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aInstitut für Anorganische und Analytische Chemie der Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany

bPharmazeutisches Institut der Universität Freiburg, Hermann-Herder-Straße 9, 79104 Freiburg i. Br., Germany

Received 28 August 2000; revised 30 November 2000; accepted 1 December 2000

Dedicated to Prof. Dr. August W. Frahm on the occasion of his 65th birthday

Abstract – Stereoselective synthesis of all four stereoisomers of methylated analogues 8 of the k-receptor agonist GR-89.696 is
presented. Starting with orthogonally protected piperazine derivatives (R,R)-4 and (S,S)-4, the reaction sequence involves oxidation,
reductive amination and modification of the piperazine nitrogen protective groups. The configuration of the stereocentre in
a-position to the pyrrolidine moiety is determined by X-ray structure analysis of (R,S)-8. In receptor-binding studies with the
radioligand U-69.593, the stereoisomer with (S)-configuration at both stereogenic centres (S,S)-8 displayed the highest k-receptor
affinity with a Ki-value of 0.67 nM. © 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

In the brain and peripheral tissues, three distinct
opioid receptor subtypes, m, k and d, have been iden-
tified. It is well established that activation of each of
these receptor subtypes can produce analgesic effects.
Among ligands for these opioid receptor subtypes,
k-agonists are of particular interest, since only mini-
mal physical dependence, respiratory depression and
obstipation are associated with a strong analgesic
profile. Apart from their analgesic effects, k-agonists
may play a role as neuroprotectants in certain animal
models of cerebral ischaemia. However, application
of k-agonists may be limited by adverse side effects
including sedation, dysphoria and strong diuresis [1,
2].

The 3-(pyrrolidin-1-ylmethyl) substituted 1,4-dia-
cylpiperazines 1 belong to the most active and selec-

tive k-receptor agonists. In the diamide series, the
N1-propionyl-substituted piperazine 1a revealed the
highest k-receptor affinity in the rabbit vas deferens
functional in vitro assay (IC50=6.9 nM). A dramatic
enhancement of the k-receptor affinity by a factor of
170 was achieved with the bioisosteric carbamate 1b
(GR-89.696; IC50=0.041 nM), the k-receptor affinity
of which resides almost exclusively in the (R)-enan-
tiomer [(R)-1b: IC50=0.018 nM] [3, 4] (figure 1).

Figure 1.
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In the 2-(aminomethyl)piperidine substance class of
k-agonists an additional methyl group in a-position
to the dimethylamino group is, depending on the
stereochemistry, able to enhance k-receptor affinity
[5]. Accordingly, we envisioned that yet unknown
methylated (pyrrolidinylmethyl)piperidines or -piper-
azines of general structure 2 should be potent k-recep-
tor ligands. This prompted us to undertake the
synthesis and in vitro testing of those compounds.
One of the major issues of this study was to investi-
gate the influence of the stereochemistry of the second
chiral centre on k-receptor affinity.

In this communication, we report on the stereose-
lective synthesis of all four stereoisomeric methylated
(pyrrolinin-1-ylmethyl)piperazines 8, the elucidation
of their stereochemistry as well as on their k-receptor
affinities.

2. Chemistry

The synthesis of the piperazines 8 with (R)-configu-
ration in position 3 starts from the proteinogenic
amino acid (2S,3R)-threonine, which was transformed
via the intermediate bicyclic piperazinedione (S,R)-3
into the orthogonally protected (R,R)-configured 3-
(1-hydroxyethyl)piperazine (R,R)-4 according to liter-
ature [6]. During LiAlH4 reduction of the bicyclic
piperazinedione (S,R)-3 the stereodescriptor denoting
the stereocentre in position 3 is changed from (S) in 3
to (R) in the piperazines 4–8 since the priority of the
substituents according to the CIP rules is changed
(figure 2) [6].

The oxidation of the secondary alcohol (R,R)-4
succeeded with a catalytic amount of tetrapropylam-
monium perruthenate (Pr4N+ RuO4

–, TPAP) and an
excess of the reoxidant N-methylmorpholine-N-oxide
(NMMO) [7, 8] to provide the 3-acetylpiperazine (R)-
5 [9] in 85% yield.

Attempts to perform the reductive amination of the
ketone (R)-5 with pyrrolidine and NaBH3CN accord-
ing to the procedure of Borch and coworkers [10]
failed. However, a variation using the Lewis acid
Ti(OiPr)4 to accelerate iminium ion formation [11] led
to the diastereomeric pyrrolidines (R,S)-6 and (R,R)-
6 in the ratio 7:3. Flash chromatographic separation
afforded the diastereomers (R,S)-6 and (R,R)-6 in 62
and 25% yield, respectively.

