PHOTOINDUCED ELECTRON TRANSFER WITH $[Fe_4S_4(SC_6F_5)_4]^{2-}$

SUMIO NODA, SHIGETSOHI AONO and ICHIRO OKURA*

Department of Bioengineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152 (Japan)

(Received March 30, 1988; accepted April 15, 1988)

Summary

The $[Fe_4S_4(SC_6F_5)_4]^{2-}$ cluster with the electron-withdrawing terminal ligand, pentafluorobenzenethiolate, was synthesized and applied to the photoinduced electron transfer between $Ru(bpy)_3^{2+}$ and $[Fe_4S_4(SC_6F_5)_4]^{2-}$. From the luminescence intensity of $Ru(bpy)_3^{2+}$ in the presence of $[Fe_4S_4(SC_6F_5)_4]^{2-}$, static quenching was observed, and complex formation between $Ru(bpy)_3^{2+}$ and $[Fe_4S_4(SC_6F_5)_4]^{2-}$ was proposed. The lifetime of $Ru(bpy)_3^{2+}$ in the presence of $[Fe_4S_4(SC_6F_5)_4]^{2-}$ was measured by laser flash photolysis, and the quenching rate constant obtained was $1.2 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$.

Fe₄S₄ clusters have been widely found in a variety of functional proteins, including physiologically important electron carriers, ferredoxins and several enzymes. The redox property of the Fe₄S₄ cluster plays a key role in the functions of these proteins. The synthetic clusters, $[Fe_4S_4(SR)_4]^{2-}$, have served as accurate models of these sites, and their physicochemical properties have been extensively characterized [1, 2]. The electron transfer reactions, however, have been seldom attempted thus far, except for the self-exchange reactions [3]. This is mainly because of the low reduction potentials of these synthetic clusters (<-1.0 V). In this letter we would like to describe the photo-induced electron transfer reaction using $[Fe_4S_4(SC_6F_5)_4]^{2-}$ with a relatively high reduction potential.

All procedures were performed under an argon atmosphere. The solvents were carefully purified before use by conventional methods. $[Fe_4S_4-(SC_6F_5)_4]^{2-}$ was prepared by ligand substitution from $[Et_4N]_2[Fe_4S_4(SBu^t)_4]$ and pentafluorobenzenethiol*. $[Fe_4S_4(SC_6F_5)_4]^{2-}$ exhibited the characteristic weak shoulder bands at *ca*. 410 nm (ascribed to S—Fe charge transfer) and at *ca*. 340 nm.

^{*}Author to whom correspondence should be addressed.

Fig. 1. Relation between luminescence intensity vs. $Fe_4S_4(SC_6F_5)_4^{2-}$ concentration; $Ru(bpy)_3^{2+}: 5.90 \times 10^{-5} \text{ mol dm}^{-3}$, solvent: DMF.

The cyclic voltammogram [4] of $[Fe_4S_4(SC_6F_5)_4]^{2-}$ (using tetraethylammonium perchlorate as supporting electrolyte, in acetonitrile) consisted of the reversible couple at $E_{1/2}$, -0.75 V vs. SCE which is ascribed to the 2- to 3- redox process. The reduction potential of $[Fe_4S_4(SC_6F_5)_4]^{2-}$ was thus considerably higher than the values of the conventionally known synthetic Fe_4S_4 clusters.

In the luminescence measurements, the sample solution containing $\operatorname{Ru}(\operatorname{bpy})_3^{2^+}$ and $[\operatorname{Fe}_4\operatorname{S}_4(\operatorname{SC}_6\operatorname{F}_5)_4]^{2^-}$ (if included) was deaerated by repeated freeze-pump-thaw cycles. The luminescence intensity (an integration along the luminescence spectrum between 570 nm and 750 nm) was measured by a Hitachi-850 spectrometer. The excitation wavelength was 550 nm. The luminescence of $\operatorname{Ru}(\operatorname{bpy})_3^{2^+}$ was quenched by $[\operatorname{Fe}_4\operatorname{S}_4(\operatorname{SC}_6\operatorname{F}_5)_4]^{2^-}$. The Stern-Volmer plot $(I_0/I - 1 \operatorname{vs.} [\operatorname{Fe}_4\operatorname{S}_4(\operatorname{SC}_6\operatorname{F}_5)_4]^{2^-}$ concentration) is shown in Fig. 1. The luminescence intensity ratio strongly depended on $[\operatorname{Fe}_4\operatorname{S}_4(\operatorname{SC}_6\operatorname{F}_5)_4]^{2^-}$ concentration and increased sharply with that concentration. No linear relation was obtained on the Stern-Volmer plot, showing that the luminescence was quenched statically. As $\operatorname{Ru}(\operatorname{bpy})_3^{2^+}$ is positively charged, it may easily be complexed with negatively charged $[\operatorname{Fe}_4\operatorname{S}_4(\operatorname{SC}_6\operatorname{F}_5)_4]^{2^-}$. Since the photoexcited complex does not irradiate, static quenching may be observed.

