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ABSTRACT: The aminolysis of Z-thiophenyl methylacetates (C2H5C("O)SC6H4Z) with X-ben-
zylamines in acetonitrile has been investigated at 45�C. The reaction is found to proceed by
a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic
tetrahedral intermediate, T�, with possibly a hydrogen-bonded four-center-type transition
state. These mechanistic conclusions are drawn based on (i) the large magnitude of �X (� 1.2
� 2.5) and �z (� �0.9 � �1.5), (ii) the normal kinetic isotope effects (kH/kD � 1.2) involving
deuterated benzylamines (XC6H4CH2ND2), (iii) a large positive �xz (� 2.4) and (iv) adherence
to the reactivity-selectivity principle in all cases. The extremely large �X (�nuc) values can be
accounted for by the loss of a strong localized cationic charge on the N atom of benzylamines
in the expulsion from the T�. The pKa

o (� 10.0) is high due to a large ratio of the expulsion
rates of the amine (k�a) to thiophenolate (kb) (k�a/kb) from the T�. � 2000 John Wiley & Sons, Inc.
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INTRODUCTION

The mechanism of aminolysis of oxyesters(I) has
been extensively studied. In contrast, relatively little
is known about the mechanism for the aminolysis of
thiol esters(II) . The Brønsted-type plots for the re-
actions of primary, secondary, and tertiary amines
with oxyesters [e.g., substituted phenyl acetates(Ia)
and benzoates(Id) ], show a break at pKa

o from a large
(�nuc � 0.9 � 0.1) to a small (�nuc � 0.2 � 0.2) de-
pendence of the rate on the basicity of the attacking
amine, which has been interpreted to indicate a mech-
anistic changeover from a breakdown to formation of
the tetrahedral intermediates, T� [1–3]. Our previous
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work on the aminolysis of thiol esters [e.g., thiophenyl
benzoates(IId) ] with benzylamines [4], however,
showed an unusually large�nuc(�X) value of 1.86 in
acetonitrile, which was considered to proceed through
a rate-limiting breakdown of T�. Benzylamines are
primary amines with relatively high basicities (pKa �

9.0) due to localized cationic charge on the benzylam-
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monium ion. Benzylamines’ relative leaving ability
from T� can be much different from that of anilines
(also a primary amine, but the positive charge in the
anilinium ion delocalizes into the ring leading to
smaller pKa values) and the secondary and tertiary
amines, especially from a sulfur zwitterionic tetrahe-
dral intermediate, since it is known that ArS� is a
poorer nucleofuge from a tetrahedral intermediate than
an isobasic ArO� group [5–8].

In this work, we carried out kinetic studies on the
aminolysis of thiophenyl methylacetates(IIb) with
benzylamines in acetonitrile at 45�C, Eq. (1). We aim
to elucidate the mechanism of the aminolysis,
Eq. (1), of thiol esters with an ethyl group, C2H5

O

2 XC6H4CH2NH2 � C2H5CSC6H4Z

O

C2H5CNHCH2C6H4X
�NH3CH2C6H4X�

�SC6H4Z (1)�

MeCN

45°C

(IIb) rather than phenyl, C6H5 (IId). Our interests in
this work also lie in the unusually large�nuc(�X) values
obtained in the aminolysis of thiol esters with benzy-
lamines in acetonitrile, and application of the cross-
interaction constant [9–10],�xz in Eq. (2), where X
and Z denote substituents in the nucleophile and leav-
ing group, respectively, as a mechanistic tool.

log(k /k ) � � � � � � � � � � (2a)XZ HH X X Z Z XZ X Z

� � �� /�� � �� /�� (2b)XZ Z X X Z

RESULTS AND DISCUSSION

The aminolysis of thiophenyl methylacetates(IIb)
with a large excess of benzylamines in acetonitrile
obeyed the simple kinetic law given by Eqs. (3) and
(4), where P is thiophenolate anion and N is benzy-
lamine. Plots ofkobs against [N] were linear, and the
kN values were determined from the slopes of these
plots. ThekN values are summarized in Table I, where
the�x, �x(�nuc), �Z, and�Z(�lg) values are also shown.

d[P]/dt� k [substrate] (3)obs

k � k [N] (4)obs N

The clean second-order kinetics obtained, Eqs. (3)
and (4), is an indication that there are no complications
arising from competition of the fast proton transfer
from an intermediate T�, nor from general base catal-
ysis by the amines. The mechanism of the reaction can,

therefore, be described completely by Eq. (5), where
Ar � C6H4Z, XNH represents benzylamines with sub-
stituent X. The proton transfer can occur during or
after the rate-limiting step,kb. The proton is of course
rapidly consumed as XNH2� under the excess amine
concentration, as shown in Eq. (1).

