ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. Mitra, J. Lloret Fillol, M. Haukka, M. Costas, and E. Norlander, *Chem. Commun.*, 2013, DOI: 10.1039/C3CC47830K.

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/chemcomm Registered Charity Number 207890 www.rsc.org/xxxxx

ARTICLE TYPE

Evidence that Steric Factors Modulate Reactivity of Tautomeric Iron-Oxo Species in Stereospecific Alkane C-H Hydroxylation[†]

Mainak Mitra,^{*a*} Julio Lloret-Fillol,^{*b*} Matti Haukka,^{*c*} Miquel Costas,^{*b*} Ebbe Nordlander^{*a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A new iron complex mediates stereospecific hydroxylation of alkyl C-H bonds with hydrogen peroxide, exhibiting excellent efficiency. Isotope labelling studies provide evidence that the relative reactivity of tautomerically related oxoiron species responsible for the C-H hydroxylation reaction are dominated by steric factors.

While the selective functionalization of hydrocarbons remains a significant challenge for chemists,¹ several iron-dependent oxygenases are able to mediate the hydroxylation of C-H bonds ¹⁵ under mild conditions, using dioxygen as the terminal oxidant.² Examples include the cytochrome P450 enzymes,³ and the family of non heme iron-dependent Rieske oxygenases.⁴ In both cases, C-H hydroxylation occurs with almost complete stereoretention, and is accomplished via the intermediacy of an electrophilic high ²⁰ valent iron-oxo species that attacks the C-H bond via the so-called oxygen-rebound mechanism (Scheme 1).⁵

Scheme 1. Schematic mechanism for C-H hydroxylation by a Rieske oxygenase enzyme.

- ³⁰ A fundamental difference between heme and non-heme sites is that active sites in the latter contain lower coordination numbers, and a number of them form reactive intermediates containing a cis-Fe(O)(X) unit (X = HO(H), Cl, Br). This leads to a versatile reactivity that opens new mechanistic scenarios. Arene *cis*-
- $_{35}$ dihydroxylation and aliphatic chlorination constitute unique examples of the reactivity exhibited by *cis*-Fe(O)(X) units (X = OH, Cl, Br).^{4,5b,6}

The reactivity of non-heme oxygenases has inspired the design of synthetic model complexes as selective C-H oxidation catalysts.⁷

- ⁴⁰ Mechanistic studies have shown that in selected cases reactions are metal based, involving high-valent oxo-iron species, and are fundamentally distinct from radical pathway Fenton processes.⁸ The Fe(PyTACN) family of complexes (Scheme 2) belongs to the group of catalysts that mediate C-H hydroxylation with retention
- 45 of configuration.^{8d} We and others have proposed a mechanistic

scenario resembling the "peroxide shunt"³ of cytochrome P450 and model systems. A highly electrophilic $[Fe^{V}(O)(OH)(L^{N4})]^{2+}$ oxidant (**O**), formed via water-assisted cleavage of a hydroperoxide $[Fe^{II}(OOH)(OH_2)(L^{N4})]^{2+}$ (**P**_B) (Scheme 2) is ⁵⁰ ultimately responsible for C-H oxidation reactions.^{8a,8d,9-11} Intermediate **O** can exist as two tautomerically related species, **O**_A and **O**_B, that differ in the relative positions of the oxo and hydroxide ligands, and are connected through a prototopic oxohydroxo tautomerism. We have also previously studied C-H ⁵⁵ oxidation reactions with a set of catalysts where electronic properties of the PyTACN ligand were systematically tuned, and found that the relative reactivity of **O**_A and **O**_B in C-H oxidations remain basically the same, irrespective of the catalyst.^{8d}