The luminescence lifetime in the presence of $[Fe_4S_4(SC_6F_5)_4]^{2-}$ was also measured. The experimental procedure for the conventional laser flash photolysis is described elsewhere [5]. As the light source, a Nd-YAG laser (excitation wavelength 532 nm, pulse duration *ca.* 10 ns) was used, and the detection wavelength was 620 nm. Photoexcited $Ru(bpy)_3^{2+}$ was quenched by $[Fe_4S_4(SC_6F_5)_4]^{2-}$ (Fig. 2) and the Stern-Volmer plot of the lifetime is shown in Fig. 3. A good linear relation between the lifetime and $[Fe_4S_4(SC_6F_5)_4]^{2-}$

^{*}Satisfactory elemental analysis was obtained; ¹⁹F NMR (δ , d₆-MeCN, CF₃COOH), -33.7 (s, 2F, o-Ph), -81.4 (s, 1F, p-Ph), -86.6 ppm (s, 2F, m-Ph); electronic spectrum in DMF, 410 nm (ϵ , 8700 mol⁻¹ dm³ cm⁻¹), 340 nm (18000).

Fig. 2. Time dependence of luminescence intensity of $\operatorname{Ru}(\operatorname{bpy})_3^{2^+}$ (5.90 × 10⁻⁵ mol dm⁻³) in the absence (a) and presence (b) of Fe₄S₄(SC₆F₅)₄²⁻.

Fig. 3. Stern-Volmer plot of quenching of $\operatorname{Ru}(\operatorname{bpy})_3^{2^+}$ luminescence by $\operatorname{Fe}_4S_4(\operatorname{SC}_6F_5)_4^{2^-}$.

 F_5_{4} ²⁻ concentration was observed, showing that the luminescence was quenched dynamically, as shown in the following reaction:

 $\operatorname{Ru}(\operatorname{bpy})_{3}^{2^{+,*}} + [\operatorname{Fe}_{4}\operatorname{S}_{4}(\operatorname{SC}_{6}\operatorname{F}_{5})_{4}]^{2^{-}} \longrightarrow \operatorname{Ru}(\operatorname{bpy})_{3}^{3^{+}} + [\operatorname{Fe}_{4}\operatorname{S}_{4}(\operatorname{SC}_{6}\operatorname{F}_{5})_{4}]^{3^{-}}$

From the Stern-Volmer plot, the quenching rate constant was obtained as $1.2 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ which was close to that found in the diffusion-controlled process.

Acknowledgement

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas No. 62612505 'Dynamic Interactions and Electronic Processes of Macromolecular Complexes' from the Ministry of Education, Science and Culture.

References

- 1 R. H. Holm, Acc. Chem. Res., 10 (1977) 427.
- 2 J. M. Berg and R. H. Holm, in T. G. Spiro (ed.), Iron-Sulfur Proteins, Vol. 4, Wiley, New York, 1982, p. 3.

- 3 R. H. Holm, W. D. Phillips, B. A. Averill, J. Mayerle and T. Herskovitz, J. Am. Chem. Soc., 96 (1974) 2109; J. G. Reynolds, E. J. Laskowsky and R. H. Holm, *ibid.*, 100 (1978) 5315.
- 4 B. V. DePamphilis, B. A. Averill, T. Herskovitz, L. Que, Jr. and R. H. Holm, J. Am. Chem. Soc., 96 (1974) 4159.
- 5 I. Okura, N. Kaji, S. Aono and T. Nishisaka, Bull. Chem. Soc. Jpn., 60 (1987) 1243.