O

C2H59C9SAr � XNH

O

C2H59C9NX � ArS� � H�

�O

�

C2H59C9SAr

HNX

T	

(5)

ka

ka

kb

kak � k � K k (6)N b bk�a

Since the reactions were conducted in acetonitrile,
the magnitude of�X(�nuc) and�Z(�lg) determined us-
ing the pKa values in water may not be reliable. How-
ever, as we have pointed out previously [11–12], the
�X values can be considered to represent reliable val-
ues, although the absolute values of pKa in MeCN dif-
fer from those in water, a constant
pKa (pKCH3CN �
pKH2O � 7.7 � 0.3) was experimentally found [13].
Our recent theoretical work of the solvent effects on
the basicities of pyridines [14] has shown that the

pKa (� 7.7) value arises solely from the ion solvation
energy difference of H� ion in water and in acetoni-
trile, �
Gs

o(H�) � 10.5 kcal mol�1, which corre-
sponds to
pKa � 7.7, at the MP2/6-31G*//MP2/6-
31G* level [15] of theory. Moreover, we are
comparing the magnitude of�X and�Z values deter-
mined for the reactions carried out under the same
reaction condition (i.e., in acetonitrile). Since we used
pKa values of thiophenolates in water, the comparison
of �Z values may not be entirely reliable.

We note that the magnitude of�X in Table I (�X �
1.2 � 2.5) is considerably larger than those for the
corresponding reactions with anilines [16] and other
secondary and tertiary amines (�X � 0.6 � 1.0) pro-
ceeding by rate-limiting breakdown (kb) of a zwitter-
ionic tetrahedral intermediate, T�, Eq. (5). On this ac-
count (i.e., large�X values), the aminolysis of
thiophenyl methylacetates with benzylamines in ace-
tonitrile, Eq. (1), is most likely to occur by rate-lim-
iting expulsion,kb, in Eq. (5), of thiophenolate ion,
ArS�, from T�.
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Table I The Second-Order Rate Constants kN � 103 dm3 mol�1 s�1 for the Reactions of Z-Thiophenyl
Methylacetates with X-Benzylamines in Acetonitrile at 45�C

X

Z

p-Me H p-Cl m-Cl �z
a �z

b

13.6 185
p-OMe 10.7c 26.8 92.1 146 2.12� 0.09 �0.90� 0.01

8.29d 114
p-Me 78.2 16.2 66.0 141 2.37� 0.11 �1.01� 0.01
H 3.08 7.37 34.4 90.6 2.74� 0.11 �1.18� 0.02
p-Cl 0.759 2.34 14.6 47.5 3.33� 0.10 �1.39� 0.05
�x

a �2.48� 0.03 �2.09� 0.02 �1.62� 0.01 �1.18� 0.01
�x

e 2.51� 0.01 2.11� 0.01 1.64� 0.02 1.20� 0.01

aThe � values were taken from Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Table 7–1. Correlation
coefficients were better than 0.998 in all cases.

b The pKa values were taken from Buckingham, J. Dictionary of Organic Chemistry; Chapman and Hall; New York, 1982; 5th, ed. The
pKa value for Z� m-Cl was estimated using pKa � �2.36� � 6.45 (n � 3, r � 0.996). Correlation coefficients were better than 0.998 in
all cases.

c At 35�C.
d At 25�C.
eThe pKa values were taken from Fischer, A.; Galloway, W. J.; Vaughan, J. J Chem Soc 1964, 3588. Correlation coefficients were better

than 0.999 in all cases. The pKa value for X� p-CH3O was estimated using the relation : pKa � �1.057� � 9.355 (n � 13, r � 0.984).

We have compared�X and�Z values for the ami-
nolysis reactions of various thiol esters with benzy-
lamines in acetonitrile in Table II. The magnitude of
both �X and �Z is large compared to those for the
corresponding reactions with anilines and other sec-
ondary and tertiary amines proceeding by rate-limiting
breakdown of T�. For example, the aminolysis of
phenyl dithiobenzoates(IIId) with anilines [17] gave
the�X values ranging from 0.80 to 1.07 in acetonitrile
at 55�C. This reaction is believed to proceed by rate-
limiting breakdown of T�. Similarly, for the amino-
lysis of dithioacetates [11](IIIa) with anilines and
N,N-dimethylanilines in acetonitrile, the�X values of
0.80� 0.87 were obtained. For these two series,IIIa
andIIId , the push provided by ArS from T� to expel
the amine, benzylamine, is much hindered (i.e.,k�a/kb

is reduced) due to change of O�

9C9

to S�

9C9

in T�

[18]. It is known that the decrease ink�a/kb either by
increasingkb with a better nucleofuge or by decreasing
k�a with a weakly basic amine leads to a lowering of
pKa

o, wherek�a � kb [8].Thus the pKa
o value should

be lower in the dithio series (III , pKa
o � 9.0) than that

in the corresponding thiol series (II , pKa
o � 10). This

is the reason why the expulsion of ArS� from T� is
rate-limiting for IId , while a concerted mechanism or
a rate-limiting formation of T� applies toIIId .

