intermediate 6 produced from the isomerization of 5, with acetylene 2 (Scheme I). Although evidence for the production of the intermediate 6 from 5 has not yet been obtained, similar behavior of the 1-silapropadiene derivative has been observed in a different system.1

Interestingly, heating 1 in the absence of 2 under the same conditions afforded 1-mesityl-1-phenyl-1-(trimethylsilylethynyl)trimethyldisilane (7), whose spectral data were identical with those of an authentic sample prepared by an independent route,4 and two isomers of 5,6-benzo-1,3-disilacyclohexane derivative (8a and 8b) in 36, 36, and 22% yields, respectively. Product 7 could be readily separated from the mixture of 8a and 8b by preparative TLC. Pure 8a and 8b could be isolated by preparative GLC. The structures of 8a and 8b were confirmed by spectroscopic analysis^{5,6} and, particularly, by a NOE-FID difference experiment at 400 MHz. Thus, saturation of the resonances of the trimethylsilyl protons of 8a produced a positive Overhauser effect (NOE) of the hydrogen (H-Si(Me)) and methyl protons (CH₃-Si(H)) and also the phenyl ring protons and one of two methyl protons on an aromatic ring. Irradiation of the trimethylsilyl protons of 8b, however, caused a positive NOE of the dimethylsilyl protons in a disilacyclohexene ring and the phenyl ring protons.

The production of 7 and 8 may be understood in terms of the isomerization of the 1-silapropadiene-nickel complex 5.7 The thermal isomerization of the silicon-unsaturated compounds involving a mesityl or 2,6-dimethylphenyl group on an sp² silicon atoms to the cyclic system has recently been found by two research groups.8-10

Product 7 is stable under the conditions used. No change was observed when 7 was heated at 200 °C for 20

(3) For compound 4: mp 191–191.5 °C; 400-MHz ¹H NMR & (CDCl₃) -0.36 (9 H, s, Me₃Si), -0.12 (9 H, s, Me₃Si), 0.56 (3 H, s, MeSi), 0.57 (3 H, s, MeSi), 1.85 (3 H, s, MeC), 2.32 (3 H, s, Me(mesityl)), 2.43 (3 H, s, 11, 5, MeSi), 1.35 (3 H, 8, MeC), 2.32 (3 H, 8, Me(mesityl)), 2.60 (3 H, 8, Me(mesityl)), 6.58-7.08 (12 H, m, phenyl and mesityl ring protons); ¹³C NMR & (CDCl₃) 0.6 (Me₃Si), 1.5 (MeSi), 2.0 (Me₃Si), 2.6 (MeSi), 21.1, 25.1, 25.6 (Me(mesityl)), 28.5 (MeC), 125.6, 126.9, 127.0, 127.2, 127.3, 127.7, 128.4, 128.8, 135.4, 138.4, 139.1, 143.7, 144.7, 147.2 (ring carbons), 148.1, 160.0, 162.5, 179.3 (olefinic carbons). Exact Mass. Calcd for $C_{34}H_{48}Si_4$: 568.2833. Found: 568.2817.

(4) Compound 7 was prepared by the reaction of 1,1-dichloro-1-phenyltrimethyldisilane with 1 equiv of mesityllithium, followed by treatment of the resulting solution with ((trimethylsilyl)ethynyl)lithium: 100-MHz 1 H NMR δ (CCl₁) 0.20 (18 H, s, Me₃Si), 2.26 (3 H, s, p-Me), 2.41 (6 H, s, o-Me), 6.82 (2 H, b s, mesityl ring protons), 7.20–7.61 (5 H, m, phenyl ring protons); MS, m/e 394 (M⁺). Anal. Calcd for $C_{23}H_{34}Si_3$: C,

