,6132	0,6	1	0	3	2,6002	21,2
2	0	0	5,8666	2,2	2	2	1	2,5501	0,2
0	1	1	4,8267	9,0	3	1	2	2,5388	0,5
2	0	1	4,7291	12,2	4	1	1	2,5060	13,8
1	1	1	4,4644	1,9	0	1	3	2,4425	26,9
2	1	0	4,2118	5,1	2	0	3	2,4267	9,1
0	0	2	3,0099	8,1	0	2	2	2,4159	8,8
1	0	2	3,7889	4,9	1	1	3]	2 3806	10.2
2	1	1	3,7288	6,1	1	2	2∫	2,3890	10,2
3	0	1	3,5147	12,5	4	0	2	2,3650	1,1
1	1	2	3,2096	45,2	3	2	1	2,2921	17,2
3	1	1	3,0410	100,0	2	1	3	2,2533	2,1
0	2	0	3,0282	92,4	5	0	1]	2 2540	117
4	0	0	2,9344	29,3	2	2	2∫	2,2340	11,7
2	1	2	2,9012	66,0	3	0	3		
3	0	2	2,7933	29,1	4	1	2]	2 2035	44
1	2	1	2,7527	27,7	5	1	1∫	2,2055	7,7
4	0	1	2,7530	31,8	4	2	0]	2 1068	48
4	1	0	2,6404	11,5	3	1	3∫	2,1000	7,0
3	2	2	2,0544	28,9					
4	2	1	2,0367	15,9					
5	0	2	2,0233	4,1					

Abb. 2 a. Perspektivische Darstellung der Kristallstruktur von $Rb_2Co_2O_3.$

b. Das ²_∞Co₂O₃-Polyanion (Blickrichtung entlang [100]).

Die CoO₃-Einheiten sind über Ecken zu einem ${}^{2}_{\infty}$ Co₂O₃-Netz verknüpft. Betrachtet man die Anordnung der Cobaltatome alleine, so wird eine enge topologische Verwandtschaft mit der Struktur des schwarzen Phosphors erkennbar.

Rb2 bildet als Koordinationspolyeder eine verzerrte tetragonale Pyramide, deren Basis aus den vier Sauerstoffatomen O2 ein fast ideales Rechteck ist. Die Pyramiden sind

Tabelle 5	Interatomäre	Abstände (in Å),	CN,	ECoN	und	MEFIR
(in Å) für	Rb ₂ Co ₂ O ₃ .					

Atom	O1	O2	CN	ECoN	MEFIR
Rb1	2,907	3,222	7	6,5	1.61
	3,030	3,222		,	<i>,</i>
	3,030	3,296			
	<i>,</i>	3,296			
Rb2	2,992	2,906	5	5,0	1,52
		2,906			
		2,941			
		2,941			
Col	1,863	1,822	3	3,0	0,43
		1,822			
Co2	1,834	1,820	3	3,0	0,42
		1,820			
CN	6	6			
ECoN	6,0	5,5			
MEFIR	1,43	1,43			

Tabelle 6Der Madelunganteil der Gitterenergie (MAPLE) vonRb2Co2O3 (in kcal/mol)

		binär	ternär	$\Sigma \Delta^{a)}$
Rb1	1x	100,2 ^{b)}	97,5	-2,7
Rb2	1x	100,2	104,3	+4,1
Col	1x	543,6 ^{c)}	566,4	+22,6
Co2	1x	543,6	577,2	+33,6
01	1x	372,5 ^{b)}	492,9	+120,4
O2	2x	543,6 ^{c)}	491,6	-52,0
Σ		2747,3	2821,5	$\Delta = +74,0 (2,7\%)$

a) ternär-binär: MAPLE ($Rb_2Co_2O_3$) – MAPLE (Rb_2O) – 2 MAPLE (CoO)

b) aus Rb₂O c) aus CoO

Tabelle 7Valenz
summen in $Rb_2Co_2O_3$ nach dem "bond length-
bond strength"-Konzept

	01	O2	Valenz (Kation)
Rb1	1 x 0,175	2 x 0,074	0,694
Rb2	1 x 0,138	$2 \times 0,001$ $2 \times 0,175$ 2×0.150	0,806
Col	1 x 0,628	2 x 0,139 2 x 0,704	2,036
Co2	1 x 0,672	2 x 0,706	2,083
Valenz (Anion)	1,863	1,878	

über die längeren Kanten der Basis zu endlosen Strängen verknüpft, die Spitzen der Pyramiden zeigen alternierend in Gegenrichtungen. Rb1 ist unregelmässig von sieben Sauerstoffatomen koordiniert. Sechs Rb1O₇-Polyeder sind über eine gemeinsame Ecke und eines über eine gemeinsame Fläche mit der Rb2O₅-Pyramide verknüpft. Interatomare Abstände, Koordinationszahlen (CN), ECoN und MEFIR [31] sind in der Tabelle 5 zusammengestellt. Tabelle 6 zeigt einen Vergleich des MAPLE-Wertes [29] von Rb₂Co₂O₃ mit denen der Summen der binären Oxide. In der Tabelle 7 sind die Valenzsummen nach dem "bond length-bond strength"-Konzept [30] angegeben.

