

Tetrahedron Letters 40 (1999) 4467-4471

TETRAHEDRON LETTERS

Formation and cycloaddition of nonstabilized N-unsubstituted azomethine ylides from (2-azaallyl)stannanes and (2-azaallyl)silanes

William H. Pearson * and Roger B. Clark

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA

Received 6 January 1999; accepted 26 March 1999

Abstract

Protodestannylation or protodesilylation of (2-azaallyl)stannanes or (2-azaallyl)silanes led to the formation of nonstabilized N-unsubstituted azomethine ylides, which underwent cycloadditions with electron-poor alkenes to produce 2-alkyl- or 2,5-dialkylpyrrolidines. 1,3-Disubstituted ylides derived from the stannanes and silanes gave stereochemically complementary results; the stannanes led to *trans*-2,5-dialkylpyrrolidines with high stereo-selectivity, whereas the silanes led to *cis*-2,5-dialkylpyrrolidines with moderate stereoselectivity. © 1999 Elsevier Science Ltd. All rights reserved.

The cycloaddition of azomethine ylides with dipolarophiles is an important method for the construction of five-membered-ring nitrogen heterocycles.¹ While several methods for the formation of nonstabilized² *N*-substituted azomethine ylides **2a** are known,^{3,4} there appears to be only two methods for the generation of nonstabilized *N*-unsubstituted azomethine ylides **2b**, both of which lack either efficiency or generality.^{3f,g,5} First, the decarboxylation of imines derived from the condensation of α -aminoacids with aldehydes produces 1,3-dialkyl azomethine ylides **2b**, which undergo inefficient cycloadditions to produce 2,5-dialkylpyrrolidines **3** with poor *trans:cis* stereoselectivity.^{3f,g,5} Second, Tsuge and coworkers have reported the water-induced generation of certain *N*-unsubstituted azomethine ylides **2b** (R¹=Ph or *t*-Bu, R²=H) from *N*-(silylmethyl)imines, which are available from the condensation of aldehydes with (aminomethyl)trimethylsilane.⁶ Notably absent are ylides derived from enolizable *N*-(silylmethyl)imines or 1,3-disubstituted ylides derived ultimately from branched α -aminosilanes. We recently reported the generation of nonstabilized azomethine ylides **2a** by the intra- or intermolecular *N*-alkylation of (2azaallyl)stannanes **1a** or (2-azaallyl)silanes **1b**.⁴ We now wish to report our studies on the generation and cycloadditions of nonstabilized 1-alkyl and 1,3-dialkyl *N*-unsubstituted azomethine ylides **2b**, which may be generated by the protodestannylation or protodesilylation of **1a** or **1b** with protic acids. Surprisingly,

^{*} Corresponding author. Fax: +1 734-763-2307; e-mail: wpearson@umich.edu

the *trans:cis* stereoselectivities observed in cycloadditions of the ylides **2b** with electron deficient alkenes was found to depend on whether the stannanes **1a** or the silanes **1b** were used.

The (2-azaallyl)stannanes **6a-d** and (2-azaallyl)silanes **6e,f** were prepared as outlined in Table 1. The tin- or silicon-bearing phthalimide derivatives **4a**– e^{7-9} were deprotected by hydrazinolysis to afford the corresponding α -stannyl- or α -silylamines **5a-c** and **5d,e**, respectively.^{7,8} The α -stannylamines **5a-c** were isolated after an aqueous workup and used without further purification, whereas the α -silylamines **5d,e** were isolated by distillation directly from the reaction mixture. Condensation of the appropriate amine with an aldehyde gave the imines **6a–f**. Imines **6a** and **6e** were isolated and purified by distillation. Silyl imine **6f** was prepared in situ without isolation or removal of water due to its high volatility. The stannyl imines **6b–d** were prepared in a similar fashion. Note that while α -aminostannanes (including branched versions) are readily prepared and easily handled,^{7,8} branched α -aminosilanes are rare in the literature¹⁰ and difficult to manipulate due to their volatility.