Scheme 2. Mechanism for substrate oxidation by Fe(PyTACN) complexes

- ⁷⁰ In this work we turn our attention to investigation of steric effects. Towards this end, C-H oxidation reactions catalyzed with the new iron complex [Fe^{II}(CF₃SO₃)₂(^{Me2,BzIm}TACN)] (Figure 1), **1**^{OTF}, were studied. The new tetradentate ligand ^{Me2,BzIm}TACN has been developed by replacing the pyridyl arm of the PyTACN ⁷⁵ scaffold by an N-methyl benzimidazolyl substituent. The sp² character and the rigidity of the latter substituent should provide a well-defined steric demand, intermediate between the α -H and the α -Me groups of a pyridine (Scheme 2, catalysts **2**^{OTF} and **3**^{OTF}). On the other hand, the relative donor capacities of pyridine so and benzimidazole may be estimated as very similar by comparing the pKa values of their conjugate acids (5.22 for pyridine, 5.41 for benzimidazole and 5.57 for α -Me pyridine), and therefore differences in reactivity among this set of complexes can be traced to steric factors.
- ss The complexes $[Fe^{II}(CF_3SO_3)_2(^{Me2,BzIm}TACN)]$, $\mathbf{1}^{OTF}$ and $[Fe^{II}(H_2O)_2(^{Me2,BzIm}TACN)](CF_3SO_3)_2$, $\mathbf{1}^{H2O}$ were prepared and

25

characterized following standard procedures (see SI for details). The X-Ray structures of 1^{OTr} and 1^{H2O} are very similar to 2^{OTr} and 3^{OTr} and have an iron center in a distorted octahedral environment surrounded by the four N atoms of the ligand, with ⁵ the TACN ring capping one face of the octahedron, and two oxygen atoms from triflate anions (1^{OTr}) or water molecules (1^{H2O}) *cis* to each other (*cf.* Figure 1 and ESI).^{8d} Average Fe-N_{TACN} and Fe-O_{H2O} distances are 2.23 Å and 2.13 Å respectively, characteristic of a high spin distorted ferrous center.¹²

Fig. 1. Molecular structure of $[Fe^{II}(H_2O)_2(^{Me2,BzIm}TACN)]^{2+}$ (1^{H2O}) with 30% probability ellipsoids; H-atoms have been 20 omitted for clarity.

- Complex 1^{OTT} was found to be an outstanding catalyst in C-H oxidation reactions with H_2O_2 . Catalytic oxidation of cyclohexane was chosen for proper comparison with literature ²⁵ precedents.^{8,13} Syringe pump addition of 10 equivalents (w.r.t. the complex) of H_2O_2 together with 1000 equivalents of H_2O^8 to a CH₃CN solution containing **1** and substrate (1000 equivalents) over 30 min in air at room temperature resulted in the formation of cyclohexanol (A) with turnover numbers (TON) of 8.5 and a ³⁰ small amount of cyclohexanone (K) with TON of 0.8, giving an alcohol/ketone (A/K) ratio of 10.6. The efficiency w.r.t. consumption of oxidant was around 99-100%, and remains unusually high (54%) when 100 equiv. of H_2O_2 are employed. Interestingly, when followed over time, the A/K product ratio in
- ³⁵ oxidation of cyclohexane showed that the initial value for A/K was around 35, which gradually decreased to 10.6 (*cf.* Figure S5, ESI[†]). This provides strong evidence that cyclohexanol is the almost exclusive primary product of the alkane oxidation reaction, and cyclohexanone is a result of further oxidation of the ⁴⁰ alcohol, thereby eliminating the significant implication of a
- Russell-type termination mechanism initiated by hydroxyl radicals and producing equal amounts of alcohol and ketone.

Several mechanistic probes further substantiate that the reactions are metal-based. The intermolecular kinetic isotope effect was

- ⁴⁵ determined for the formation of cyclohexanol from a mixture (1:3) of cyclohexane and its deuterated isotopomer cyclohexaned₁₂, and was found to be 5. Also, complex 1^{OTI} oxidizes adamantane with a large C3/C2 normalized selectivity (14) towards the tertiary C-H bond. The oxidation of *cis*-1,2-
- ⁵⁰ dimethylcyclohexane (DMCH) leads to the corresponding tertiary alcohol product with 97% retention of configuration. These data are consistent with the implication of selective oxidants whose relative reactivities against C-H bonds are modulated by their bond strengths and steric properties.^{7a} The reactivity of **1**^{OTF}
- ⁵⁵ against these mechanistic probes is thus in good accordance with that described for iron catalysts that mediate stereospecific C-H

hydroxylation, including those of the [Fe(PyTACN)] family. Since these catalysts operate via a $[Fe^{V}(O)(OH)(L^{N4})]^{2+}$ (O) oxidant, ^{8a,d,10-11} the same was tentatively inferred for **1**^{OTF}. Strong ⁶⁰ experimental evidence in favor of this scenario arises from olefin *cis*-dihydroxylation reactions. The water assisted cleavage of the O-O bond (Scheme 2) determines the oxygen atom inventory in the HO-Fe^V=O oxidant (O). One of the oxygen atoms originates from the water molecule, while the second oxygen atom is

