

Available online at www.sciencedirect.com

Polyhedron 25 (2006) 1386-1390

Selenothiocarbonate complexes of iron: Structure of CpFe(CO)₂SeC(S)O-4-C₆H₄Cl

Mohammad El-khateeb *

Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan

Received 10 August 2005; accepted 27 September 2005 Available online 7 November 2005

Abstract

Stable complexes of general formula CpFe(CO)₂SeC(S)OR, where R = Ph(1a), 4-C₆H₄Cl (1b), 4-C₆H₄F (1c), C₆F₅ (1d), 4-C₆H₄CH₃ (1e), were prepared by the reaction of (μ -Se)[CpFe(CO)₂]₂ with ROC(S)Cl at room temperature. When a THF solution of 1 was photo-lyzed the chelate complexes CpFe(CO)($\kappa^2 Se$, S-SeC(S)OR) (2) were obtained in good yields. All of these complexes have been characterized by elemental analyses, IR and ¹H NMR spectroscopy. The structure of CpFe(CO)₂SeC(S)O-4-C₆H₄Cl (1b) is reported. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Complexes; Iron; Selenium; Selenothiocarbonate; Structure; Chlorothionoformates

1. Introduction

Considerable interest in organometallic complexes containing selenium ligands is promoted by their potential applications in areas such as material science [1–6], catalysis [7–10], electronic industry [11–13], and biochemistry [14–18]. Recently, some of these complexes have been used as precursors for the synthesis of metal selenides which are used in electronic devices [7–13]. Moreover, selenium has been found in a number of proteins and enzymes [14–18]. One class of hydrogenases is known to contain iron, nickel and selenium atoms. The enzyme isolated from *Desulfourbno baculatus* is a representative of this class of enzymes. X-ray absorption spectroscopy and EPR studies of this enzyme indicated that the Ni-atom is bonded to 3–4 nitrogen or oxygen atoms, 1–2 sulfur or chlorine atoms and one selenium atom of a selenocysteine residue [19–22].

Several transition metal polyselenide complexes have been reported in the literature. Insertion of elemental selenium into metal-metal bonds represents a successful route for the synthesis of such complexes. In this context, insertion of elemental selenium into the M–M bonds of the dimers $[CpM(CO)_2]_2$ gave $(\mu$ -Se_x) $[CpM(CO)_2]_2$ (M = Fe, x = 1; M = Ru, x = 5) [23–25]. The Cp-substituted Cr-dimers $[Cp'Cr(CO)_3]_2$ (Cp' = C₅H₄Me, C₅H₄COMe, C₅H₄CO₂Me) react with one equivalent of selenium to give the linear complexes (μ -Se) $[Cp'Cr(CO)_2]_2$ which contain two Cr–Se triple bonds. These linear complexes react with another equivalent of selenium to give the butterfly complexes (μ , κ^2Se , Se-Se₂) $[Cp'Cr(CO)_2]_2$ [26,27]. Tungsten selenides (μ -Se_m)- $[CpW(CO)_3]_2$ (m = 2, 3, 4) have been prepared by the reaction of the anion CpW(CO)₃Li with elemental selenium followed by oxidation of the resulting inserted products (CpW(CO)₃Se_nLi) [28].

Our investigation showed that the iron selenide complex, $(\mu$ -Se)[CpFe(CO)₂]₂, which contains two lone pairs of electrons around the selenium atom, is useful in the syntheses of several iron selenium complexes. Selenocarboxylates (CpFe(CO)₂SeCOR)[23] and selenosulfonates (CpFe(CO)₂-SeSO₂R) [29] have been synthesized by the reaction of this iron selenide with acid- or sulfonyl-chlorides, respectively. Photolytic reactions of the selenocarboxylate complexes with EPh₃ ligands (E = P, As, Sb) gave the CO-substituted products of the general formula CpFe(CO)(EPh₃)SeCOR [30]. More recently, iron selenocarbonate complexes, CpFe(CO)₂SeCO₂R, have also been prepared by treatment

^{*} Tel.: +962 2 7201000x23644; fax: +962 2 7095014. *E-mail address:* kateeb@just.edu.jo.