Table 1
Preparation of (2-azaallyl)stannanes and (2-azaallyl)silanes

M	[N ₂ H ₄ •H	20 M	R ²	СНО	M	
R ¹ /NPhthal		Condit A or		NH ₂ Cor	nditions or D		N R2
4 a-o			5 a-e			64	}-1
Phthalimi	de M	R ¹	Hydrazinolysis conditions ⁴	s Amine 5 (yield) ^b	R ²	Condensation conditions ^c	lmine 6 (yield) ^b
4a	SnBu ₃	[/] Pr	A	5a ()	[/] Pr	С	6a (92%)
4 a	SnBu₃	'Pr	Α	5a ()	Me	D	6b ()
4b	SnBu ₃	Me	A	5b ()	/Pr	D	6c ()
40	SnBu ₃	н	Α	5c ()	[/] Pr	D	6d ()
4d	SiMe ₃	[/] Pr	В	5d (94%)	/Pr	С	6e (51%)
40	SiMe ₃	н	В	5e (76%)	/Pr	D	6f ()

^aHydrazinolysis conditions: A) $N_2H_4 \circ H_2O$, EtOH, reflux followed by aqueous workup. B) $N_2H_4 \circ H_2O$, amine distilled from reaction mixture. ^bIsolated yield of purified material.

(--) indicates that the material was used without purification. Condensation conditions:

C) Et₂O, 4Å molecular sieves, RT, 1hr, followed by concentration and distillation.

D) THF or toluene, RT, 5 min, no isolation or removal of water.

Table 2 summarizes the cycloadditions of ylides derived from both (2-azaallyl)stannanes and -silanes.^{11,12} Good to excellent yields (55–84%) of pyrrolidines were obtained, improving on the 10–30% yields observed in the decarboxylative route to azomethine ylides.^{3f,g,5} While pyridinium *p*-toluenesulfonic acid (PPTS) was an efficient proton source for the reaction, HF-pyridine was found to be ideal due to shorter reaction times and the ease of removal of the Bu₃SnF by-product. Entries 2 and 3 show that the cycloaddition outcome is unaffected by the position of the stannyl moiety in the starting imines **6b** and **6c**, consistent with a common azomethine ylide intermediate. Monosubstituted azomethine ylides derived from the (2-azaallyl)stannanes and -silanes **6d** and **6f** produced pyrrolidines in similar

Entry	Imine	Aikene	Solvent (temp)	Acid	Products (ratio) ⁴	Yield
1	6c	o N 7	Toluene (reflux)	PPTS	Ph O H H Me N H H H H H H H H H H H H H H H H H H	65% ^{b,e}
2	6c	7	THF (reflux)	PPTS	8 (1.0) 9 (1.0) 8,9 (1.0:1.0)	56% ^{b,e}
3	6b	7	THF (50 °C)	HF-pyr	8, 9 (1.0:1.0) Ph	55% ^{b,ø}
4	6 a	7	THF (50 °C)	HF-pyr		69% ^c
5	6d	7	THF (50 °C)	HF-pyr	10 Ph O H·····H N V V V V V V V V V V V V V V V V V V	63% ^{b,e}
6	6f	7	THF (50 °C)	HF-pyr	11, 12 (1.3:1.0) 11, 12 (1.2:1.0)	61% ^{d,e}
7	6 a	MeO ₂ CCO ₂ Me	(50°C) THF (50°C)	HF-pyr	E = E + Pr +	, 68% ^{c,ø}
					н н н 13 14 15	
8	6e	MeO ₂ CCO ₂ Me	THF (50 °C)	HF-pyr	(18) (1.0) (0) 13 + 14 + 15 (1.2) (1.3) (1.0)	68% ^{c,f}
9	6a	MeO ₂ C CO ₂ Me	THF (50 °C)	HF-pyr	E = E = E = E = E = E = E = E = E = E =	. 84% ^{c.g}
					н́н́н́ні 16 17 18 (59) (11) (10)	
10	60	MeO ₂ C CO ₂ Me	THF (50 °C)	HF-pyr	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70% ^{c,h}
11	6a	MeO ₂ C	THF (50 °C)	HF-pyr	د د د د د د د د د د د د د د د د د د د د	81% ^{c,i}