The �X (�nuc) values for the aminolysis with ben-
zylamines for which breakdown of T� is rate-limiting
are large (�X � 1.2 � 2.5). For such mechanism, the

observedkN is a complex quantity given by Eq. (6).
Therefore, the dependence of logkN on the basicity of
amines becomes

� (� � ) � dlog k /dpK (X)X nuc N a

� dlog k /dpK (X)a a

� dlog k /dpK (X)�a a

� dlog k /dpK (X) (7)b a

The rate constant for leaving group expulsion from
T�(kb) can be safely assumed to be independent of the
nature of the attacking amine nucleophile [2,19], so
that the last term in Eq. (7) vanishes. On the other
hand, it is well known that the�X values for the rate-
limiting formation of T�(�a) is lower with 0.2� 0.3,
�a (� dlog ka/dpKa(X)) � 0.2 � 0.3 [2]. This means
that the observed�X(�nuc) � 1.2 � 2.5 for the ami-
nolysis with benzylamines lead to the��a (� dlog k�a/
dpKa(X)) value of �0.9 � �2.2 [� (0.2 � 0.3) �
(1.2� 2.5)]. For aniline nucleophiles,�X � 0.8� 1.0
so that��a � �0.5� �0.7. Thus the loss of a strong
localized cationic charge on the nitrogen atom of ben-
zylammonium ion in the T� is so large that the ben-
zylamine expulsion rates from T� are 2 � 3 times
more sensitive to the substituent variation in the ben-
zylamine than the sensitivity of aniline expulsion rates
from the corresponding T� to the substituent charge
in the aniline. For this reaction, the ratiok�a/kb is also
high so that the pKa

o lies above the pKa’s of the con-
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Table II The �X(�nuc) and �Z(�1g) Values for Acyl Transfer Reactions with Benzylamine Nucleophiles in Acetonitrile
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Substrate �X
a �Z

a Remarks Ref.

Ic 1.66 �1.71 Z� p-NO2, 25�C 12
Ie 1.57 �1.77 Z� p-NO2, 25�C b
If 1.65 Z � p-NO2, 25�C c
Ig 1.06 �1.03 Z� p-NO2, 25�C d
IIb 2.11 �1.18 45�C This work
IId 1.86 �1.63 55�C e
IIg 1.40 �1.41 50�C 22
IIh 1.53 �1.42 50�C 22
IIIa 0.55 �0.50 20�C 11
IIId 0.60 �0.24 30�C f
IIIg 1.40 �0.81 15�C 23
IIIh 1.02 �0.56 15�C 23

aUnless otherwise noted,�X is for Z � H and�Z is for X � H.
b Koh, H. J.; Kim, T. Y.; Lee, B. S.; Lee, I. J Chem Res (S) 1996, 482.
c Koh, H. J.; Kim, O. S.; Lee, H. W.; Lee, I. J Phys Org Chem 1997, 10, 725.
d Koh, H. J.; Lee, J. W.; Lee, H. W.; Lee, I. New J Chem 1997, 21, 447.
eLee, I.; Koh, H. J. New J Chem 1996, 20, 131.
f Oh, H. K.; Shin, C. H.; Lee, I. Bull Korean Chem Soc 1995, 16, 657.

Table III The Secondary Kinetic Isotope Effects for the reactions of Z-Phenyl Thiolmethylacetates with Deuterated
X-Benzylamines in Acetonitrile at 45�C

X Z kH � 104(M�1 s�1) kD � 104(M�1 s�1) kH/kD

p-OMe p-Me 1.36 (� 0.02) 1.11 (� 0.02) 1.23� 0.03a

p-OMe H 2.68 (� 0.05) 2.19 (� 0.04) 1.22� 0.04
p-OMe pCl 9.21 (� 0.06) 7.62 (� 0.05) 1.21� 0.01
p-OMe m-Cl 18.5 (� 0.3) 15.6 (� 0.2) 1.19� 0.02
p-Cl p-Me 0.0759 (� 0.0004) 0.0612 (� 0.0005) 1.24� 0.01
p-Cl H 0.234 (� 0.003) 0.192 (� 0.004) 1.22� 0.03
p-Cl p-Cl 1.46 (� 0.02) 1.22 (� 0.03) 1.20� 0.04
p-Cl m-Cl 4.75 (� 0.04) 4.03 (� 0.06) 1.18� 0.02

aStandard deviations.

