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Summary:  The di-acetonide of 6-deoxy-aldehydo-D-glucose 12 and (S,S)-2-ethoxy-6-tri-
phenylphosphoniomethyl-dihydropyran. iodide 8 are elaborated from D-glucose each in
practicable procedures of 5 and 10 steps, resp., and subsequently joined to give, after
oxidation, deprotection and acetylation, (-)-anamarine (ent~1). The synthesis proves the
absolute configuration of natural (+)-anamarine (1). -

A novel C12 compound isolated in 1979 from the flowers and {eaves of a Peruvian Hyptis species and
named anamarine” was shown to have constitution 1 on the basis of ]H-, ]3C-NMR and X-ray crystallo-
grophic dofc3, featuring R -configuration in the pyranoid ring and a rather unusual L-gluco arrangement

in the C6-side chain,
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Conceptually, the most direct synthetic approach to enantiomerically pure 1 would lie in the elaboration
of both Cé-halves from a suitable six-carbon sugar whereby the generation of the side chain portion
(synthon B) from é6~deoxy-L-glucose appeared most obvious. Conversion of a hexose into the pyranoid
enelactone segment (synthon A, in a form suitable for Wittig reactions) was considered of practicable
value and, hence, reasonable only if number of steps and overall yields attainable are in sound pro-
portions. In this communication we wish to describe investigations towards realization of this concept, by
elaboration of synthons A and B — as their enantiomers though — from D-glucose, and their junction in a

Wittig reaction, leading to the synthesis of the (-)-anamarine (enz-1).

Preparation of the pyranoid six-carbon half started from the known4 di~O-acetyl-6-O-tosyl-D-glucal 2,
accessible from D-glucose in four steps, of which the first two (tosylation and acetylation, 30%) and the
following ones (HBr treatment and Zn reduction) may be combined into two consecutive one-pot operations,
aliowing overall yields of 25% on a 60-80 g scale of producfs. BFs-cutclyzed peroxidc:tion6 smoothly gave

the enelactone 3 (m.p. 92—930, (o] l2)O+9]°, chloroform), which on exposure to zinc amalgam/HCI in ether

7,8
underwent reductive cleavage of the allylic acetoxy group with concomitant shift of the double bond into
the unconjugated position. The resulting 4 (m.p. 730, [a]2D0-35°, chloroform), however, on brief treatment
with base quantitatively transposed the olefinic double bond into conjugation to yield the ( 65)-tosyloxy-

methyl-dihydropyranone _§_9.
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Since conversion of 5 into the respective phosphonium salt is not realizable]o, the corresponding ethoxy-
dihydropyrane 6 (syrup, a 20:1 «/8-mixture on the basis of ]H-NMR) was prepared by DIBAL reduction and
subsequent acetalization. Displacement of the tosyloxy group in 6 by iodide proceeded smoothly to give 7 as
a syrup, which on fusion with triphenylphosphane afforded the desired phosphonium salt 8 in nicely crytalline
form9 and respectable yield (cf. formula scheme), particularly when considering the entirely different course
of this reaction at the enelactone srage]o. Thus, an enantiomerically pure six-carbon synthon, suitable for
the construction of the pyranoid portion of compounds of type 1 via Wittig reactions, may be obtained from
D-glucose in 10 steps and an overall yield of 7.2% (or 29 % for 2-—+8); since the lowest yielding steps are
at the outset of the conversion D-glucose — 8 (i.e. 25% for generation of 2) this approach is considered

to be of practical utility.
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Key A: MCPBA/BF 5 in CH,Cl,, -30° —0°¢, D: DiBAL/THF, -65°C, then EYOH /BF , in
30 min. CHCly, 6h, 25°C.
B: Zn-Hg/HCl inTHF, 1h, 0°C. E: Nal in EICOMe, 6 h, 80°C.
C: DBU/THF, 2h, 25°C, F: PPhy, fusion, 18 h.

The obvious generation of the side-chain six~carbon synthon B (in its enantiomeric form) from the readily
accessible 1 methyl 6-deoxy-D-glucoside 9 followed standard procedures, fixation in the open-~chain
tautomer being effected by thioacetalization 3 — ]0]2. Subsequent acetonation proceeded uniformly when
PZOS was used as the cmi‘c:lysi'13 fo glve the di-O-isopropylidene derivative 119 with two 1, 3-dioxolane
rings as evidenced on the basis of ! C NMR dc:fa]4 The synthon B-concluding liberation of the aldehyde

funcflon 11 —12 was accomplished by Mel/CdCO ~induced desulfurization to afford 12 as a syrup of
[a 0 _44° CHCIS).

Well aware of the potential complications associated with the deprotonation of phosphonium salts of type

8 — in furanoid systems reversible B-elimination occurs]5-— we allowed 8 to react with n-butyllithium in
THF/HMPA (2:1) at -78°, and, subsequently, with aldehyde 12 for 15 min, whereupon the mixture was
warmed to -10° and quenched'é. These conditions produce an approximate ( ]H-NMR) 8:1-mixture of 14 and
its 5-epimer, both of Z-configuration (J6,7 11.2 Hz). Their separation ;/cs best achieved after BF3-
catalyzed peroxidation to the enelactone 13, which is highly crystalline” and whose structure and con-

figuration was unequivocally established by ]H—NMR9 and X-ray analysisw.
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Key A: 2NHCI, 12 h reflux, then EtSH/ ZnCl,,, E: MCPBA/ BF, in CH.CL,, -30° — 0°C,

3d, 25°C. 30 min.

B: Me,CO/P,0p, 1h, 25°C, F: PhyS,/hv in benzene, 5h, 25°C.

C: Mel/CdCOy in Me,CO/H,0, 24, 25°C.  G: TFA, 10 min, 25°C, then Ac,0/Pyr.

D: nBuli+ 8 in THF/HMPA (2:1), -78° - 0°C, 1 h.
Isomerization of 13 to the E-isomer 15 (syrup, -93% in chloroform, J6,7 15.6 Hz) was accomplished by
irradiation in the presence of diphenyldisulfide. The concluding steps, deacetonation and acetylation
proceeded smoothly to give (-)-anamarine (ent-1), which was isolated in amorphous form and with a rota-
tion of -15°%; it was pure by TLC, microanalysis, a fully analyzable ]H-NMR spectrum9, and ]3C-NMR
data. Comparison of synthetic ent-1 with the #Hyptis-derived 1 — kindly provided by Prof. Valverde2 —
showed perfect identity of TLC behaviour in a series of solvent systems, of ]H-NMR9 and of ]3C-NMR2 data,
The fact that ent -] could not be induced to crystallize yet — 1 exhibits a m.p. 110-1 12°C3—may be due
to the scarcity of synthetic material, and is not considered detrimental; more important appears to be the

near-identity of rotational values, with opposite sign though, i.e. -15° for ent-] versus +18.,8° for ;]8.

This total synthesis of (-)-anamarine (ent=-1), in tur, proves the absolute configuration of the natural

(+)-1 as well as that of olguine, which have been inferred from the anomalous dispersion effects of oxygen
- . 2,3 . .

atoms and by analogy with related compounds™ ™. The construction of 1 from L-glucose or, more economi-

cally, from D-gulonolactone along similar synthetic veins is currently being addressed.
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