^{0277-5387/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2005.09.024

of $(\mu$ -Se)[CpFe(CO)₂]₂ with alkyl or aryl chloroformates [31].

Based on our previous reactions of the iron selenide with electrophiles [29–31] this paper describes its reaction with chlorothionoformates (ROC(S)Cl). This reaction was found to give the expected selenothiocarbonates, CpFe(CO)₂SeC-(S)OR. These complexes can be converted to the chelated complexes CpFe(CO)($\kappa^2 Se$, S-SeC(S)OR) upon photolysis.

2. Experimental

All manipulations were performed under an inert atmosphere of nitrogen using standard Schlenk line techniques. Diethyl ether, hexane and benzene were distilled from sodium/benzophenone ketyl under nitrogen. Dichloromethane was refluxed over P_2O_5 and distilled under nitrogen. The complex (μ -Se)[CpFe(CO)₂]₂ was prepared by literature method [23]. The reagents: chlorothionoformates, iron dimer [CpFe(CO)₂]₂, and selenium were obtained from Acros and were used as received.

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 200 MHz spectrometer. Chemical shifts are in ppm relative to TMS at 0 ppm. Infrared (IR) spectra were recorded on a Nicolat Nexus FT-IR spectrometer using NaCl solvent cells. Elemental analyses were done in Laboratoire d'Analyse Elémentaire, Université de Montréal, Montréal, Que., Canada. Melting points were reported on a Staurt Melting point apparatus (SMP3) and are uncorrected. The photolytic reactions were carried out in a medium pressure mercury lamp (150 W) with a quartz immersion cell.

2.1. General procedure for the preparation of $CpFe(CO)_2SeC(S)OR(1)$

The complex (μ -Se)[CpFe(CO)₂]₂ (0.22 g, 0.50 mmol) dissolved in diethyl ether (70 mL) was stirred under N₂ and chlorothionoformate (0.55 mmol) was added. After stirring overnight, the volatiles were removed under reduced pressure and the resulting solid was redissolved in a minimum amount of CH₂Cl₂ and introduced to a silica gel column made up in hexane. Elution with hexane removes the unreacted chlorothionoformates. Elution with hexane/dichloromethane solution (1:1 v:v ratio) gave a red-brown band which was collected and identified as CpFe(CO)₂SeC(S)OR, followed by a red band which was also collected and identified as CpFe(CO)₂Cl. The CpFe(CO)₂SeC(S)OR were recrystallized from dichloromethane/hexane.

2.1.1. $[CpFe(CO)_2SeC(S)OC_6H_5]$ (1a)

Yield: 72%. m.p. 159–160 °C. ¹H NMR (CDCl₃) δ 4.95 (s, 5H, C₅H₅); 7.41 (m, 5H, C₆H₅). IR (CH₂Cl₂, cm⁻¹) ν_{CO} 2035s, 1985s. Calc. for C₁₄H₁₀FeO₃SSe: C, 42.78; H, 2.56; S, 8.16. Found: C, 42.70; H, 2.44; S, 7.88%.

2.1.2. $[CpFe(CO)_2SeC(S)O-4-C_6H_4Cl]$ (1b)

Yield: 82%. m.p. 99–100 °C. ¹H NMR (CDCl₃) δ 5.06 (s, 5H, C₅H₅); 7.02 (d, 2H, C₆H₄); 7.37 (d, 2H, C₆H₄). IR

 $(CH_2Cl_2, cm^{-1}) v_{CO}$ 2037s, 1992s. Calc. for $C_{14}H_9ClFeO_3$ SSe: C, 39.33; H, 2.12; S, 7.50. Found: C, 39.02; H, 1.96; S, 7.00%.