69.98; H, 8.68. Found: 70.24; H, 8.77.
(5) Compound 8a: mp 96 °C; 400-MHz ¹H NMR δ (CDCl₃) -0.34 (3 H, s, MeSi(Me)), -0.20 (9 H, s, Me₃Si), 0.09 (3 H, s, MeSi(Me)), 0.60 (3 H, d, MeSi(H), J=4.2 Hz), 2.00 (1 H, d, HC(H), J=4.5 Hz), 2.26 (3 H, s, Me aryl)), 2.51 (3 H, s, Me(aryl)), 3.04 (1 H, d, HC(H), J = 4.5 Hz), 5.11 (1 H, q, HSi(Me), J = 4.2 Hz), 6.68–7.25 (7 H, m, phenyl and aryl ring protons); 13 C NMR δ (CDCl₃) -3.9 (MeSi), -1.3 (MeSi), -1.1 (MeSi), 1.2(MeSi), 21.2 (Me(aryl)), 24.4 (Me(aryl)), 27.4 (Me(aryl)), 125.7, 126.7 127.3, 127.4, 127.5, 127.7, 127.8, 131.1, 139.3, 143.9, 146.9, 147.3 (phenyl and aryl ring carbons), 158.2, 175.3 (olefinic carbons). Exact Mass. Calcd: 394.1968. Found: 394.1952. Anal. Calcd for $C_{23}H_{34}Si_3$ (1:1 mixture of 8a and 8b): C, 69.98; H, 8.68. Found: C, 69.96; H, 8.86. (6) Compound 8b: mp 83.5 °C; 400-MHz ¹H NMR δ (CDCl₃) -0.23 (9

H, s, Me₃Si), -0.05 (3 H, s, MeSi(Me)), 0.28 (3 H, d, MeSi(H), J = 4.3 Hz), 0.33 (3 H, s, MeSi(Me)), 2.01 (1 H, d, HC(H), J = 4.4 Hz), 2.27 (3 H, s, Me (aryl)), 2.41 (3 H, s, Me(aryl)), 2.87 (1 H, d, HC(H), J = 4.4 Hz), 4.82 (1 H, q, HSi(Me), J = 4.3 Hz), 6.68-7.31 (7 H, m, phenyl and aryl ring protons); $^{13}\text{C NMR }\delta$ (CDCl₃), -4.7 (MeSi), -1.5 (MeSi), 1.6 (MeSi), 2.5 (Me₃Si), 21.3 (Me(aryl)), 23.6 (Me(aryl)), 29.5 (CH₂(aryl)), 126.1, 126.6, 127.1, 127.5, 127.6, 128.2, 129.0, 129.2, 139.7, 144.2, 147.6, 149.1 (phenyl and aryl ring carbons), 160.9, 174.8 (olefinic carbons). Calcd for $C_{23}H_{34}Si_3$: 394.1968. Found: 394.1981.

h in the presence of a catalytic amount of Ni(PEt₃)₄. The reaction of 1-mesityl-3-phenyl-1,2-bis(trimethylsilyl)-1silacyclopropene¹¹ produced photochemically from 1 with a catalytic amount of Ni(PEt₃)₄ at 135 °C afforded only 8a and 8b in 45 and 27% yields, respectively. No ethynylpolysilanes such as compound 7 were detected by GLC or spectroscopic analysis. We are continuing to explore this and related systems.

Acknowledgment. We express our appreciation to Shin-etsu Chemical Co., Ltd., and Toshiba Silicone Co., Ltd., for a gift of organochlorosilanes.

(10) The thermal production of a cyclic compound from the siliconcarbon unsaturated compound containing a mesityl group on an sp² carbon also has been reported. See: Brook, A. G.; Wessely, H.-J. Organometallics 1985, 4, 1487.

Synthesis and Reactions of Dihydrido(triethyisilyi)(1,5-cyclooctadiene)iridium(III) Complexes: Catalysts for **Dehydrogenative Silylation of Alkenes**

Maria J. Fernández, Miguel A. Esteruelas, Maria S. Jiménez, and Luis A. Oro*

Departamento de Química Inorgánica Instituto de Ciencia de Materiales de Aragón Universidad de Zaragoza — CSIC 50009 Zaragoza, Spain

Received April 8, 1986

Summary: $IrH_2(SiEt_3)(cod)L$ (L = PPh₃ or AsPh₃, cod = 1,5-cyclooctadiene) complexes have been obtained by reaction of [Ir(OMe)(cod)], with L and HSiEt3. These complexes react with PPh3 to give IrH(cod)(PPh3)2 and HSiEt₃. They are active catalyst precursor for the dehydrogenative silylation of alkenes. IrH2(SiEt3)(cod)L complexes react with ethylene to give CH,==CHSiEt, and CH₃CH₂SiEt₃ in different proportions depending on the ancillary L ligand.