jugate acids of benzylamines used in this work. This
high ratio ofk�a/kb can be attributed to several factors.
(i) The low stability of T� formed (largerk�a) by ben-
zylamines due to highly localized cationic charge on
the N� 9H moiety. The tetrahedral intermediates T�

formed by anilines and secondary and tertiary amines
are relatively stable (smallerk�a) due to cationic
charge delocalization to the ring and/or alkyl groups
(inductive donors,�I groups) within T�. (ii) The

poorer nucleofugality of ArS� than ArO� (smallerkb)
and the stronger “push” provided by the ArS group in
T� (largerk�a) to expel the amine than that exerted by
an isobasic ArO group in an analogous T� [8]. The
pKa

o was lower for pyridines than for alicyclic amines
under the same reaction conditions due to the lower
k�a, whereas it was lower for a more delocalized phen-
olate ion (2,4,6-trinitrophenolate ion) expulsion due to
the higherkb value [8,20]. (iii) The aprotic solvent,
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Table IV Activation Parametersa for the Reactions of
Z-Phenyl Thiolmethylacetates with X-Benzylamines in
Acetonitrile

X Z 
H/kcal mol�1 �
S/cal mol�1 K�1

p-OMe p-Me 4.1� 0.1 55� 1
p-OMe m-Cl 4.0 � 0.1 53� 1
m-Cl p-Me 4.6� 0.1 60� 1
m-Cl m-Cl 3.9 � 0.1 53� 1

aCalculated by the Eyring equation. Errors shown are standard
deviations.

MeCN, stabilizes the TS for the breakdown of T� to
form uncharged products (k�a) relative to that for the
formation of thiophenolate anion and cationic amide
(kb).

The proposed mechanism is also supported by a
large positive cross-interaction constant [9] (�XZ �
2.36� 0.16,r � 0.999) and adherence to the reactiv-
ity–selectivity principle (RSP), which are believed to
constitute necessary conditions for the rate-limiting
breakdown of T� [20,21]. The secondary kinetic iso-
tope effects (Table III) involving deuterated nucleo-
philes [10], XC6H4CH2ND2, are greater than unity,kH/
kD � 1.2. This suggests a possibility of forming
hydrogen-bonded, four-center-type TS as has often
been proposed [22,23]. However, due to a lower
charge on the thiophenolate leaving group, thekH/kD

values are not high and variations depending on the
substituents, X and Z, are small. The low activation

C2H59C

CH2

HN

S

O�
d2

d2

d� d�

Z

X

H

Proposed TS

parameters,
H and
S (Table IV) are also in line
with the mechanism proposed. The expulsion of thio-
phenolate anion is aided by hydrogen bonding by the
benzylamine present in T� requiring not much energy
in the activation, but highly structured TS leads to
large negative entropies of activation.

SUMMARY

The aminolysis of thiophenyl methylacetates with ben-
ylamines in acetonitrile proceeds by rate-limiting ex-
pulsion of thiophenolate anion from a tetrahedral zwit-
terionic intermediate T�. The extremely large�X(�nuc)
values can be accounted for by a strong localized cat-
ionic charge on the nitrogen atom of benzylamines in
T�, which is lost in the benzylamine expulsion from
T� (k�a). The breakdown rate ratio ofk�a (expulsion
of amine)/kb (expulsion of ArS�) is large due to large
k�a and relatively smallkb. The cross-interaction con-
stant�XZ is large positive and the RSP is adhered to

in all cases. These are in line with the proposed mech-
anism.

EXPERIMENTAL

Materials

Merk GR acetonitrile was used after three distillations.
The benzylamine nucleophiles, Aldrich GR, were used
without further purification. Thiophenols and pro-
pionyl chloride were Tokyo Kasei GR grade.