⁶⁵ derived from the peroxide. *Cis*-dihydroxylation reactions incorporate both oxygen atoms from **O** into the product and consequently *syn*-diols must contain one oxygen atom that originates from water and one oxygen from the peroxide.¹¹ Indeed, **1**^{OTT} catalyzes the oxidation of cyclooctene 70 (**1**^{OTT}:H₂O₂:H₂¹⁸O:cyclooctene, 1:10:1000:1000) affording *cis*-cyclooctene epoxide (TON = 2) and *syn*-cyclooctane-1,2-diol (TON = 7). The *syn*-diol is 98% ¹⁶O¹⁸O labeled, providing strong support in favor of **O** as the oxidant.

Having obtained positive evidence that 1^{OTr} operates through the ⁷⁵ same mechanism as 2^{OTr} and 3^{Otr} , we proceeded to investigate the relative reactivity of the O_A/O_B tautomers in C-H hydroxylation reactions. Since the origin of the oxygen atoms is determined in the peroxide precursor (P_B), the relative reactivity of O_A and O_B in C-H hydroxylation can be probed using isotopically labeled ⁸⁰ water and hydrogen peroxide (Scheme 2). The oxidation of cyclohexane by 1^{OTr} in the presence of 10 equivalents of $H_2^{18}O_2$ and 1000 equivalents of H_2O afforded 45% ¹⁸O-labeled cyclohexanol. Complementary experiments with 10 equivalents of H_2O_2 and 1000 equivalents of $H_2^{18}O$ afforded 48% ¹⁸O-labeled so cyclohexanol (Table 1).

$$H \xrightarrow{H_2^{16}O_2 (10 \text{ equiv.})}_{CH_2^{16}O_2 (1000 \text{ equiv.})} \xrightarrow{H_2^{16}OH}_{H_2^{16}O_1 (1000 \text{ equiv.})} \xrightarrow{H_2^{16}OH}_{H_2^{16}OH} + \underbrace{H_2^{16}OH}_{H_2^{16}OH} + \underbrace{H_2^{16}OH}_{H_2$$

Table	1.	Comparison	of	percentage	of ¹⁸ O	incorporation	into	alcohol
produc	ts b	y different F	e-ca	talysts using	g 1000	equivalents of I	$H_2^{18}O$	1

Substrate	1 ^{OTf}	2 ^{OTf}	3 ^{OTf}	Fe(TPA) ^b
Cyclohexane	48	45	11	29
Cyclohexane-d ₁₂	48	40	-	35
Cyclooctane	41	44	-	23
Cis-DMCH	26	79	2	6
Adamantane	28	74	3	6
Cis-cyclooctene ^a epoxide	24	77	5	9
Syn-cyclooctane- 1,2-diol ^a	98	97	78	86

Similar levels of ¹⁸O-label incorporation from $H_2^{18}O$ were observed in the case of cyclooctane (41%) and cyclohexane- d_{12} (48%). These levels of water incorporation are unusually high, only bypassed in the literature by $2^{OTF_{8d-e}}$ and constitute strong evidence that O_A and O_B are roughly equally reactive against secondary C-H bonds. Most interestingly, when the substrates contain tertiary C-H bonds (e.g. DMCH and adamantane), the percentages of ¹⁸O incorporation from $H_2^{18}O$ were found to be in the range 25-29%, indicating a preferential oxidation via O_A . Interpretation of these values can be done by considering those obtained with 2^{OTF} and 3^{OTF} in analogous reactions. Table 1

10

15

Published on 04 November 2013. Downloaded by FORDHAM UNIVERSITY on 05/11/2013 10:45:46.

105

shows that hydroxylation of tertiary C-H bonds mediated by 2^{Otf} is predominantly performed by O_B as shown by the large extent of oxygen atoms originating from water in the alcohol product (up to 79%, cf. Table 1). Instead, hydroxylation of secondary C-H 5 bonds occurs with incorporation of ~ 40% of oxygen atoms from water, suggesting comparable reactivity of both tautomers. In

sharp contrast, hydroxylations catalyzed by 3^{OTf} exhibit a relatively small extent (~ 10%) of water incorporation in hydroxylation of secondary C-H bonds, and negligible (< 3%) 10 incorporation in the hydroxylation of tertiary C-H sites, indicating that hydroxylation is almost exclusively performed by O_A .