Although M(H)(silyl)(olefin) species have been postulated as intermediates in the catalytic hydrosilylation of olefins, they have rarely, if ever, been isolated. Only just recently Rh(C₅Me₅)H(SiEt₃)(CH₂=CH₂)^{2a} and Rh- $(C_5H_5)H(SiEt_3)(CH_2=CH_2)^{2b}$ have been detected in solution. We wish to report here the preparation and reactivity of $IrH_2(SiEt_3)(cod)L$ (cod = 1,5-cyclooctadiene; L = PPh₃ or AsPh₃), which, as far as we know, represent the first isolated complexes of the type mentioned above.

Most of the silvl complexes of iridium(III) previously reported have been obtained by oxidative addition of $HSiR_3$ to iridium(I) compounds.³ We have now developed an easy route to prepare isolable dihydrido(silyl)(di-

⁽⁷⁾ One reviewer suggested an alternative mechanism involving a free diradical intermediate such as Me₃Si(Ph)C—C(SiMe₂)Si(Me)Mes in order to explain the production of 8a and 8b. At present, however, no evidence for a key intermediate has been obtained.

⁽⁸⁾ Fink, M. J.; Deyoung, D. J.; West, R. J. Am. Chem. Soc. 1983, 105,

⁽⁹⁾ Masamune, S.; Murakami, S.; Tobita, H.; Williams, D. J. J. Am. Chem. Soc. 1983, 105, 7776.

^{(11) 1-}Mesityl-3-phenyl-1,2-bis(trimethylsilyl)-1-silacyclopropene: 100-MHz ¹H NMR δ (CCl₄) 0.15 (9 H, s, Me₃Si), 0.29 (9 H, s, Me₃Si), 2.20 (3 H, s, p-Me), 2.55 (6 H, s, o-Me), 6.65 (2 H, broad s, mesityl ring protons), 7.05-7.52 (5 H, m, phenyl ring protons). Exact Mass. Calcd for C₂₃H₃₄Si₃: 394.1968. Found: 394.1991.

^{(1) (}a) Speier, J. L. Adv. Organomet. Chem. 1979, 17, 407-447. (b) Green, M.; Spencer, J. L.; Stone, F. G.; Tsipis, C. A. J. Chem. Soc., Dalton Trans. 1977, 1519-1525,

 ^{(2) (}a) Bentz, P. O.; Ruiz, J.; Mann, B. E.; Spencer, C. M.; Maitlis, P.
 M. J. Chem. Soc., Chem. Commun. 1985, 1374-1375. (b) Haddleton, D. M.; Perutz, R. N. Ibid. 1985, 1372-1374.

olefin)iridium complexes. Treatment of acetone solutions of $[Ir(OMe)(cod)]_2$ and L ($L = PPh_3$ or $AsPh_3$), in a 1:1 ratio of Ir:L, with $HSiEt_3$ at room temperature leads to the formation of $MeOSiEt_3$ (detected by GC) and IrH_2 -($SiEt_3$)(cod)L, according to eq 1. The complexes were

$$^{1}/_{2}[Ir(OMe)(cod)]_{2} + L + 2HSiEt_{3} \rightarrow IrH_{2}(SiEt_{3})(cod)L + MeOSiEt_{3} (1)$$

obtained, in 60–70% yield, as white, air-stable powders after the solution was concentrated and methanol was subsequently added. Formulation of these complexes as indicated is supported by microanalytical data as well as by IR and NMR measurements.⁴ The observed reaction presumably involves the intermediate IrH(cod)L, formed by an initial oxidative addition of HSiEt₃ to methoxy-iridium(I) species and subsequent reductive elimination of MeOSiEt₃. It is interesting to note that iridium-phosphine or –arsine complexes have been reported previously⁵ as catalysts in the reaction between HSiR₃ and alcohols.