2.1.3. $[CpFe(CO)_2SeC(S)O-4-C_6H_4F]$ (1c)

Yield: 80%. m.p. 136–137 °C. ¹H NMR (CDCl₃) δ 5.06 (s, 5H, C₅H₅); 7.06 (d, 2H, C₆H₄); 7.20 (d, 2H, C₆H₄). IR (CH₂Cl₂, cm⁻¹) ν_{CO} 2036s, 1991s. Calc. for C₁₄H₉FFeO₃ SSe: C, 40.90; H, 2.21; S, 7.80. Found: C, 39.98; H, 2.18; S, 7.11%.

2.1.4. $[CpFe(CO)_2SeC(S)OC_6F_5]$ (1d)

Yield: 87%. m.p. 133–134 °C. ¹H NMR (CDCl₃) δ 5.08 (s, H's, C₅H₅). IR (CH₂Cl₂, cm⁻¹) v_{CO} 2041s, 1997s. Calc. for C₁₄H₅F₅FeO₃SSe: C, 34.81; H, 1.04; S 6.64. Found: C, 34.34; H, 1.08; S, 5.98%.

2.1.5. $[CpFe(CO)_2SeC(S)O-4-C_6H_4Me]$ (1e)

Yield: 89%. m.p. 148–149 °C. ¹H NMR (CDCl₃) δ 2.33 (s, 3H, CH₃); 5.03 (s, 5H, C₅H₅); 6.93 (d, 2H, C₆H₄); 7.22 (d, 2H, C₆H₄). IR (CH₂Cl₂, cm⁻¹) ν _{CO} 2036s, 1991s. Calc. for C₁₅H₁₂FeO₃SSe: C, 44.25; H, 2.97; S, 7.88. Found: C, 44.46; H, 2.77; S, 7.50%.

2.2. General procedure for the preparation of $CpFe(CO)(\kappa^2Se,S-SeC(S)OR)$ (2)

A THF solution (30 mL) of CpFe(CO)₂SeC(S)OR (0.25 mmol) was irradiated under a stream of N₂ for 30 min. The volatiles were removed by vacuum and the resulting solid was dissolved in a minimum amount of dichloromethane and transferred to a silica gel column. The column was eluted with CH₂Cl₂/hexane (1:2 v:v ratio) to separate the products as an orange-brown band which were recrystallized from hexane.

2.2.1. $[CpFe(CO)(\kappa^2 Se, S-SeC(S)OC_6H_5)]$ (2a)

Yield: 85%. m.p. 102–103 °C. ¹H NMR (CDCl₃) δ 4.65 (s, 5H, C₅H₅); 7.10 (m, 5H, C₆H₅). IR (CH₂Cl₂, cm⁻¹) ν_{CO} 1954s. Calc. for C₁₃H₁₀FeO₂SSe: C, 42.77; H, 2.76; S 8.78. Found: C, 42.54; H, 2.66; S, 8.47%.

2.2.2. $[CpFe(CO)(\kappa^2 Se, S-SeC(S)O-4-C_6H_4Cl)]$ (2b)

Yield: 90%. m.p. 79–80 °C. ¹H NMR (CDCl₃) δ 4.65 (s, 5H, C₅H₅); 7.07 (d, 2H, C₆H₄); 7.35 (d, 2H, C₆H₄). IR (CH₂Cl₂, cm⁻¹) ν _{CO} 1947s. Calc. for C₁₃H₉ClFeO₂SSe: C, 39.08; H, 2.27; S, 8.03. Found: C, 39.60; H, 2.47; S, 7.38%.

2.2.3. $[CpFe(CO)(\kappa^2 Se, S-SeC(S)O-4-C_6H_4F)]$ (2c)

Yield: 78%. m.p. 95–96 °C. ¹H NMR (CDCl₃) δ 4.65 (s, 5H, C₅H₅); 7.11 (d, 2H, C₆H₄); 7.25 (d, 2H, C₆H₄). IR (CH₂Cl₂, cm⁻¹) ν _{CO} 1952s. Calc. for C₁₃H₉FFeO₂SSe: C, 40.77; H, 2.37; S, 8.37. Found: C, 40.34; H, 2.09; S, 7.95%.