Mit der Ausnahme von Li_6CoO_4 [32] enthalten alle bisher beschriebenen Alkalioxocobaltate(II) das Übergangsmetall in einer trigonal planaren, carbonatanalogen Umgebung. Die CoO₃-Dreiecke liegen in Na₄CoO₃ [7-9] und Na₇Rb-Co₂O₆ [14] "isoliert" vor. Hauptmerkmal der Strukturen von Na₁₀Co₄O₉ [9, 10] und K₁₀Co₄O₉ [11] ist die Baueinheit Co₄O₉¹⁰⁻, die aus vier eckenverknüpften, trigonal-planaren CoO₃-Dreiecken besteht. Zwei kantenverknüpfte CoO₃-Einheiten, die die Baueinheit Co₂O₄⁴⁻ bilden, findet man in K₂CoO₂ [12] und Rb₅Co₂O₄ [1]. Das sogenannte "Butterfly-Motiv" aus zwei eckenverknüpften Dreiecken ist in den Oxocobaltaten(II) Na₄K₂Co₂O₅, Na₄Rb₂Co₂O₅ [9] und K₄Rb₂Co₂O₅ [10] realisiert. Mit Rb₂Co₂O₃ wurde ein Oxocobaltat(II) dargestellt, in dem CoII in der bislang unbekannten Verknüpfung zu ²_∞Co₂O₃-Netzen vorliegt. Diese bereits recht konsistenten Beobachtungen zur Strukturchemie von Alkalioxocobaltaten(II) berechtigen zu der Vermutung, daß sich hier eine den Silicaten analoge Struktursystematik verbirgt, in dem Sinne, daß sich ausgehend von Inselstrukturen über Ketten, Bänden und Schichten dreidimensionale Polyanionen ausbilden.

Literatur

- [1] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem. 1993, 619, 540.
- [2] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 408, 97.
- [3] C. Delmas, C. Fouassier, P. Hagenmuller J. Solid State Chem. 1975, 13, 165.
- [4] W. Burow, J. Birx, F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem. 1993, 619, 923.

- M. Sofin, E. M. Peters, M. Jansen
- [5] M. Sofin, M. Jansen, Z. Anorg. Allg. Chem. 2001, 627, 2115.
- [6] F. Bernhardt, R. Hoppe, R. K. Kremer, Z. Anorg. Allg. Chem. 1994, 620, 187.
- [7] W. Burow, R. Hoppe, Z. Anorg. Allg. Chem. 1979, 459, 79.
- [8] M. G. Barker, G. A. Fairhall, J. Chem. Res. (S) 1979, 371.
- [9] A. Möller, Chem. Mat. 1998, 10, 3196.
- [10] W. Burow, R. Hoppe, Z. Anorg. Allg. Chem. 1980, 467, 158.
- [11] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem. 1993, 619, 1807.
- [12] R. Hoppe, J. Birx, Z. Anorg. Allg. Chem. 1988, 557, 171.
- [13] J. Birx, R. Hoppe, Z. Anorg. Allg. Chem. 1990, 591, 67.
- [14] J. Birx, R. Hoppe, Z. Anorg. Allg. Chem. 1990, 588, 7.
- [15] F. Bernhardt, R. Hoppe, Z. Anorg. Allg. Chem. 1994, 620, 586.
- [16] H. J. Orman, P J. Wiseman, Acta Crystallogr. C 1984, 40, 12.
- [17] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 408, 104.
- [18] C. Fouassier, G. Matejka, J. M. Reau, P. Hagenmuller J. Solid State Chem. 1973, 6, 532.
- [19] J. Birx, R. Hoppe, Z. Anorg. Allg. Chem. 1991, 597, 19.
- [20] W. Burow, R. Hoppe, Naturwissenschaften 1980, 67, 192.
- [21] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1975, 417, 31.
- [22] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1973, 398, 54.
- [23] M. Jansen, Z. Anorg. Allg. Chem. 1975, 417, 35.
- [24] R. Olazcuaga, J. M. Reau, M. Devalette, G. L. Flem, P. Hagenmuller J. Solid State Chem. 1975, 13, 275.
- [25] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 409, 152.
- [26] M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 408, 75.
- [27] D. Trinschek, M. Jansen, Angew. Chem. 1999, 111, 234; Angew. Chem. Int. Ed. 1999, 38, 133.
- [28] A. Petrikaln, Z. Physik 1926, 37, 610.
- [29] R. Hoppe, Z. Naturforsch. a, 1995, 50, 555.
- [30] N. Y. Brese, M. O'Keeffe, Acta Crystallogr. B 1991, 47, 192.
- [31] R. Hoppe, Z. Kristallogr. 1979, 150, 23.
- [32] R. Luge, R. Hoppe, Z. Anorg. Allg. Chem. 1986, 534, 61.