The ¹H NMR spectra of the $IrH_2(SiEt_3)(cod)L$ complexes are consistent with a structure containing equivalent hydrides. On the other hand, the strong IR absorptions above 2000 cm⁻¹, attributable to $\nu(IrH)$, are in concordance with a cis dihydride, ⁶ as shown in structure 1.

Since hydrides and silyl groups have mutually cis positions, competitive elimination of H_2 or $HSiEt_3$ from the complexes could be potentially possible; however, the H_2 reductive elimination is expected to be less favored relative to $HSiEt_3$ elimination. This may be due to the trans disposition of the chelating cod relative to the hydrogen atoms. Thus, the reaction with PPh_3 , in dichloromethane at room temperature, leads to the rapid formation of $IrH(cod)(PPh_3)_2^7$ and $HSiEt_3$ (eq 2).

$$IrH_2(SiEt_3)(cod)L \xrightarrow{PPh_3} IrH(cod)(PPh_3)_2 + HSiEt_3$$
 (2)

$$L = PPh_3 \text{ or } AsPh_3$$

This result is also in agreement with the stability toward H_2 loss of dihydrido(silyl)iridium complexes, such as those derived from $IrH(CO)(PPh_3)_3$.

(3) (a) Fawcett, J. P.; Harrod, J. F. J. Organomet. Chem. 1976, 113, 245-248. (b) Auburn, M. J.; Holmes-Smith, R. D.; Stobart, S. R. J. Am. Chem. Soc. 1984, 106, 1314-1318. (c) Eisenberg, R.; Johnson, E. C. J. Am. Chem. Soc. 1985, 107, 6531-6540.

A more interesting reaction occurs between these complexes and ethylene. When a solution of IrH₂(SiEt₃)(cod)L (0.1 mmol) in CDCl₃ (1 mL) was allowed to react with ethylene (1 atm, room temperature) for 4 h, the presence of CH₃CH₂SiEt₃ and CH₂—CHSiEt₃, detected by ¹H NMR and GC in the relative amounts shown in eq 3, was ob-

of
$$CH_3CH_2SiEt_3$$
 and CH_2 — $CHSiEt_3$, detected by ${}^{1}H$ NMR and GC in the relative amounts shown in eq 3, was ob-

$$H_2C$$
— CH_2

$$\begin{array}{c}
 & I_{rH_2(SiEt_3)(cod)L} \\
 & I_{a, L} = PPh_3 \\
 & I_{b, L} = A_aPh_3 \\
 & CH_2$$
— $CHSiEt_3 + CH_3CH_2SiEt_3$ (3)
$$& 45\% \\
 & 80\% \\
 & 20\% \\
\end{array}$$
served. Thus, the stoichiometric reaction gives rise to the normal hydrosilylation product along with the unexpected

served. Thus, the stoichiometric reaction gives rise to the normal hydrosilylation product along with the unexpected unsaturated product (dehydrogenative silylation⁹). The ¹H NMR spectrum of the resulting orange solutions did not show the presence of hydridic protons, and on adding HSiEt₃ the starting complex was not recovered.

As expected IrH₂(SiEt₃)(cod)L complexes were found to be active catalysts for this type of unusual silylation, using 1-hexene as starting olefin. The reactions were carried out by mixing the complex (0.04 mmol) with HSiEt₃ (2 mmol) and 1-hexene (6 mmol) in 1,2-dichloroethane (8 mL) at 60 °C. After 1 h of reaction, completion (based on HSiEt₃, determined by GC) is 50% and 95% for complex 1a and 1b, respectively. ¹H NMR and GC-MS of the solutions showed the formation of hexyltriethylsilane and hexenyltriethylsilanes as the silylated products, ¹⁰ in the relative amounts quoted in eq 4. Hexane is also

$$\begin{array}{c} C_6H_{12} + HSiEt_3 & \frac{IrH_2(SiEt_3)(cod)L}{Ia, L = PPh_3} \\ & & \\ Ib, L = AsPh_3 \\ & C_6H_{14} + C_6H_{11}SiEt_3 + C_6H_{13}SiEt_3 & (4) \\ & 41\% & 41\% & 18\% \\ & 46\% & 46\% & 8\% \end{array}$$