2.2.4. $[CpFe(CO)(\kappa^2Se, S-SeC(S)OC_6F_5)]$ (2d)

Yield: 65%. m.p. 72–73 °C. ¹H NMR (CDCl₃) δ 4.69 (s, H's, C₅H₅). IR (CH₂Cl₂, cm⁻¹) v_{CO} 1959s. Calc. for

Table 1

Selected crystal data and refinement parameters for $\mbox{CpFe}(\mbox{CO})_2 \mbox{SeC}(\mbox{S}) \mbox{O-4-C}_6 \mbox{H}_4 \mbox{Cl}~(\mbox{1b})$

Empirical formula	C14H9ClFeO2SSe	
Formula weight	427.53	
Crystal size (mm)	$0.13 \times 0.10 \times 0.08$	
Crystal system	monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions		
a (Å)	6.9410(10)	
$b(\mathbf{A})$	13.4830(10)	
c (Å)	16.5320(10)	
α (°)	90.00	
β(°)	98.27(5)	
γ (°)	90.00	
$V(\dot{A}^3)$	1531.1(3)	
Z	4	
Index ranges	-9 < h < 9, 0 < k < 18, 0 < l < 23	
$D_{\rm calc} ({\rm Mg}{\rm m}^{-3})$	1.855	
Radiation type	Μο Κα	
$\mu (\mathrm{mm}^{-1})$	3.677	
λ (Å)	0.71069	
θ Range (°)	1.96-30.04	
$R[F^2 \ge 2\sigma(F^2)]$	0.0621	
$wR(F^2)^{a}$	0.036	
3 + (5)(-2) + (2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(

^a $w = 1/[\sigma^2(F_o^2) + (0.0426P)^2]$, where $P = (F_o^2 + 2F_o^2)/3$.

C₁₃H₅F₅FeO₂SSe: C, 34.32; H, 1.11; S, 7.05. Found: C, 33.71; H, 1.00; S 6.77%.

2.2.5. $[CpFe(CO)(\kappa^2 Se, S-SeC(S)O-4-C_6H_4Me)]$ (2e)

Yield: 92%. m.p. 88–89 °C. ¹H NMR (CDCl₃) δ 2.36 (s, 3H, CH₃); 4.66 (s, 5H, C₅H₅); 7.02 (d, 2H, C₆H₄); 7.20 (d, 2H, C₆H₄). IR (CH₂Cl₂, cm⁻¹) v_{CO} 1950s. Calc. for C₁₄H₁₂FeO₂SSe: C, 44.35; H, 3.19; S, 8.46. Found: C, 44.85; H, 3.07; S, 8.46%.

2.3. X-ray structure analysis

Single crystal of **1b** was obtained from CH₂Cl₂/hexane mixture. Intensity data were collected on a KappaCCD dif-

fractometer with graphite monochromated Mo K α radiation at 173 K. The crystallographic data are shown in Table 1. The cell parameters were determined from 5095 reflections collected in the range $1.96 \le \theta \le 30.04^\circ$. There were 4473 independent reflections with 3717 observed reflections (>2 $\sigma(I)$). The structure was solved by direct method using SHELXS-97 [32] and DIFMAP synthesis using SHELXTL-96 [33].

3. Results and discussion

3.1. Synthesis and characterization of 1

The selenothiocarbonate complexes $CpFe(CO)_2SeC$ (S)OR [R = Ph (1a), 4-C₆H₄Cl (1b), 4-C₆H₄F (1c), C₆F₅ (1d), 4-C₆H₄Me (1e)] were readily synthesized by stirring a diethylether solution of chlorothionoformates and (μ -Se)[CpFe(CO)₂]₂ (Scheme 1) at room temperature.

