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An Electrophilic Reagent for the Synthesis of OCHFMe-Containing 

Molecules. 

Elodie Carbonnel,
a
 Xavier Pannecoucke,

a
 Tatiana Besset,*

a
 Philippe Jubault,*

a
 and Thomas 

Poisson*
a,b

Herein the synthesis of a novel and bench stable electrophilic 

reagent to construct the OCFHMe motif from O-nucleophiles was 

described. This sulfonium salt, readily obtained in 5 steps, reacted 

with various phenols and alcohols. The resulting products, 

including complex molecules, were obtained in good yields. This 

reagent was also used for the functionalization of thiol 

derivatives. 

The search for new bioactive molecules is a strategic research 

field and the contribution of organic chemists is of prime 

importance for the quest of new pharmaceuticals and 

agrochemicals.
1
 In that context, organofluorine chemistry 

plays an indisputable role, mainly due to the intrinsic 

properties of the fluorine atom.
2,3

 Hence, a plethora of drugs 

or agrochemicals, currently on the market, are fluorinated 

molecules.
4
 Thus, the demand for this class of compounds, and 

particularly original molecules, is steadily increasing and the 

search for new fluorinated groups to discover bioactive 

molecules is an appealing and stimulating task. For instance, 

various promising motifs have recently attracted the attention 

of the scientific community such as the CF2H,
5
 the SCF3

6
 and 

the OCF3
7
 groups.  

An efficient strategy to introduce or build up fluorinated 

motifs relies on the design of new reagents and particularly 

electrophilic ones as demonstrated by Togni’s reagents
8
 and 

various sulphur-based electrophilic reagents,
9
 which have 

been used in a broad range of transformations. Among the 

latter, are the contributions from Umemoto,
10

 Shibata,
11

 

Prakash
12

 and Shen
13

 for the introduction of the CF3, CF2H and 

CH2F motifs by means of the design of sulfonium salts and 

ylide-based reagents. Despite these considerable advances 

further  

 

Figure 1 A bioactive molecule bearing a OCHFMe residue. 

developments are still required to extend the current portfolio 

of electrophilic reagents to other fluorinated groups. 

In that context, we designed a new electrophilic reagent to 

build up the OCHFMe group from phenols or alcohols. 

Although this motif is present in bioactive molecule (Figure 

1),
14

 only a handful of reports described preparative methods 

for the construction of this underexplored fluorinated residue. 

Indeed, the existing methods rely on 1) a bromo-

fluorination/reduction sequence starting from enol ethers,
15

 2) 

the use of fluorine gas to oxidize ether functional group,
16

 3) 

the anodic oxidation of ethers or carbonates
17

 and 4) the Mn-

catalyzed decarboxylative fluorination.
18

  

 

Scheme 1 State of the art and present work. 

 

N

N

F

O

N O

O F

O
N

SO2Me

GPR119 Modulator
Glucose control agent

R
O

F

OR

O

O
R

O

CO2H

R

Known approaches:

Our approach: a new electrophilic reagent

S F

OMeMeO

OMe

BF4

R
O

F
R

O
H

4 examples

2 examples

4 examples

+ gram scale synthesis
+ bench stable 
+ air and moisture tolerant

Page 1 of 4 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
7 

Fe
br

ua
ry

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
R

ea
di

ng
 o

n 
07

/0
2/

20
18

 1
1:

04
:2

1.
 

View Article Online
DOI: 10.1039/C8CC00921J

http://dx.doi.org/10.1039/c8cc00921j


COMMUNICATION Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 

Scheme 2 Synthesis of the reagent 1. a) (CH2O)n, toluene/HCl, 50 °C to rt, 95%. b) 
KF, 18-crown-6, MeCN, 90°C, 98%. c) mCPBA, DCM, 0 °C, 63%. d) LiHMDS, MeI, 
THF/HMPA, - 98 °C, 79%. e) Tf2O, TMB, Et2O, 0 °C, 67%, d.r. = 3:1. TMB = 1,3,5-
trimethoxybenzene. 

These methods either proceed under harsh conditions or use 

toxic reagents. Moreover, these approaches suffer from poor 

functional groups tolerance and limited substrates scope 

(Scheme 1). 

Thus, the design of a sulfonium salt as an electrophilic reagent 

enabling the formation of a O-CHFMe bond appeared as a 

straightforward approach. Herein, the efficient synthesis of the 

first electrophilic CHFMe-source and its application with O- 

nucleophiles were depicted.  

The sulfonium 1 was readily synthesized from thiophenol in 

five steps (Scheme 2). First, the chloromethylation of 

thiophenol, followed by the halogen exchange furnished the 

fluoromethylsulfane 3 in an excellent yield,
19

 without 

purification. Then, the oxidation of the sulfane and a 

subsequent alkylation reaction gave the sulfoxide 5 in 50% 

yield over two steps. Finally, 5 was converted into the 

sulfonium salt 1 in 67% yield, as a 3:1 mixture of 

diastereoisomers on a gram scale.
20

 The reagent 1 is a bench 

stable solid and is air and moisture tolerant. 