 Table 2

 Acid-promoted formation of azomethine ylides from (2-azaallyl)stannanes and -silanes and their cycloadditions

^a Ratios of purified products. ^b Overall yield from the stannyl phthalimides 4. ^c Overall yield from the distilled amines 6. ^dOverall yield from the distilled amine 5e. ^eIsomers were not separated. Isolated as three chromatographic fractions: 14% of 13, 30% of a 1.0:5.2 ratio of 13 and 14, and 19% of 15. ⁹Isolated as three chromatographic fractions: 44% of 17, 13% of a 1.7:1.0 ratio of 17 and 18, and 27% of 16. ^fIsolated as two chromatographic fractions: 62% of a 1.0:2.6 ratio of 17 and 18, and 8% of 16. Tentative assignment of configurations.

yields and product ratios (entries 5 and 6). Cycloadditions of the 1,3-disubstituted ylides derived from (2-azaallyl)stannanes **6a**–**c** were found to be highly selective for *trans*-2,5-dialkylpyrrolidines (entries 1–4, 7, and 9).¹² Wilson reported that the cycloadditions of 1,3-dialkyl substituted azomethine ylides derived from the decarboxylative route proceed with inconsistent and poor *trans:cis* ratios with the *cis* isomer predominating.^{5b,c} Grigg reported examples of 2,5-*trans* selectivity as high as 10.1:1 for 1-phenyl-3-alkyl-substituted azomethine ylides generated by the decarboxylative route, but most examples gave 2,5-*trans* selectivities of about 3:1.^{5e} Surprisingly, 1,3-disubstituted azomethine ylides derived from the (2-azaallyl)silane **6e** led to moderate selectivity for *cis*-2,5-dialkylpyrrolidines (entries 8 and 10, cf. entries 7 and 9), more closely reflecting the ratios observed for cycloadditions of 1,3-dialkyl azomethine ylides generated by the decarboxylative route. We are currently exploring the origin of this interesting stereochemical complementarity. Finally, entry 11 illustrates the use of a singly activated dipolarophile.

In conclusion, N-unsubstituted 2-alkyl- or 2,5-dialkylpyrrolidines may be prepared in an efficient manner by the cycloaddition of nonstabilized N-unsubstituted azomethine ylides with alkenes. Enolizable imines are tolerated. 1,3-Disubstituted ylides derived from the protodestannylation of (2-azaallyl)stannanes gave pyrrolidines with high 2,5-*trans* stereoselectivity, whereas protodesilylation of similar (2-azaallyl)silanes gave pyrrolidines with moderate 2,5-*cis* stereoselectivity. The generation of 1,3-disubstituted azomethine ylides from (2-azaallyl)stannanes is more practical than the silicon method, since it is easier to prepare and manipulate the requisite branched α -aminostannanes 5. Both methods are more efficient than the few existing methods for the generation and cycloaddition of nonstabilized N-unsubstituted azomethine ylides.

Acknowledgements

We thank the National Institute of Health (GM-52491) for support of this research.