To the best of my knowledge, complexes 1 are the first selenothiocarbonate of iron to be reported. The analogues ethyl-dithiocarbonate complexes, Cp'Fe(CO)₂SC(S)OEt $(Cp' = C_5H_5, C_5Me_5)$ are reported by the reaction of $[Cp'Fe(CO)_2]_2$ and $[EtOC(S)S]_2$. Substitution reactions of these dicarbonyl complexes with phosphine or phosphite ligands gave Cp'Fe(CO)(L)SC(S)OEt (L = PPh₃, PBu₃, $P(OEt)_3$, $P(OPh)_3$ [34,35]. Complexes 1 are air stable as solids and in solutions. They are soluble in most common organic solvents such as THF, CH₂Cl₂ but sparingly soluble in hydrocarbons. These complexes were isolated as redbrown solids and characterized by elemental analysis, IR and ¹H NMR spectroscopy. The solution IR spectra of 1 (in CH₂Cl₂) exhibited two strong absorbances in the carbonyl region at 2035–2041 and 1985–1997 cm^{-1} . These v_{CO} stretches are comparable to those of CpFe(CO)₂-SeSO₂R (2038–2043 and 1993–1999 cm⁻¹) [29] and of CpFe- $(CO)_2SeCO_2R$ (2036–2043 and 1988–1993 cm⁻¹) [31] but higher than those of selenocarboxylates, CpFe(CO)₂SeCOR

R= Ph (a), 4-C₆H₄Cl (b), 4-C₆H₄F (c), C₆F₅ (d), 4-C₆H₄Me (e)

 $(2030-2035 \text{ and } 1965-1973 \text{ cm}^{-1})$ [23]. These results show that the ligands: selenosulfonates, selenocarbonates and selenothiocarbonates are of comparable basicity, and they all have higher basicity than the selenocarbxylate ligands.

The ¹H NMR spectra for complexes **1** are in accordance with their formulation. Their spectra display a singlet in the range 4.95–5.08 ppm for their cyclopentadienyl ring protons. This peak falls within the same range observed for selenocarbonates CpFe(CO)₂SeCO₂R (4.98–5.09 ppm) [12]. However, this peak is lower than that observed for selenosulfonate, CpFe(CO)₂SeSO₂R (5.19–5.24 ppm) [29] and of selenocarboxylate complexes, CpFe(CO)₂SeCOR (5.08–5.11 ppm) [23]. The resonances for the protons of the R-groups are observed in the expected values and multiplicity.

3.2. Synthesis and characterization of 2

Photolytic reaction of a THF solution of complexes 1 in the absence of added ligand leads to the generation of the chelate complexes CpFe(CO)($\kappa^2 Se, S$ -SeC(S)OR) (2). The selenocarbonate ligands in 2 are bonded to the metal through both the sulfur and the selenium atoms. These dark red complexes are soluble in most organic solvents including hydrocarbons. Solutions of 2 are quite air sensitive even under inert atmosphere. Upon exposure to air, they decompose within few minutes.

Complexes 2 are characterised by IR, ¹H NMR spectroscopy as well as elemental analysis. The IR spectra of 2 show the characteristic v_{CO} absorption in the range 1947–1959 cm⁻¹. This absorption is similar to those of CpFe(CO)(EPh₃)SeCOR (1941–1957 cm⁻¹) and are lower than those of the starting complexes 1. These differences might be attributed to the weak π -acid character of the chelate selenothiocarbonate ligand compared to that of carbonyl ligand. The ¹H NMR spectra of 2 show the Cppeak in the range 4.65–4.69 ppm. This peak is lower than that of the corresponding Cp-peak of complexes 1 and

within the same range observed for CpFe(CO)(EPh₃)-SeCOR (4.61–4.77 ppm).