Having this reagent in hands, we first explored its reactivity 

toward phenol derivatives (Scheme 3). The reaction of para-

chlorophenol with 1 in the presence of Cs2CO3 in MeCN at 

room temperature gave the desired product 7a in a good 83% 

yield. The transformation was tolerant to several functional 

groups since phenols bearing a cyano, ketone, ester and nitro 

group, furnished the corresponding OCFHMe-containing 

derivatives 7b-f in good to excellent yields (68%-94%). Note 

that the substitution pattern did not have any impact on the 

outcome of the transformation since the ortho-cyanophenol 

afforded 7f in 94% yield. To our delight, 3-hydroxyquinoline 6g 

reacted smoothly to deliver 7g in a decent 86% yield. This 

example demonstrated the possible functionalization of 

heterocyclic derivatives, which are of high importance in 

pharmaceutical and agrochemical research. Then, the reagent 

1 was used to functionalize relevant molecules as the 

coumarin 6h and the raspberry ketone 6i. The corresponding 

OCFHMe derivatives 7h and 7i were isolated in 79% and 69%, 

respectively. Then, the Riluzole analogue 7j was obtained in 

52% yield, starting from 2-amino-6-hydroxybenzothiazole 6j. 

Finally, N-Boc-tyrosine methyl ester 6k and estrone 6l were 

converted into the corresponding compounds 7k and 7l in 31% 

and 70% yields, respectively. Note that both compounds were  

 

  

Scheme 3 Scope of the reaction between 1 and phenols. Reaction conditions: 1 
(0.2 mmol), 6 (0.24 mmol), Cs2CO3 (0.24 mmol), MeCN, rt, 16 h. Isolated yields 
are given. Diastereoisomeric ratios are reported into parenthesis. 

obtained as a mixture of diastereoisomers. Unfortunately, 

some phenol derivatives were reluctant under our reaction 

conditions, like the 2-hydroxyquinoxaline, the para-guaiacol, 

the 2-hydroxyphenylboronic acid and the 4-hydroxyaniline. 

Then, we sought to explore the reactivity of 1 with alcohols 

(Scheme 4). Under the same reaction conditions, para-

methoxybenzylic alcohol 8a and homobenzylic alcohol 8b were 

converted into the OCFHMe derivatives 9a and 9b in 30% and 

59% yields. Pleasingly, complex secondary alcohols, namely 

the (–)-menthol 8c and the trans-androsterone 8d, were  

 

Scheme 4 Scope of the reaction between 1 and alcohols. Reaction conditions: 1 

(0.2 mmol), 8 (0.24 mmol), Cs2CO3 (0.24 mmol), MeCN, rt, 16 h. Isolated yields 

are given. Diastereoisomeric ratios are reported into parenthesis. 
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Scheme 5 Functionalization of thiols with 1. Reaction conditions A: 1 (0.2 mmol), 
10 (0.24 mmol), Cs2CO3 (0.24 mmol), MeCN, rt, 16 h. Reaction conditions B: i. 1 
(0.2 mmol), 10 (0.24 mmol), Cs2CO3 (0.24mmol), DCM, rt, 16 h. ii. mCPBA (71%, 
1.2 mmol), DCM, rt, 2 h. Isolated yields are given. 

 

suitable substrates giving the corresponding products 9c and 

9d as a mixture of diastereoisomers in moderate yields (47% 

and 33%). Finally, as sulfur-containing fluorinated motifs are 

important in drug discovery,
4c,6,21

 we took advantage of the 

reactivity of 1 to extend the reaction to thiol derivatives to 

construct the SCHFMe motif (Scheme 5).
22 

First, the ethyl para-

mercaptobenzoate 10a was converted into 11 in an excellent 

90% isolated yield. Regarding the reaction of the para-

chlorothiophenol 10b and the benzylmercaptan 10c, an 

additional oxidation step of the sulfane intermediate was 

required to isolate the corresponding sulfones 12a and 12b in 

excellent yields over two steps, 92% and 72% yields, 

respectively.
23

 

In summary, we reported the straightforward synthesis of a 

new electrophilic reagent for the synthesis of OCHFMe 

derivatives. This sulfonium salt broadens the current toolbox 

of electrophilic reagents and was applied to the 

functionalization of a broad range of substrates including 

phenols, alcohols and thiols. The resulting products were 

obtained in moderate to excellent yields under simple and 

practical reaction conditions. This new methodology allows an 

easy access to the underdeveloped OCHFMe motif. Thus, we 

believe that this reagent will be useful to the discovery of new 

bioactive molecules bearing the OCHFMe motif. 
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