References

- For reviews, see: (a) Lown, W. J. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol. 1, pp. 663-732. (b) Pearson, W. H. In Studies in Natural Products Chemistry. Stereoselective Synthesis (Part A); Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1988; Vol. 1, pp. 323-358. (c) Vedejs, E. In Advances in Cycloaddition; Curran, D. P., Ed.; JAI: Greenwich, 1988; Vol. 1, pp. 33-51. (d) Tsuge, O.; Kanemasa, S. Adv. Het. Chem. 1989, 45, 231-349. (e) Padwa, A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp. 1069-1109. (e) Wade, P. A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp. 1111-1168.
- 2. Nonstabilized azomethine ylides are those lacking an electron withdrawing group on carbon.
- For leading references on various desilylation methods, see: (a) Vedejs, E.; West, F. G. Chem. Rev. 1986, 86, 941–955.
 (b) Padwa, A.; Dent, W. J. Org. Chem. 1987, 52, 235–244. (c) Terao, Y.; Aono, M.; Achiwa, K. Heterocycles 1988, 27, 981–1008. (d) Katritsky, A. R.; Koditz, J.; Lang, H. Tetrahedron 1994, 50, 12571–12578. (e) Torii, S.; Okumoto, H.; Genba, A. Chem. Lett. 1996, 747–748. For leading references on decarboxylative methods, see: (f) Tsuge, O.; Kanemasa, S.; Ohe, M.; Takenaka, S. Bull. Chem. Soc. Jpn. 1987, 60, 4079–4089. (g) Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S. Tetrahedron 1988, 44, 4953–4966. For deprotonation of tertiary amine N-oxides, see: (h) Chastanet, J.; Roussi, G. J. Org. Chem. 1988, 53, 3808–3812.
- 4. Pearson, W. H.; Mi, Y. Tetrahedron Lett. 1997, 38, 5441-5444.
- Acyclic azomethine ylide examples: (a) Obst, U.; Gramlich, V.; Diederich, F.; Weber, L.; Banner, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1739-1742. (b) Wilson, S. R.; Wang, Y.; Cao, J.; Tan, X. Tetrahedron Lett. 1996, 37, 775-778. (c) Tan, X.; Schuster, D.; Wilson, S. R. Tetrahedron Lett. 1998, 39, 4187-4190. Cyclic azomethine ylide examples: (d) Grigg, R.; Surendrakumar, S.; Thianpatanagul, S.; Vipond, D. J. Chem. Soc., Chem. Commun. 1987, 47-49. (e) Grigg, R.; Idle, J.; McMeekin, P.; Surendrakumar, S.; Vipond, D. J. Chem. Soc., Perkin Trans. 1 1988, 2703-2713. (f) Kanemasa, S.; Doi,

K.; Wada, E. Bull. Chem. Soc. Jpn. 1990, 63, 2866–2871. (g) Grigg, R.; Savic, V.; Thornton-Pett, M. Tetrahedron 1997, 53, 10633–10642.

- 6. Tsuge, O.; Kanemasa, S.; Hatada, A.; Matsuda, K. Bull. Soc. Chem. Jpn. 1986, 59, 2537-2545.
- 7. Pearson, W. H.; Postich, M. J. J. Org. Chem. 1992, 57, 6354-6357.
- 8. Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220-2222.
- Silyl phthalimide 4d was prepared in 35% yield from 2-methyl-1-(trimethylsilyl)-1-propanol [Hiyama, T.; Obayashi, M.; Mori, I.; Nozaki, H. J. Org. Chem. 1983, 48, 912-914] by conversion to the mesylate followed by displacement with potassium phthalimide. Compound 4e is commercially available.
- One general method is known for the synthesis of branched α-aminosilanes, which involves the reduction of enamines of acylsilanes, but involves the use of electrolysis conditions and large quantities of hexamethylphosphoramide (HMPA): Constantieux, T.; Picard, J.-P. Organometallics 1996, 15, 1604–1609.
- 11. Reactions with PPTS were carried out in standard glassware, while those with HF-Pyr were done in polypropylene centrifuge tubes. The following procedure is typical: the alkene (1.0-1.1 equiv.) was added to a solution of 6 (1.0 equiv., 0.2 M), prepared as described in Table 1. Upon heating to the desired temperature, a solution of the acid (1.0-1.5 equiv.) in 1 mL of solvent was added in a dropwise fashion over 5 minutes. The reaction was quenched with 2 M aqueous NaOH and diluted with ether. The organic layer was separated, washed once with saturated aqueous KF, dried over MgSO₄, and concentrated. The crude pyrrolidines were purified by silica gel chromatography.
- 12. Configurational assignments of pyrrolidines 8 and 9 were made based on NOESY experiments. The stereostructure of 10 was assigned assuming a *cis*-ring juncture and taking into account symmetry considerations; a stereoisomer with a *cis* relationship of the isopropyl groups would result in fewer resonances in the ¹H and ¹³C NMR spectra than a stereoisomer with *trans*-isopropyl groups. The stereostructures of 13–18 were assigned based on NOESY experiments and similar symmetry issues.