3.3. Crystal structure

The structure of $CpFe(CO)_2SeC(S)O-4-C_6H_4Cl$ (1b) was determined crystallographically and is shown in Fig. 1. The relevant bond parameters are listed in Table 2. The complex adopts the geometry of a three-legged pianostool, with Cp as the base and the two carbonyls and the Se-coordinated selenothiocarbonate ligand as the legs. The Cp ligand is bound to the metal in an η^5 -fashion with Fe–C bond distances ranging between 2.081(3) and 2.112(3) Å. The Fe-C bond distances (of carbonyl ligands) of 1.785(3) and 1.769(3) Å are in normal range for CpFe(CO)₂X complexes. The Fe-Se bond length of 2.3958(5) Å is close to the range of Fe-Se bond lengths found in related iron complexes such as CpFe(CO)₂SeSO₂C₆H₅ [29] and CpFe(CO)₂-SeCO₂C₂H₅ [30]. The C=S bond distance of 1.633(3) Å is similar to that observed for $(PPh_3)_2Pt(CS_3)$ and (dppe)PtCS₃ [36].

Table 2 Selected bond length (\mathring{A}) and angles (°) of

Selected bond length (Å) and angles (°) of $CpFe(CO)_2SeC(S)O-4-C_6H_4Cl$ (1b)

Fe–Se	2.3985(2)	C8–Se–Fe	107.80(7)
Fe-C1	1.785(3)	C1–Fe–Se	88.51(9)
Fe–C2	1.769(3)	C2–Fe–Se	90.10(9)
Fe-C3	2.081(3)	C2-Fe-C1	95.12(13)
Fe–C4	2.098(3)	C8–O3–C9	119.71(19)
Fe-C5	2.112(3)	O3–C8–S	124.98(19)
Fe–C6	2.100(3)	O3–C8–Se	112.99(17)
Fe–C7	2.083(3)	S1–C8–Se	122.03(14)
Se–C8	1.881(2)		
S1–C8	1.633(3)		
C101	1.131(3)		
C2–O2	1.145(3)		
C8–O3	1.351(3)		

Fig. 1. ORTEP drawing of CpFe(CO)₂SeC(S)O-4-C₆H₄Cl (1b).

4. Supplementary materials

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 277847 for compound **1b**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1233 336 033; e-mail: deposit@ccdc. cam.ac.uk or www:http://www.ccdc.cam.ac.uk).

Acknowledgments

The author thanks the Deanship of Research, Jordan University of Science and Technology for financial support, Grant No. 119/2003. He also thanks Prof. Richard Welter (University of Strasburg, France) for determining the X-ray structure.

References

- S. Narayan, V.K. Jain, K. Panneerselvam, T.H. Lu, S.F. Tung, Polyhedron 18 (1999) 1253.
- [2] A. Singhal, V.K. Jain, R. Misra, B. Varghese, J. Mater. Chem. (2001) 1121.
- [3] S. Dey, V.K. Jain, S. Chaudhury, A. Knoedler, F. Lissner, W. Kaim, J. Chem. Soc., Dalton Trans. (2001) 723.
- [4] S. Dey, V.M. Jain, A. Knoedler, W. Kaim, Inorg. Chim. Acta 349 (2003) 104.
- [5] S. Dey, V.M. Jain, S. Chaudhury, A. Knoedler, W. Kaim, Polyherdon 22 (2002) 489.
- [6] P. Arsenyan, K. Oberte, K. Rubina, S. Belyakov, Tett. Lett. (2005) 1001.
- [7] J.R. Dilworth, N. Wheatley, Coord. Chem. Rev. 119 (2000) 89.
- [8] J. Real, M. Pages, A. Polo, J.F. Pinella, A. Alvarez-Larena, Chem. Commun. (1999) 277.
- [9] W.A. Jones, M.R. Chim, J. Am. Chem. Soc. 116 (1994) 198.
- [10] M. Misono, N. Nojiri, Appl. Catal. 64 (1990) 1.
- [11] D.A. Gaul, W.S. Rees Jr., Adv. Mater. 12 (2000) 1029.
- [12] H. Ando, H. Inuzuka, K. Takahashi, J. Appl. Phys. 58 (1985) 802.
- [13] E.G. Hope, W. Levason, Coord. Chem. Rev. 122 (1993) 109.