formed in a similar amount to the unsaturated silanes $C_6H_{11}SiEt_3$. It is noteworthy that in both reactions (eq 3) and 4) complex 1b gives a higher yield of alkenyltriethylsilane than complex 1a. The catalytic reactions showed a small induction period. This can be attributed to the fact that the initial 18-electron complexes IrH₂-(SiEt₃)(cod)L should form unsaturated intermediates, presumably without the cod ligand, which is probably removed from the iridium center by hydrogenation and/or isomerization of the coordinated 1,5-cyclooctadiene. In fact, we have observed that if 1,5-cyclooctadiene (0.5 mmol) is added to a mixture of the arsine complex and HSiEt₃, under conditions similar to those used in the catalytic reaction, the diene is isomerized to 1,3-cyclooctadiene in 0.5 h. After this time, addition of 1-hexene caused hydrogenation of 1,3-cyclooctadiene along with silvlation of 1-hexene. Further work in this area is in progress.

Acknowledgment. We acknowledge useful discussions with Professor Peter M. Maitlis, and we thank the Anglo-Spanish Joint Programme (Acción Integrada) for making these possible. This work was supported by CAICYT (1790-82) and "Fundación Banco Exterior".

⁽⁴⁾ Anal. Calcd for IrH₂(SiEt₃)(cod)(PPh₃): C, 56.53; H, 6.52. Found: C, 56.38; H, 6.49. Calcd for IrH₂(SiEt₃)(cod)(AsPh₃): C, 53.11; H, 5.37. Found: C, 53.18; H, 5.38. IR spectra (Nujol, ν (Ir H)): 1a, 2105, 2090 cm⁻¹; 1b, 2078 cm⁻¹. 31 PflH} NMR (80 MHz, CDCl₃): 1a, δ 7.22. 14 H NMR (220 MHz, CDCl₃, olefinic and hydride protons): 1a, δ 3.89 (br, 2 H), 3.11 (br, 2 H), -12.85 (d, 2 H, J(PH) = 21.4 Hz); 1b, δ 3.98 (br, 2 H), 3.44 (br, 2 H), -12.60 (s, 2 H).

⁽⁵⁾ Blackburn, S. N.; Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. J. Organomet. Chem. 1980, 192, 329-338.

⁽⁶⁾ Lower wavenumber values would be expected for ν(IrH) trans to H: Harrod, J. F.; Hamer, G.; Yorke, W. J. Am. Chem. Soc. 1979, 101, 3987-3990

⁽⁷⁾ IrH(cod)(PPh₃)₂ has previously been prepared by different methods; see, for example: (a) Shapley, J. R.; Osborn, J. A. J. Am. Chem. Soc. 1970, 92, 6976–6978. (b) Lavecchia, M.; Rossi, M.; Sacco, A. Inorg. Chim. Acta 1970, 4, 29–32.

⁽⁸⁾ Harrod, J. F.; Gilson, D. F. R.; Charles, R. Can. J. Chem. 1969, 47, 2205–2208.

⁽⁹⁾ Dehydrogenative silylation have been carried out under catalytic conditions: (a) Millan, A.; Fernandez, M. J.; Bentz, P.; Maitlis, P. M. J. Mol. Catal. 1984, 26, 89-104. (b) Ojima, I.; Fuchikami, T.; Yatabe, M. J. Organomet. Chem. 1984, 260, 335-346. (c) Seki, Y.; Takeshita, K.; Kawamoto, K.; Murai, S.; Sonoda, N. Angew. Chem., Int. Ed. Engl. 1980, 19, 928.

⁽¹⁰⁾ Hexyltriethylsilane (GC-MS, m/e 171 ($C_6H_{13}SiEt_2^+$)) and three different hexenyltriethylsilanes (GC-MS, m/e 198 or 169 ($C_6H_{11}SiEt_3^+$ or $C_6H_{11}SiEt_2^+$)) were detected by GC, but separation of the silicon products by preparative GC was not achieved. ¹H NMR spectra of the mixtures showed signals characteristic of olefinic protons at 5.1-5.4 ppm, confirming the formation of hexenyltriethylsilanes.