Therefore, the relative reactivity of the two tautomeric forms of the $[Fe^{V}(O)(OH)(L^{N4})]^{2+}$ (**O**) intermediate is finely tuned among 15 the series of catalysts (1^{OTT}-3^{OTT}), a fact that contrasts with the small effects exerted when the electronic properties of the pyridine in a series of catalysts is altered.^{8d} Trends observed for 1^{OTT}-3^{OTT} may thus be rationalized on the basis of steric effects. The benzylimidazole ring introduces steric bulk in the proximity 20 of position B at the iron center that is intermediate between that set by pyridine and 6-Me-pyridine arms (Fig. 2). Accordingly, when secondary C-H bonds are hydroxylated, 1^{OTf} behaves as 2^{OTF} , i.e. tautomers O_A and O_B are equally implicated in the C-H oxidation reaction. Instead, oxidation of sterically more 25 demanding tertiary C-H bonds yield levels of water incorporation that suggest predominant participation of O_A as in the case of 3^{OTf} , although unlike in the latter case, implication of O_B remains significant (~25%) because steric hindrance at position B induced by the C- C-sp² benzylimidazol moiety is smaller than the one ³⁰ caused by a C-sp³ methyl substituent.

Figure 2. Comparative analysis of the steric bulk in proximity to site B.

In conclusion, the present work adds to the growing evidence that ³⁵ the coordination environment at non heme sites opens reactivity scenarios unattainable by hemes. Here we have shown that systematic tuning of the steric properties of the two sites in the *cis*-Fe(O)(X) unit translates into systematic differences in relative reactivity of the two iron-oxo tautomers. We postulate that

⁴⁰ analogous steric conditions may influence the relative reactivities of putative tautomers in non-heme iron oxygenases.

This work has been supported by the European Union (the Erasmus Mundus program), the International Research Training

⁴⁵ Group Metals Sites in Biomolecules: Structures, Regulation and Mechanisms (<u>www.biometals.eu</u>), COST Action CM1003. We thank Prof. Albert A. Shteinman for fruitful discussions and Dr. Santanu Mandal for ¹³C-NMR measurements.

Notes and references

 ⁵⁰ ^aChemical Physics, Department of Chemistry, Lund University,Lund,P.O.Box-124,SE-22100, Sweden. Fax: +46-46-22 24119; Tel: +46-46-22 28118; E-mail: <u>Ebbe.Nordlander@chemphys.lu.se</u>.
 ^bQBIS Group, Department of Chemistry, University de Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain. Fax: +34 972 41 81 50; Tel:
 ⁵⁵ +34 972 41 98 42; E-mail: miquel.costas@udg.edu.

^cDepartment of Chemistry, University of Jyväskylä, Jyväskylä, Finland.

† Electronic Supplementary Information (ESI) available: Ligand synthesis, complex synthesis, proton NMR spectra, ESI-MS and IR