- [14] C.M. Goldman, M.M. Olmstead, P.K. Mascharak, Inorg. Chem. 35 (1996) 2752.
- [15] C.A. Grapperhaus, M.Y. Darensbourg, L.W. Sumner, D.J. Russell, J. Am. Chem. Soc. 118 (1996) 1791.
- [16] C. Zhou, L. Cai, R.H. Holm, Inorg. Chem. 35 (1996) 2767.
- [17] A. Volbeda, E. Garcin, C. Piras, A.L. de Lacey, V.M. Fernandez, E.C. Hatchikian, M. Frey, J.C. Fontecilla-Camps, J. Am. Chem. Soc. 118 (1996) 12989.
- [18] M.K. Eidsness, R.A. Scott, B.C. Prickril, D.V. DerVartanian, J. LeGall, I. Moura, J.J.G. Moura, H.D. Peck, Proc. Natl. Acad. Sci. USA 86 (1989) 147.
- [19] G. Voordouw, N.K. Menon, J. LeGall, E.S. Chai, H.J. Peck, A.E. Przybyla, J. Bacteriol. 171 (1989) 2894.
- [20] C. Zirngibl, W. van Dongen, B. Scworer, R. Von Bunau, M. Richter, A. Klein, R.K. Thaner, Eur. J. Biochem. 208 (1992) 511.
- [21] M. Teceira, G. Frnque, I. Moura, P.A. Lespinat, Y. Berlier, B. Prickril, H.J. Peck, A.V. Xavier, J. LeGall, J.J. Moura, J. Biochem. 167 (1987) 47.
- [22] M.K. Eidsness, R.A. Scott, B.C. Prickill, D.V. DerVartanian, J. LeGall, I. Moura, J.J.G. Moura, H.D. Peck Jr., Proc. Natl. Acad. Sci. USA 86 (1989) 147.
- [23] I. Jibril, O. Abu-Nemrih, Synth. Reac. Inorg. Met. Org. Chem. 26 (1996) 1409.
- [24] W.A. Herman, J. Rohrmann, H. Hecht, J. Organomet. Chem. 290 (1985) 53.
- [25] I. Jibril, F.T. Esmadi, H. El-Masri, L. Zsolnai, G. Huttner, J. Organomet. Chem. 510 (1996) 109.
- [26] L.-C. Song, H.W. Cheng, Q.-M. Hu, Organometallics 23 (2004) 1072.
- [27] L.-C. Song, H.W. Cheng, Q.-M. Hu, J. Organomet. Chem. 689 (2004) 1849.
- [28] P.G. Jones, C. Thöne, Inorg. Chem. 35 (1996) 6625.
- [29] M. El-khateeb, T. Obidate, Polyhedron 20 (2001) 2393.
- [30] M. El-khateeb, A. Lataifeh, I. Jibril, Trans. Met. Chem. 28 (2003) 85.
- [31] M. El-khateeb, Inorg. Chim. Acta 357 (2004) 4341.
- [32] G.M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.
- [33] G.M. Sheldrick, SHELXL-96, Program for the Refinment of Crystal Structures, University of Göttingen, Germany, 1996.
- [34] M. Moran, I. Cuadrado, J.R. Masaguer, J. Losada, J. Organomet. Chem. 335 (1987) 255.
- [35] M. Moran, I. Cuadrado, C. Munoz-Reja, J.R. Masaguer, J. Losada, J. Chem. Soc., Dalton Trans. (1988) 149.
- [36] S.A. Aucott, A.M.Z. Alexander, J.D. Woolins, Polyhedron 19 (2000) 499.