The last steps in the reaction sequence represent
modifications of the piperazine nitrogen protective
groups. At first, the benzyl protective group (Bn) of 6
was hydrogenolytically (H2, Pd/C) [12] removed and,
subsequently, the secondary amines were acylated
with (3,4-dichlorophenyl)acetic acid (DCPAA) in the
presence of 1,1’-carbonyldiimidazole (CDI) to yield
the diastereomeric phenylacetamides (R,S)-7 and
(R,R)-7, respectively. Finally, the tert-butoxycar-
bonyl protective group (BOC) of 7 was cleaved with
trifluoroacetic acid/CH2Cl2 [13]. The resulting crude
secondary amines were acylated with propionyl chlo-
ride and NaOH in a biphasic system to afford the
diacyl piperazines (R,S)-8 and (R,R)-8, respectively
(figure 3).

The respective (3S)-configured enantiomers (S,R)-8
and (S,S)-8 were prepared in an analogous manner
starting with the enantiomeric amino acid (2R,3S)-
threonine.

3. X-ray analysis

The absolute configuration of the new stereocentre
generated by reductive amination of the ketone (R)-5,
could not be determined unequivocally by means of
NMR spectroscopy. However, X-ray suitable crystals
of the major diastereomer (R,S)-8 could be obtained
by means of purification by flash chromatography
and repeated recrystallisation from ethyl acetate. Ac-
cording to the X-ray structure analysis (figure 4),
unlike configurations [14] could be established un-
doubtedly for the two adjacent stereocentres. Since
the absolute configuration of the stereocentre in posi-Figure 2.
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Figure 3.

tion 3 of the piperazine ring is known from the
synthetic pathway to be (R), the newly generated side
chain stereocentre has to be (S)-configured. Conclu-
sively, and since the C-3 stereocentre remains unaf-
fected in the reaction sequence from 6 to 8, the
stereochemistry of the intermediates [(R,S)-7 and
(R,S)-6)] and diastereomers [(R,R)-6, (R,R)-7, (R,R)-
8] is established beyond any doubt.

In addition to elucidation of the configuration, the
X-ray analysis indicates that the 1-(pyrrolidin-1-
yl)ethyl residue in position 3 of the piperazine moiety
adopts an axial orientation. In solution, the C-3 sub-
stituent is also most likely to be forced into the axial
position because of the allylic 1,3-strain (A1,3 strain)
of the amide moiety [16]. This result is in accordance
with the X-ray structure of piperazine and piperidine
analogues with (aminomethyl) substituents [3, 17].

Figure 5.

Figure 4. ORTEP drawing of the X-ray structure of (R,S)-8 [15].
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Table I. k-Receptor affinities of the stereoisomeric piperazines 8.

Ki (nM)9S.E.M.Compound

(R,S)-8 \10 000
(S,R)-8 4396.1

4.290.38(R,R)-8
0.6790.17(S,S)-8
0.4990.16U-50.488

der Chemischen Industrie. Thanks are also due to the
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4. Receptor-binding studies

In order to determine the k-receptor affinities of the
stereoisomeric piperazines 8, in vitro receptor-binding
assays were performed using guinea-pig brain mem-
brane preparations as receptor material [18]. k-Recep-
tors were labelled with the radioligand [3H]-U-69.593
and non-specific binding was defined with an excess
of U-50.488 (figure 5) [19, 20].

The Ki-values of the stereoisomeric piperazines 8,
which are summarised in table I, reveal that in this
substance class the k-receptor affinity is strongly de-
pendent on the stereochemistry.

Thus, the like-configured [14] isomers (R,R)-8 and
(S,S)-8 show much higher affinities when compared to
the unlike stereoisomers (R,S)-8 and (S,R)-8. In both
diastereomeric pairs, the enantiomers with (3S)-
configuration display higher k-receptor affinities than
their (3R)-enantiomers. This observation is in accor-
dance with the reported higher k-receptor affinity of
(R)-1b [3, 4]. [Note, that the stereochemistry in posi-
tion 3 of (S,S)-8 and (S,R)-8 is equivalent to the
stereochemistry of (R)-1b, since the priority of the
substituents according to the CIP rules is changed.]
Comparison of the k-receptor affinities of the
diastereomers (S,S)-8 (Ki=0.67 nM) and (S,R)-8
(Ki=43 nM) indicates that (S)-configuration in the
side chain increases k-receptor affinity. Thus, combi-
nation of (S)-configuration in the piperazine ring sys-
tem with (S)-configuration in the side chain provides
(S,S)-8 with the highest k-receptor affinity.
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