- ⁶⁰ spectra of the complex, crystallographic data for complexes 1^{OTf} and 1^{H2O}, catalysis experiments and results, details of isotope labelling experiments. CCDC no 960138 and 960139. For ESI and crystallographic data in CIF format see DOI: 10.1039/b000000x/.
- A/K selectivity values were obtained 65 when H₂O (1000 equiv.) was not specifically added.
- (a) T. Newhouse and P. S. Baran, Angew Chem. Int. Ed., 2011, 50, 3362–3374; (b) L. McMurray, F. O'Hara and M. J. Gaunt, Chem. Soc. Rev., 2011, 40, 1885-1898; (c) M. Bordeaux, A. Galarneau and J. Drone, Angew. Chem. Int. Ed., 2012, 51, 10712-10723.
- 70 2 (a) C. E. Tinberg and S. J. Lippard, Acc. Chem. Res., 2011, 44, 280-288; (b) M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Jr., Chem. Rev., 2004, 104, 939-986; (c) M. M. Abu-Omar, A. Loaiza and N. Hontzeas, Chem. Rev., 2005, 105, 2227-2252; (d) E. G. Kovaleva and J. D. Lipscomb, Nat. Chem. Biol., 2008, 4, 186-193.
- 75 3 (a) J. T. Groves, Cytochrome P-450. Structure, Mechanism, and Biochemistry, 3rd ed.; P. R. Ortiz de Montellano, Ed., Plenum Press: New York, 2005, 1-43; (b) P. R. Ortiz de Montellano, Chem. Rev., 2010, **110**, 932-948.
- 4 (a) D. T. Gibson and R. E. Parales, *Curr. Opin. Biotechnol.*, 2000, 11,
 236-243; (b) A. Karlsson, J. V. Parales, R. E. Parales, D. T. Gibson,
 H. Eklund and S. Ramaswamy, *Science*, 2003, 299, 1039-1042.
- 5 (a) J. T. Groves, G. A. McClusky, R. E. White and M. J. Coon, Biochem. Biophys. Res. Comm., 1978, 81, 154-160; (b) S. Chakrabarty, R. N. Austin, D. Deng, J. T. Groves and J. D. Lipscomb, J. Am. Chem. Soc., 2007, 129, 3514-3515.
- 6 D. P. Galonić, E. W. Barr, C. T. Walsh, J. M. Bollinger and C. Krebs, Nat. Chem. Biol., 2007, 3, 113-116.
- 7 (a) L. Que and W. B. Tolman, *Nature*, 2008, 455, 333-340. (b) M. C. White, *Science*, 2012, 335, 807-809; (c) E. B. Bauer, *Curr. Org. Chem.*, 2008, 12, 1341-1369.
- 8 (a) K. Chen and L. Que, Jr., J. Am. Chem. Soc., 2001, 123, 6327-6337; (b) J. Yoon, S. A. Wilson, Y. K. Jang, M. S. Seo, K. Nehru, B. Hedman, K. O. Hodgson, E. Bill, E. I. Solomon and W. Nam, Angew. Chem. Int. Ed., 2009, 48, 1257-1260; (c) S. H. Lee, J. H. Han, H.
- ⁹⁵ Kwak, S. J. Lee, E. Y. Lee, H. J. Kim, J. H. Lee, C. Bae, S. N. Lee, Y. Kim and C. Kim, *Chem. Eur. J.*, 2007, **13**, 9393-9398; (d) I. Prat, A. Company, V. Postils, X. Ribas, J. Lawrence Que, J. M. Luis and M. Costas, *Chem. Eur. J.*, 2013, **19**, 6724-6738; (e) Y. Hitomi, K. Arakawa, T. Funabiki and M. Kodera, *Angew. Chem. Int. Ed.*, 2012, **51**, 3448-3452.
 - 9 DFT calculations indicate that isomeric peroxide P_A is not implicated in the chemistry. See ref. 8e.
 - (a) D. Quinonero, K. Morokuma, D. G. Musaev, R. Mas-Balleste and L. Que, Jr., *J. Am. Chem. Soc.*, 2005, **127**, 6548-6549; (b) A. Bassan, M. R. A. Blomberg, P. E. M. Siegbahn and L. Que, Jr., *J. Am. Chem. Soc.*, 2002, **124**, 11056-11063.
 - 11 (a) I. Prat, J. S. Mathieson, M. Guell, X. Rivas, J. M. Luis, L. Cronin and M. Costas, *Nat. Chem.*, 2011, **3**, 788-793; (b) W. N. Oloo, A. J. Fielding and L. Que, Jr., *J. Am. Chem. Soc.*, 2013, **135**, 6438-6441.
- 110 12 (a) D. Blakesley, S. C. Payne and K. S. Hagen, *Inorg. Chem.*, 2000, 39, 197-198; (b) Y. Zang, J. Kim, Y. Dong, E. C. Wilkinson, E. H. Appelman and L. Que, Jr., *J. Am. Chem. Soc.*, 1997, 119, 4197-4205.
- 13 (a) J. England, C. R. Davies, M. Banaru, A. J. P. White and G. J. P. Britovsek, *Adv. Synth. Catal.*, 2008, **350**, 883-897; (b) G. J. P.
 ¹¹⁵ Britovsek, J. England and A. J. P. White, *Inorg. Chem.*, 2005, **44**, 8125-8134; (c) P. Comba, M. Maurer and P. Vadivelu, *Inorg. Chem.*, 2009, **48**, 10389-10396; (d) Y. Mekmouche, S. Ménage, C. Toia-Duboc, M. Fontecave, J.-B. Galey, C. Lebrun and J. Pecaut, *Angew. Chem. Int. Ed.*, 2001, **40**, 949-952; (e) Y. He, J. D. Gorden and C. R.
 ¹²⁰ Goldsmith, *Inorg. Chem.*, 2011, **50**, 12651-12660.