Preparations of Phenyl
Thiolmethylacetates

Thiophenol derivatives and propionyl chloride were
dissolved in anhydrous ether and KOH was added
carefully, keeping the temperature at 0� 5�C. Ice was
then added to the reaction mixture and the ether layer
was separated, dried over MgSO4, and distilled under
reduced pressure to remove solvent. IR (Nicolet 5BX
FT-IR) and1H and13C NMR (JEOL 400 MHz) data
are as follows.

p-Methylphenyl Thiolmethylacetate. Liquid, IR
(KBr), 2979 (C9H, CH2), 2938 (C9H, CH3), 1494,
1459 (C"C, aromatic), 1710 (C"O); 1H NMR (400
MHz, CDCl3), 1.61 (3 H, t, CH3, J � 6.35 Hz), 2.31
(3 H, s, CH3), 2.60 (2 H, q, CH2,, J� 6.35 Hz), 7.16–
7.26 (4 H, m, aromatic ring);13C NMR (100.4 MHz,
CDCl3), 198.4 (C"O), 139.4, 134.4, 129.9, 124.3 (ar-
omatic), 36.9 (CH2), 21.2 (CH3), 9.57 (methyl).

Phenyl Thiolmethylacetate. Liquid, IR (KBr), 2993
(C9H, CH2), 2939 (C9H, CH3), 1477, 1440 (C"
C, aromatic), 1710 (C"O); 1H NMR (400 MHz,
CDCl3), 1.19 (3 H, t, CH3, J � 6.35 Hz), 2.63 (2 H,
q, CH2,, J � 6.44 Hz), 7.41–7.36 (5 H, m, aromatic
ring); 13C NMR (100.4 MHz, CDCl3), 198.1 (C"O),
134.5, 129.8, 129.3, 129.0, 127.4 (aromatic), 37.1
(CH2), 9.58 (methyl).
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p-Chlorophenyl Thiolmethylacetates.Liquid, IR
(KBr), 2980 (C9H, CH2), 2946 (C9H, CH3), 1477,
1460 (C"C, aromatic), 1712 (C"O); 1H NMR (400
MHz, CDCl3), 1.18 (3 H, t, CH3, J � 7.81 Hz), 2.64
(2 H, q, CH2,, J � 7.81 Hz), 7.28–7.35 (4 H, m, ar-
omatic ring);13C NMR (100.4 MHz, CDCl3), 197.5
(C"O), 135.7, 135.6, 126.3 (aromatic), 37.1 (CH2),
9.51 (methyl).

m-Chlorophenyl Thiolmethylacetate. Liquid, IR
(KBr), 2972 (C9H, CH2), 2932 (C9H, CH3), 1462,
1408 (C"C, aromatic), 1714 (C"O); 1H NMR (400
MHz, CDCl3), 1.20 (3 H, t, CH3, J � 7.33 Hz), 2.67
(2 H, q, CH2,, J � 7.33 Hz), 7.27–7.41 (4 H, m, ar-
omatic ring); 13C NMR (100.4 MHz, CDCl3),
197.2(C�O), 134.6, 134.2, 132.6, 130.1, 129.5,
129.4(aromatic), 37.2(CH2), 9.52(methyl).

Kinetic Measurement

Rates were measured conductometrically at 45.0�
0.05�C. The conductivity bridge used in this work was
a self-made computer automatic A/D converter con-
ductivity bridge. Pseudo-first-order rate constants,kobs,
were determined by the Guggenheim method [24] with
large excess of benzylamine, [substrate]� 0.01 M and
[benzylamine]� 0.05 � 0.1 M. Second-order rate
constants,kN, were obtained from the slope of a plot
of kobs vs. [benzylamine] with more than five concen-
trations of benzylamine in more than three runs and
were reproducible to within�3%.

Product Analysis

Substrate (0.05 M) and benzylamine (0.5 M) were
added to acetonitrile and reacted 45�C under the same
condition as the kinetic measurements. After more
than 15 half lives, the solvent was removed under re-
duced pressure and the product was separated by col-
umn chromatography (silica gel, 20% ethylacetate-n-
hexane). Analysis of the product gave the following
results.

CH3CH2C("O)NHCH2C6H49OCH3. : m.p, 55–
57�C, IR (KBr), 3249 (N9H), 3080 (C9H, benzyl),
2993 (C9H, CH2), 2946 (C9H, CH3), 1711 (C"
O), 1460 (C"C, aromatic);1H NMR (400 MHz,
CDCl3), 1.12 (3 H, t, CH3, J � 7.81 Hz), 2.19 (2 H,
q, CH2,, J � 7.81 Hz), 3.75 (3 H, s, OCH3), 4.08 (1
H, br, N9H), 4.29 (2 H, d, J� 5.86 Hz, CH2), 6.81–
7.16 (4 H, m, aromatic ring);13C NMR (100.4 MHz,

CDCl3), 198.2 (C"O), 130.8, 129.3, 129.1 (aro-
matic), 55.4 (CH2), 42.87 (CH2), 21.0 (methyl), 14.18.
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the Korea Research Foundation made in the program year
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